1	Progress on Understanding Spatial and Te	mporal Variability of PM _{2.5} and its
2	Components in the Detroit Exposure and	Aerosol Research Study (DEARS)
3		
4	Carvin Stevens, Ron Willia	ms and Paul Jones
5	U.S. Environmental Protection Agency, Re	esearch Triangle Park, NC, 27711, USA
6		
7		
8	Correspondence A	Address:
9		
10	Carvin D. Stevens, MD	-E205-04
11	U.S. Environmental Pro	otection Agency,
12	Research Triangle Park	r, NC, 27711, USA
13	Tel# (919) 541-1515, F	ax (919) 541-0905,
14	Email: <u>stevens.carvin@</u>	<u>epa.gov</u>
15		
16	Co-authors;	
17		
18	Ron Williams	Paul A. Jones
19	U.S. EPA	U.S. EPA
20	107 T.W. Alexander Drive	107 T.W. Alexander Drive
21	Research Triangle Park, NC, 27711	Research Triangle Park, NC, 27711,
22	<i>Email</i> : <u>williams.ronald@epa.gov</u>	<i>Email</i> : jones.paul-a@epa.gov
23		
24		
25		
26		
27		
28	Keywords: DEARS, $PM_{2.5}$ components, ex	posure

- 31 32

- 37 38

•	
40 41 42 43 44 45	Spatial and temporal relationship of central site measures to indoor, outdoor, and personal exposure of the components of ambient PM _{2.5} (<u>http://www.epa.gov/DEARS/</u>).
46	
47	
48	
49	
50	
51	
52	

- 53 1.0 Abstract

55	The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures,
56	ambient, residential indoor and residential outdoor concentrations of select $PM_{2.5}$ aerosol
57	components (SO ₄ , NO ₃ , Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a three year period (2004-
58	2007). These events represented approximately 190 calendar days of monitoring which was
59	performed in seven residential neighborhoods throughout Wayne County, MI. The selection of
60	neighborhoods and participants for study inclusion was based upon an a priori hypothesis that
61	each neighborhood represented a potentially distinct air quality scenario being influenced by
62	both regional as well as local pollution sources. Daily (24-hr integrated) measurement data were
63	used to evaluate the spatial and temporal $PM_{2.5}$ compositional variability of the personal, indoor
64	and outdoor spatial settings as they related to a central ambient monitoring site (Allen Park).
65	Many of the $PM_{2.5}$ components were observed to have spatially different outdoor mass
66	concentrations in matched neighborhood by neighborhood comparisons, with sulfate, OC, and
67	NO ₃ being noted exceptions. Coefficient of divergence (COD) comparisons involving outdoor
68	measures for Ca, Si, Fe, Zn, Pb, and EC revealed significant spatial variability. While
69	concentrations of most components were lower indoors as compared to outdoor measures, K and
70	Si indoor concentrations often reflected aerosol enrichment (indoor/outdoor ratios \geq 1.2). Even
71	when personal exposures were adjusted for day to day changes in ambient concentrations, certain
72	components (Ca, Fe, Mn, Zn, among others) revealed a high degree of location-specific spatial
73	variability suggesting the influences of personal activities and/or local source influences on total
74	personal $PM_{2.5}$ exposures. As a whole, findings indicate that reliance on a central ambient
75	monitor as a surrogate for total personal and potentially even residential outdoor estimates of

PM_{2.5} aerosol composition may provide an undesirable degree of exposure uncertainty for healthbased risk estimates. The focus of this paper is on the spatial variability and uncertainty in using
a central monitoring site to estimate exposures. Additional information concerning the DEARS
can be found at <u>http://www.epa.gov/DEARS/</u>.

80

81 **2.0 Introduction**

82

83 Understanding the uncertainty of using a central (ambient) community monitoring site to 84 estimate concentrations of air pollutant exposures for a given population or geographical area is 85 of research interest to exposure scientists, environmental epidemiologists, and others involved in 86 establishing health-based risk assessments (Dominici et al. 2006 [1], Brook et al 2011 [2]). Both 87 spatial as well as temporal variability issues may be influencing factors on the reliability of using 88 a central monitoring site as an adequate surrogate of a subject population's exposure. While the 89 need to establish such potential measurement errors have been raised (Zeger et al. 2000[3]; 90 Navidi et al. 1994 [4]; Lipfert et al. 1997 [5]), few research studies have been specifically 91 designed to examine this issue. The focus of this paper is on the spatial variability and 92 uncertainty in using a central monitoring site to estimate exposures. The correlation of the central 93 monitoring site to specific micro-environments (indoor, outdoor) and human exposures are the 94 basis for these evaluations. The compositional components that are correlated are sulfates (SO_4) . 95 nitrates (NO₃), organic carbon (OC), elemental carbon (EC) and some of the crustal materials 96 (Fe, Si, Ca, K, Mn, Pb, Zn).

97

One such effort to obtain sufficient data to examine exposure measurement uncertainty in a given
geographical area has recently been completed. The U.S. EPA conducted an intensive 3-year

100 human observational exposure study entitled, the Detroit Exposure and Aerosol Research Study 101 (DEARS). The study was conducted in Wayne County, MI from 2004 to 2007. The DEARS was 102 designed to investigate the sources of different pollutants impacting households across a large 103 metropolitan area and to determine the spatial and temporal variability of a wide range of 104 pollutant species at the personal (P), residential indoor (I), and residential outdoor (O), settings. 105 The DEARS involved 24 hr-integrated (daily) monitoring associated with 142 participants and 106 involving six selected neighborhoods. These six neighborhoods or enumeration monitoring areas (EMAs) were selected a priori as potentially being impacted by a wide range of both regional 107 108 and local air quality sources. Summer and winter sampling schemes for each participant 109 consisted of 5 days of monitoring each season (Tuesday – Saturday). In addition, daily pollutant 110 measurements were taken at a centrally-located ambient monitoring site (A) at Allen Park, MI. 111 Data from a total of three summer and three winter seasons were collected (Williams et al. 112 2009[6]; EPA 2012 [7]). DEARS investigated the intra-urban variability in air pollution source 113 impacts using receptor and statistical modeling of daily speciated PM_{2.5} and VOC measurements 114 collected at residential outdoor locations across Wayne County, MI (Duvall et al. 2012 [8]; 115 Bereznicki et al. 2012 [9]; George et al. 2010 [10]). Spatial relationships between coarse 116 particulate matter in the DEARS were reported by Thornburg et al 2010 [11]. 117

Particulate matter (PM) represented one of the primary pollutants of interest in the DEARS with many reported PM pollutant sources present in the Detroit area. Wayne County, MI is consistently reported as one of the most polluted counties in the U.S. and the most polluted in Michigan as reported by the EPA's Toxic Release Inventory (TRI). DEARS research observed negligible PM total mass (coarse) concentration spatially in residential outdoor measurements

across the Detroit urban air shed (Rodes et al. 2010 [12]). Spatial factors, such as distance from a
highway, topography, land surface roughness, and the presence of other pollution sources affect
the pollutant concentration and composition. Time-related factors, such as local meteorology
(wind speed and direction, stability of the atmosphere boundary layer, precipitation, etc.), as well
as traffic intensity may play a role in pollutant dispersion, and as a result in human exposure
(Martuzeviciusa et al. 2004 [13]). George et al. 2010 [10] reported the spatiality influence of
meteorology in neighborhood-based PM_{2.5} mass concentrations associated with the DEARS.

131 Local PM_{2.5} sources in Wayne County include industrial and residential combustion processes, 132 motor vehicle emissions, residential and prescribed burning among a variety of others that contribute to the local air quality (Duvall et al. 2012 [8]; Bereznicki et al. 2012 [9]). PM_{2.5} is 133 134 formed from combustion processes and chemical reactions in the atmosphere and contains a wide variety of primary components. The major components of PM2.5 are sulfates, nitrates, 135 136 elemental/organic carbon (EC/OC), metals, and crustal elements. Some of these components 137 have been reported to be associated with some negative health outcomes. Ostro et al. 2008 [14] 138 found that cardiovascular mortality has been associated with PM25 and several of its species 139 including EC, OC, nitrates, sulfates, potassium, copper and iron. EC/OC has been associated 140 with respiratory and cardiovascular health effects (Gauderman et al. 2004 [15]; Peters et al. 2000 141 [16]). Sulfate (SO₄) has advantages over other $PM_{2.5}$ components for retrospective epidemiology 142 because extensive epidemiological literature and large databases for sulfates exist as compared to 143 studies of the other components. The association of mortality with SO_4 is inconsistent. In a 144 review of toxicologic studies, Schlesinger et al. (2003) [17] suggested that SO₄ is benign. In vivo 145 studies PM_{2.5}, Seagrave et al. (2006) [18] found that lung toxicity and inflammation correlated

146 with vehicular pollution but not secondary particles, including SO₄. However, vehicular

147 emissions are consistently associated with cardiac or other end points as reported by Grahame et

al. (2007) [19]. Cavallari et al. 2008 [20] reports that the metal components of PM_{2.5} may be

toxic and responsible for lung inflammation and cardiac arrhythmias, and Valko et al. 2006 [21]

150 reported that metal-induced toxicity and carcinogenicity are caused by oxidative stress.

151

152 While specific PM mass components have been associated with health outcomes, little is known 153 about the spatial and temporal variability of the mass concentrations of these components across 154 a metropolitan area. Understanding such variability is critical in assessing the exposure 155 measurement uncertainty or even the exposure misclassification errors in using a central 156 community monitor to represent a given epidemiological study population (Zeger et al. 2000 [3]). Significant sources of the trace metal and the crustal components of PM_{2.5} in metropolitan 157 158 settings may exist and could exhibit substantial spatial and temporal variability within such 159 settings (Oglesby et al. 2000 [22]; Lau et al. 2009 [23]). It has been suggested that in such cases, 160 centrally located community monitors might not be an adequate surrogate for residential 161 concentrations and personal exposures to air pollutants (Kousa et al. 2002 [24]; Violante et al. 162 2006 [25]). Examination of spatial and temporal variations in the concentration and composition 163 of PM has the potential to provide important insights into particle sources and atmospheric 164 processes that influence particle formation (Olofson et al. 1994 [26]; Motallebi et al. 2003 [27]). Investigations involving the seasonal and annual variability of the components of PM_{2.5} would 165 166 allow for the examination of the influence of the atmospheric contribution of a heavily 167 industrialized urban center and the particulate matter composition (Ledoux et al. 2006 [28]). 168

To examine some of the issues discussed above relating to spatial and temporal variability of the major PM_{2.5} mass components, we will report daily (24-hr) levels of personal, residential indoor and residential outdoor, as well as community-level concentrations of these components from the DEARS. A variety of statistical approaches are used in this assessment and extensive use of descriptive statistics, mixed models, and coefficient of divergence analyses provides the basis for summary findings.

175

176 Detroit is located in Wayne County, MI and EMAs selected for the sampling in DEARS are 177 located within the county (Figure 1). Williams et al. 2009 [6] have described in great detail each 178 EMA and their selection as part of the overall DEARS study design. In addition, preliminary 179 investigations concerning potential industrial sources impacting the various EMAs have been 180 reported (Duvall et al. 2012 [8]; Bereznicki et al. [9]). A selection of the EMAs was based on 181 the proximity to point and line sources (local freeways or interstate highways) that were expected 182 to impact these areas (Supplemental Table 1). The mobile sources are represented as a distance 183 either less than or greater than 300 m from the roadway. The 300 m distance cut-off for roadway 184 proximity is based on the hypothesis that concentrations of some mobile source-related 185 pollutants (VOCs) decrease significantly at distances beyond 300 m from the source. Findings in 186 the DEARS have supported this element of the study design (Barzyk et al. 2009 [29]).

187

EMA 1 represents the Zug Island area, a heavily industrialized island in the city of River Rouge near the southern city limits of Detroit. A major source of pollution in this area is from the steel manufacturing process. The Ambassador Bridge is believed to be a major PM source located in EMA 3. The bridge joins the US to Ontario, Canada and is North America's most active

192 international Border crossing. EMA 4 represents a mixture of both industrial as well as potential 193 near-road impacts. Dearborn (EMA 5) is the center of the Detroit automotive industry. The 194 EMAs includes six automotive factories on 600 acres (2.4 km²) of land, as well as steelmaking 195 operations in the south end of Dearborn. A major source of air pollution in EMA 6 was 196 hypothesized as the Southfield Freeway. The Michigan Department of Transportation (MDOT) 197 surveys in 2010 showed that the highest traffic levels along the freeway were the 198 159,400 vehicles daily between Schoolcraft Road and Grand River Avenue in Detroit; the lowest 199 counts were the 20,400 vehicles per day between the I-94 and Van Born Road interchanges 200 (MDOT 2010 [30]). Belleville (EMA 7) was considered a priori to be a background site 201 impacted almost entirely by regional air quality. The central (ambient) monitoring site at Allen 202 Park was collocated with one operated by the State of Michigan as part of their state 203 comprehensive air monitoring network. This site has historically been used for compliance in 204 demonstrating attainment with the National Ambient Air Quality Standards (NAAQS). 205 Additional information concerning the DEARS can be found at http://www.epa.gov/DEARS/. 206

208

209

210

3.0

213

214 Williams et al. 2009 [6] report on the design and field implementation for the DEARS. Personal 215 samples were collected using active (2 lpm) PM_{2.5} personal monitors (PEMs) placed on sampling 216 vests worn by the participants. The residential samples, collected using the personal monitoring 217 device, were collected outside of the homes, and the community (ambient) based monitoring 218 took place at Allen Park, MI. EMAs were selected based on proximity to known or suspected 219 point and line sources. Participants were monitored for 5 consecutive (24-h) days in each of two 220 consecutive seasons (summer, winter) from 2004-2007. Selection criteria for participants were 221 that they must be (1) non-smokers, (2) living in a non-smoking household, (3) ambulatory, (4)

expected to live in the same dwelling for the next 9 months, (5) living in a detached home, (6) 18
years of age or older, and (7) able to comprehend either English or Spanish instructions. There
were no health restrictions on enrollment other than being ambulatory. Likewise, there were no
enrollment restrictions on occupation, socioeconomic status, sex, or ethnicity. Residences were
selected using randomized sampling in a geographically focused pattern recruitment of
participants (Phillips et al. 2010 [31]).

228

229 3.2 Sample Collection and Analyses

The measurements and analyses methods are generally described in Williams et al. 2009[6] andare referenced in the Supplemental Table 2.

232

233 3.6 Data Analysis

234

235 Descriptive statistics and distributions of PM_{2.5} components were tabulated by season and 236 EMAs. Descriptive analyses included the use of several measures of centrality (e.g., means and 237 medians) and measures of dispersion (e.g., standard deviations and range of distributions) to 238 characterize the distribution of the PM_{2.5} components. Multivariate analysis included the use of 239 mixed models to account for potential serial correlations between the repeated measurements. 240 Multivariate analysis was performed using general linear models to examine the effect of 241 seasonal variability on selected personal and outdoor elemental components. More specifically, 242 we used the MIXED procedure in SAS (version 9.1) to account for potential serial correlations 243 among repeated measures for each subject. The model was defined as:

244

245	$Y_{ij} = \beta_0 + \beta_1 X_{1ij} + \beta_2 X_{2ij} + \epsilon_{ij}$
246	
247	i=1,,k subjects,
248	$j=1,,n_i$ measurement on the i th subject
249	
250	Y_{ij} =is the value of metal value associated with j th measurement on the i th subject
251	
252	β_0 , β_1 , and β_2 are parameters
253	
254	X_{1ij} is 0,1 variable representing two seasons
255	
256	X_{2ij} is the observed ambient value of the j th measurement on the i th subject
257	, a state of the s
258	ε_{ij} is the random error for the j ^m measurement o the i ^m subject
259	
260	The MIXED procedure requires a covariance structure to be specified in the model. We used the
261	information criteria to produce the MIXED procedures as a tool in selecting a covariance for the
262	model. We examined two covariance structures: compound symmetry (exchangeable) and
263	autoregressive AR (1). After examining the two covariance structures, we chose the
264	exchangeable covariance structure based on the Akaike Information Criteria (AIC) statistic. The
265	AIC statistics associated with exchangeable covariance structure was smaller (Littell et al. [32])
266	than the one associated with AR (1), and therefore the exchangeable covariance was used in the
267	analyses. The exchangeable covariance structure indicated that correlations of the repeated
268	measures were relatively constant. Within the mixed model, we also generated least square
269	means for both seasons for selected components. In additional to examining potential
270	differences between the two seasons, the least square means provided a magnitude of the

271	difference within-group means adjusted for other factors in the model. A statistical difference
272	between variables being compared was reported when p-values were ≤ 0.05 .

274 The Coefficient of Divergence (COD) between EMAs assessed spatiality of the PM_{2.5} 275 components (Pinto et al. 2004 [33]). In this study, we examined 6 EMAs and the central site, 276 resulting in 21 pair-wise spatial comparisons. A COD of 0 indicates complete homogeneity and a 277 value of 1 indicates maximum differences. COD values between 0 and 0.2 are representative of 278 good agreement between matched pairs. On the contrary, values greater than 0.2 to 1 are 279 indicative of pairs that do not agree well and are non-representative of one another. Enrichment 280 factors presented in the paper are the mass concentration ratios calculated using the matched 281 daily average means to estimate the relationships of indoor to outdoor or personal to indoor mass 282 concentration relationships.

283

284 **4.0 Results and Discussion**

285

286 The mean statistical summary of the primary PM_{2.5} mass components measured at the central 287 (ambient) monitoring site for the summer and winter seasons in the DEARS observed that the total daily PM_{2.5} mass concentrations ranged from 2.8 to 66.4 μ g/m³ over the course of the full 288 289 study. Using the accepted conversion factors for transforming elemental sulfur to sulfate (SO_4 = S 290 x 4.125), the results indicate that the total $PM_{2.5}$ mass is composed of ~ 36% SO₄ in the summer. 291 By contrast, NO₃ was the major mass contributor observed during the winter seasons ($\sim 29\%$). 292 NO₃ exhibited the greatest seasonal difference in mass concentration than any other component 293 with the mean winter concentration being more than 4 times that of the summer (Supplemental 294 Table 3). Mean OC concentrations revealed little variability by season (~1%). When original

295 OC data was converted to its usual form for mass reporting (1.4 X OC), it contributed 296 significantly to the total PM_{2.5} mass (~23% in winter). Ca, Fe, K, Mn, Pb, Si, and Zn contributed 297 significantly less mass to the total PM_{2.5} composition regardless of season. Mean mass concentrations for these elements was typically $\leq 200 \text{ ng/m}^3$ Even so, on some occasions they 298 299 were observed to be significantly elevated on a daily basis (e.g., Fe maximum = 7130 ng/m^3). 300 Descriptive statistical data for personal, indoor, outdoor and the central site are found in the 301 supplemental tables 3-9.

302

303 Graphical representations (Charts 1 and 2) of the average concentrations of the data for the 304 personal, indoor, outdoor and ambient concentrations of each component as they relate spatially 305 for summer and winter show that the highest mass concentrations of PM_{2.5} varies significantly 306 within EMA 4 . The results for summer and winter show EMA 5 has the highest concentrations 307 and greatest variance for the metals or crustal materials (Ca, Fe, K, Mn, Pb, Zn & Si) during 308 summer and winter. EMA 5 (Dearborn) is a heavily industrialized area, and the most abundant metal was Fe contributions, averaging 921 ng/m^3 , were found there during the winter. Fe is the 309 310 most abundant of the metals and is primarily associated with the soil and crustal elements of 311 PM_{2.5}. Duvall et al. 2011 [8], related the impact of a variety of steel manufacturing and mixed 312 industries in the DEARS as a source of the observed Fe concentrations, especially those 313 associated with EMA 1 and 5. 314 315

316 317 Chart 1.

Component Mean Concentrations (ng/m³) in each Enumeration Monitoring Area (EMA) Personal, Indoor, Outdoor and Central Site (Summer)

Chart 2. Component Mean Concentrations (ng/m³) in each Enumeration Monitoring Area (EMA) Personal, Indoor, Outdoor and Central Site (Winter)

In general, total PM_{2.5} mass across the EMAs was dominated by contributions from SO₄, OC and NO₃. Winter data reveal that mean total PM_{2.5} mass concentrations were highest in EMAs 3 and 5 (16.9 and 16.6 μ g/m³, respectively) and EMAs 1 and 5 were highest in the summer (supplemental tables 4 and 5). OC is the most abundant component for the outdoor residential spatial setting with the highest concentrations observed in the summer. These findings are consistent with reported findings that organic compounds of biogenic and anthropogenic origin often represent a large fraction, up to 40%, of total PM mass (Chow et al. 1993 [34]; Chow et al. 1994 [35]). SO₄ is the second most abundant component in summer across the EMAs with NO₃ being the second most abundant in winter. OC, SO₄ and NO₃ are considered secondary or regional components of PM_{2.5}. The graphical representations for the seasonal variations are shown in Chart 3.

363 Mixed model results indicate the impact of residential outdoor spatial PM_{2.5} component 364 variability across the DEARS EMAs by seasons (Table 1). Day to day variability of ambient-365 based concentrations was accounted for in the modeling approach. The presence of a p-value \leq 366 0.05 for any of the components for a given season is indicative that some significant degree of 367 spatiality exists. Such a value indicates that at least one of the EMAs had observed mean mass 368 concentrations statistically different than the overall modeled mean. Rodes et al. 2010 [12] had 369 identified some preliminary findings indicating that some minor PM_{2.5} total mass heterogeneity 370 existed across the DEARS on a daily basis (on the order of 1-2 μ g/m³). The current findings 371 validate that conclusion and provide for an EMA basis for such an observation. Using periodic 372 sampling outdoor measures of S revealed low spatial variability. NO₃ and OC exhibited low 373 spatial variability during the winter seasons. Again, as regional pollutants, such a finding of 374 general homogeneity is not unexpected. What is surprising is the consistent pattern of some 375 degree of heterogeneity that exists for the elemental components as a whole. This finding 376 indicates that local sources of the various elemental components exist and are impacting the air

377	quality in one or more of the EMAs being compared. It further suggests that attempts to use a
378	common ambient monitor to reflect neighborhood outdoor mass concentrations of select PM
379	components of health interest (e.g., Fe, Zn, Mn) in epidemiological risk assessments may
380	unknowingly introduce a high degree of exposure error. Considering that some of the DEARS
381	EMAs were relatively close to one another (\leq 5 km distance) and that some degree of overall
382	spatiality was still observed for many of the elements, proximity of an ambient monitor to a
383	target population (nearby location), may not be a sufficient decision parameter alone in

conducting research of that nature.

Table 1: MIAED Model Results – Examining the effect of spatial variability by season on outdoor element measures (ng/m ³) using average mean concentrations.													
Component	Season		Enum	eration Monit	oring Areas (l	EMAs)		p-Value					
		1	3	4	5	6	7						
Calcium	Summer	208	171	75	300	111	98	< 0.01					
	Winter	163	165	77	338	115	73	< 0.01					
Iron	Summer	376	207	109	444	153	126	< 0.01					
	Winter	331	230	115	902	183	98	< 0.01					
Potassium	Summer	91	70	62	97	60	59	< 0.01					
	Winter	74	61	53	86	58	52	< 0.01					
Manganese	Summer	11	7	5	15	4	5	< 0.01					
	Winter	10	9	4	19	6	4	< 0.01					
Lead	Summer	12	8	6	15	6	5	< 0.01					
	Winter	9	7	5	42	5	4	< 0.01					
Zinc	Summer	83	61	29	107	28	22	< 0.01					
	Winter	49	48	31	94	34	25	< 0.01					
Silicon	Summer	288	247	201	344	195	205	0.003					
	Winter	132	119	86	229	105	67	< 0.01					
Nitrates	Summer	1487	1335	1294	1425	1342	1057	< 0.01					
	Winter	4982	5085	4841	4834	5041	4178	0.11					
^a Sulfur	Summer	1999	1850	1945	2086	1846	1875	0.95					

	Winter	889	1239	883	926	1077	1146	0.76
EC	Summer	915	945	586	835	719	542	< 0.01
	Winter	587	598	349	591	459	326	< 0.01
^b OC	Summer	7657	7407	7304	8488	7153	6071	< 0.01
	Winter	6680	6537	5836	6381	6460	5605	0.15
PM _{2.5}	Summer	18611	17146	15248	19610	16242	15003	< 0.01
	Winter	16200	16305	13403	18727	15017	12075	< 0.01

^a Conversions used in the manuscript to quantify SO₄: SO₄ = S x 4.125

^bConversions used in the Table OC = OC x 1.4
 388

389 We further identify the inter-EMA comparability of the PM_{2.5} mass components (Table 2). 390 Coefficient of divergence (COD) statistic is provided for the combined summer and winter 391 measures. These measures provide a clear perspective on how residential outdoor measures in 392 any one EMA compared to date-matched measures in all other EMAs and the central site. While 393 there is not consensus of an exact COD value that constitutes statistical significance, literature 394 indicates values > 0.2 are indicative of the pairings that are somewhat not representative of each 395 other (Thornburg et al. 2010 [11]). Using such a threshold indicator of heterogeneity, the 396 regional nature of NO₃, S (SO₄), and OC is clearly established where most of the pairing are 397 approximately 0.2 or less. These components EC, typically associated with automotive and other 398 similar fossil fuel combustion sources, exhibited greater spatial variability as many of the 399 pairings exhibited CODs > 0.30. This observed wide-spread heterogeneity strengthens the 400 earlier statistical finding associated with EC in Table 1. K on the other hand, exhibits 401 significantly less spatial variability with a majority of the pairings having COD values ≤ 0.25 . K 402 can be considered to have low spatial and temporal variability when the individual EMAs are 403 correlated using continuous central site monitoring over all seasons. K has been considered a 404 possible regional source but its origin has not been accounted for in the Detroit area (Duvall et al.

405 2012 [8]). Residential outdoor concentration pairings for Ca, Si, Mn, Zn, and Pb were routinely 406 different across most of the EMA pairings (low spatial and temporal variability). EMA 7, the 407 regional background site, often exhibited a concentration difference relative to the more 408 metropolitan based EMAs (1, 3, 4, 5, and 6) with respect to elemental components. This is not 409 surprising considering the lack of industrial and other identifiable sources in that location.

	Table 2: Coefficient of Divergence (COD) between EMAs (winter & summer)																				
Component	1 vs 3	1 vs 4	1 vs 5	1 vs 6	1 vs 7	1 vs 9	3 vs 4	3 vs 5	3 vs 6	3 vs 7	3vs 9	4 vs 5	4 vs 6	4 vs 7	4 vs 9	5 vs 6	5 vs 7	5 vs 9	6 vs 7	6 vs 9	7 vs 9
NO ₃	0.14	0.14	0.21	0.17	0.22	0.21	0.15	0.16	0.14	0.22	0.16	0.21	0.14	0.19	0.22	0.19	0.22	0.14	0.22	0.22	0.21
s	0.06	0.12	0.07	0.13	0.12	0.10	0.09	0.05	0.12	0.12	0.08	0.11	0.10	0.13	0.13	0.12	0.11	0.12	0.08	0.11	0.13
к	0.20	0.27	0.21	0.25	0.26	0.24	0.20	0.25	0.21	0.26	0.21	0.33	0.20	0.22	0.21	0.31	0.32	0.21	0.31	0.18	0.20
Ca	0.23	0.46	0.28	0.37	0.48	0.33	0.40	0.36	0.33	0.48	0.21	0.60	0.27	0.26	0.31	0.51	0.62	0.33	0.47	0.29	0.26
Si	0.40	0.44	0.29	0.70	0.52	0.48	0.73	0.38	0.36	0.52	0.44	0.48	0.44	0.55	0.46	0.47	0.53	0.36	0.46	0.86	0.41
Mn	0.35	0.50	0.34	0.44	0.53	0.43	0.40	0.43	0.37	0.54	0.38	0.57	0.41	0.51	0.44	0.57	0.64	0.37	0.54	0.40	0.34
Fe	0.35	0.51	0.39	0.39	0.56	0.42	0.33	0.43	0.27	0.56	0.31	0.61	0.28	0.33	0.36	0.51	0.65	0.27	0.51	0.37	0.29
Zn	0.32	0.48	0.38	0.50	0.52	0.44	0.37	0.42	0.40	0.52	0.37	0.54	0.39	0.43	0.41	0.57	0.62	0.40	0.51	0.35	0.37
Pb	0.40	0.52	0.42	0.46	0.86	0.52	0.48	0.44	0.99	0.86	0.67	0.54	0.37	0.78	0.55	0.54	0.63	0.99	0.54	0.75	0.93
EC	0.21	0.37	0.29	0.30	0.42	0.26	0.32	0.30	0.28	0.42	0.22	0.33	0.24	0.33	0.31	0.28	0.42	0.28	0.28	0.42	0.27
ос	0.15	0.16	0.14	0.15	0.21	0.16	0.14	0.14	0.15	0.21	0.15	0.15	0.15	0.51	0.16	0.15	0.21	0.15	0.15	0.21	0.15
PM _{2.5}	0.11	0.16	0.13	0.14	0.20	0.12	0.14	0.15	0.13	0.20	0.11	0.21	0.13	0.16	0.14	0.18	0.22	0.13	0.16	0.16	0.12

*(values greater than 0.2 are indicative of pairs that are non-representative of one another. The central site is represented as Enumeration Monitoring Areas (EMA) 9.) * Conversions used in the manuscript to quantify SO4: SO4 = S x 4.125, Conversions used in the Table OC = OC x 1.4 414

415 We have previously reported that the time activity diaries for the DEARS participants show that

416 approximately 80% of their time is spent indoors at the residence (Rodes et al. 2010 [12]).

417 Personal exposures to particles are frequently dominated by exposure to non-ambient particles

418 and originate from indoor sources. Therefore, understanding how well residential indoor mass

419 concentrations of these PM components relate to ambient measures is critical in reducing

420	exposure uncertainty. Indoor $PM_{2.5}$ component concentrations revealed a high degree of
421	variability when compared to those from the ambient monitoring site (Table 3). A p value ≤ 0.05
422	is once again indicative of some degree of mass concentration heterogeneity associated with the
423	mean mixed model value for the PM component across all EMAs when adjusted for the day to
424	day variability of ambient-based mass concentrations. Seasonal residential indoor $PM_{2.5}$ mass
425	concentrations were observed to range from 8.8 to $31.5\mu g/m^3$. Indoor PM _{2.5} total mass
426	concentration associated with participants from EMA 7 represented the lowest means observed
427	regardless of season. Some degree of Fe, Mn, Pb, Zn, NO ₃ , OC, and S (SO ₄) indoor mass
428	spatiality occurred over both the summer and winter seasons. While there are numerous indoor
429	sources of OC (cooking aerosols being one example) and thus a ready explanation for the
430	observed spatial effect, the observed spatiality for indoor S needs to be explained. The indoor
431	OC and S have high spatial and temporal variability using the periodic central site monitoring for
432	these evaluations. While it is a regional pollutant, we have identified environmental tobacco
433	smoke in the participant's homes as being an influencing factor on overall indoor S
434	concentrations in the DEARS (Williams et al., 2012 [36]), and thus the effect observed here. K
435	was the only component not observed to exhibit some degree of indoor residential statistical
436	significant or low spatial and temporal (p= 0.6) variability, although near significance was
437	observed for the winter season. Ca was significantly different during the summer

Table 3:	Γable 3:MIXED Model Results – Examining the effect of spatial variability indoor element measures (ng/m3).														
Component	Season	Enumeration Monitoring Areas (EMA)													
		1	3	4	5	6	7								
Calcium	Summer	145	100	67	196	80	59	< 0.01							
	Winter	262	74	59	146	60	54	0.17							
	Summer	254	143	71	284	91	46	< 0.01							

Iron								
	Winter	177	110	63	257	69	47	< 0.01
Potassium	Summer	86	68	75	99	66	43	0.13
	Winter	97	50	136	80	45	37	0.06
Manganese	Summer	7	5	3	9	3	3	< 0.01
	Winter	6	5	3	8	2	2	< 0.01
Lead	Summer	10	8	4	12	4	2	< 0.01
	Winter	6	5	3	14	3	2	< 0.01
Zinc	Summer	68	41	44	117	21	17	< 0.01
	Winter	43	31	23	61	18	14	< 0.01
Silicon	Summer	262	190	194	263	322	101	0.59
	Winter	288	112	99	218	86	68	< 0.01
Nitrates	Summer	905	565	755	735	575	380	< 0.01
	Winter	1214	888	1110	2186	755	346	0.02
^a Sulfur	Summer	1680	1458	1308	1584	1440	1008	< 0.01
	Winter	802	755	664	762	572	493	< 0.01
EC	Summer	861	904	576	807	674	411	< 0.01
	Winter	723	453	602	368	351	366	0.33
bOC	Summer	18525	15000	25239	20280	20130	17117	< 0.01
	Winter	24244	18749	34921	27147	24457	20245	0.01
PM _{2.5}	Summer	19636	15067	25234	20245	18474	12054	0.02
	Winter	17786	9756	31573	26411	15538	8797	0.02
77								

^a Conversions used in the manuscript to quantify SO_4 : SO_4 = S x 4.125 ^bConversions used in the Table OC = OC x 1.4

441

We compared matched residential indoor versus residential outdoor $PM_{2.5}$ composition ratios (Supplemental table10). Such ratios are often considered as enrichment factors when ratios exceed unity (> 1.0). Total $PM_{2.5}$ indoor/outdoor ratios 1:1 indicate the significant contribution to the infiltration of outdoor air had on total mass concentrations as a whole. Even so, it must be realized that indoor sources of $PM_{2.5}$ also contributed to the totals. We have previously reported that the mean residential $PM_{2.5}$ infiltration factor in the DEARS was ~0.7 (Williams et al., 2009

[6]). Therefore, it is suggested that on average, residential indoor sources contributed $\sim 30\%$ of 448 449 the total PM_{2.5} mass observed and the resulting 1:1 ratios. While a clear majority of the 450 comparisons had lower indoor concentrations of any respective component, some enrichment 451 was observed. This was most notable for Ca (winter), K (summer and winter), Zn (summer), and 452 Si (summer and winter). One might speculate on a variety of either indoor or indoor 453 infiltrated/deposited sources responsible for each of those named immediately above. Descriptive 454 statistics detail the residential indoor PM25 components variability across the summer and winter 455 seasons. The large degree of variability (often exceeding 100%) as measured by the RSD across 456 the various components and by EMA suggests the difficulty that might exist in trying to 457 associate ambient-based measures of these pollutants as surrogates for indoor concentrations in 458 most instances. Future work will attempt to associate residential indoor and outdoor 459 concentrations of these elements along with survey information obtained in the DEARS to 460 investigate potential influencing human and environmental exposure factors.

461

462 Data reported in Table 4 examines the effect of spatial variability on personal measures after 463 adjustment for day to day variability of ambient-based measures. As can be seen in 464 Supplemental Table 11, matched personal and residential indoor component mass concentration 465 ratios were often within 20% of unity. This is not surprising considering the time activity pattern 466 of the DEARS participants indicated a significant (~75%) amount of time spent home indoors 467 each day (Rodes et al. 2010, [12]). Therefore, the residential indoor environment would have the 468 largest time opportunity to influence the total daily personal exposure profile. Mn and Zn 469 exhibited the greatest divergence from unity, and are suggestive of non-residential indoor source 470 impacts on some of the participants. The p-value statistics ($p \le 0.05$) reported in supplemental

471	Table 12 indicates that both spatial and temporal effects are evident relative to ambient-adjusted
472	personal exposures. In other words, the day to day variability observed in personal exposure
473	$PM_{2.5}$ mass component heterogeneity across the EMAs cannot be accounted for by changes in
474	the ambient conditions alone. The least degree of heterogeneity or spatial variability was
475	observed for Ca (winter), K (winter), Zn (summer), and Si (summer). The observed
476	heterogeneity for S observed here would appear to be due to the much lower mass concentrations
477	observed in EMA 7 with respect to the other EMAs. One possible explanation for this
478	observance would be that EMA 7 is upwind of the majority of industrial emissions in the
479	DEARS study area and therefore less impacted by secondary organic aerosol products (e.g., SO ₄)

480 impacting total personal exposures.

Table 4: MIXED Model Results – Examining the effect of spatial variability using average mean concentrations (ng/m ₃) of personal measures adjusting for ambient air by season.								
Component Season Enumeration Monitoring Areas (EMA)								p-Value
		1	3	4	5	6	7	
Calcium	Summer	159	141	111	200	97	103	< 0.01
	Winter	199	103	66	128	74	119	0.178
Iron	Summer	246	167	99	262	134	73	< 0.01
	Winter	192	120	68	233	77	61	< 0.01
Potassium	Summer	104	87	75	120	71	56	0.040
	Winter	88	60	153	76	48	50	0.123
Manganese	Summer	8	7	4	8	5	3	< 0.01
	Winter	7	5	3	8	3	3	< 0.01
Lead	Summer	11	8	4	11	5	4	< 0.01
	Winter	6	6	3	13	4	3	< 0.01
Zinc	Summer	66	47	55	94	29	33	0.12
	Winter	51	31	26	51	25	24	0.02
Silicon	Summer	289	289	209	304	222	361	0.08
	Winter	240	151	132	205	111	208	0.03
^a Sulfur	Summer	1596	1435	1197	1586	1396	899	< 0.01
	Winter	742	707	638	743	535	523	0.02

PM _{2.5}	Summer	20,400	17,800	24,900	24,100	19,000	13,600	0.031
	Winter	16,200	12,400	34,300	26,900	16,000	9,700	0.014

 $\begin{array}{c} 481\\ 482\\ 483 \end{array}$ a Conversions used in the manuscript to quantify SO₄: SO₄ = S x 4.125

484 Information reported in the supplemental tables 8 and 9 provide spatial and temporal descriptive 485 statistics of personal PM_{2.5} mass component observed in the DEARS. These tables give more 486 insight into the variability of the personal measures. The large values associated with the RSD 487 are an indication of the high spatial and temporal variability of personal exposures to the various 488 PM components across the various EMAs. Taken into context with data presented it is evident 489 that local and certainly some indoor-related sources often play a large role in total personal 490 exposures to these PM mass components. It has been reported that indoor particulates are 491 generated or re-suspended from everyday activities such as cooking, dusting, vacuuming, etc. 492 (Wallace et al. 1996 [37]). "The source strengths were found to be a function of the number of 493 persons performing the activity, the vigor of the activity, the type of activity, and the type of 494 flooring (Ferro et al. 2004 [38])." The impact of indoor activities on total personal exposures 495 mentioned above vary between households and individuals which explains the variability in 496 exposure. In addition to indoor residential activities, microenvironments affect personal 497 exposures. These microenvironments include workplaces, outdoor surroundings, personal cloud, 498 etc. (Wallace et al. 1996 [37]). Landis et al. [39] have reported on possible non-ambient related 499 personal activities that appear to influence total personal PM_{2.5} component exposures. 500

501 5.0 Conclusion

502

503 The DEARS represented an extensive matched personal, residential indoor, residential outdoor, 504 and ambient-based spatial and temporal study design and provided hundreds of PM_{2.5} mass 505 component comparison opportunities. It is evident in the data provided that attempting to use 506 ambient measures as effective surrogates of exposures to specific PM_{2.5} mass components might 507 be problematic and could lead to substantial exposure measurement uncertainty or potentially 508 even health outcomes misclassification in health-based risk assessments. Even adjusting for day 509 to day changes in the ambient environment often failed to negate the observed differences at the 510 residential outdoor, residential indoor, and especially at the personal level. Local (unknown) 511 sources are impacting many of the EMAs investigated in the DEARS. The reports by Bereznicki 512 et al. 2012 [9] and Duvall et al. 2012 [8] provide some insight as to these local source impacts. 513 Examination of the extensive time activity and residential survey information obtained in the 514 DEARS will now be used in future efforts to elucidate the specific activities that impacted the study population's exposure to non-ambient PM2.5 mass components. Additional information 515 516 concerning the DEARS can be found at http://www.epa.gov/DEARS/. EPA is working toward a 517 web-based public release of the DEARS data in the future that holds the potential for 518 collaboration on additional data analyses.

519

520 6.0 Acknowledgements

521 The U.S. Environmental Protection Agency through the Office of Research and Development 522 funded and conducted the research described in this article under contract 68-D-00-012 (RTI 523 International), EP-D-00-068 (Battelle Columbus Laboratory), 68-D-00-206 and EP-05-D-065 524 (Alion Science and Technology). It has been subjected to Agency administrative review and 525 approved for publication. Mention of trade names or commercial products does not constitute

526	endorsement or recommendation for use. We especially thank Carry Croghan, Terri Conner and
527	Robert Willis of the U.S. EPA; Charles Rodes, Jonathan Thornburg and Randy Newsome of
528	RTI, International for their assistance in field or laboratory components of this effort.
529	
530	
531	
532	
532	
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	
544	
545	
546	
547	
548	

549	7.0	References
550		
551	[1]	F. Dominici, R. Peng , M. Bell, L. Pham, A. McDermott, S.L. Zeger and J.M. Samet,
552		<i>JAMA</i> 2006, 295: 1127-1134.
553		
554	[2]	R. Brook, R. Bard, R. Burnett, H. Shin, A. Vette, C. Croghan, C. Stevens, M. Phillips, R.
555		Williams, Occupational and Environmental Medicine, 2011, 68:224-230.
556		
557	[3]	S. Zeger, D. Thomas, F. Dominici, J. Samet, J. Schwartz, D. Dockery and A. Cohen,
558		Environmental Health Perspectives, 2000, 108, 419.
559 560	[4]	W. Navidi, D. Thomas, D. Stram, J. Peters, Environmental Health Perspectives, 1994,
561		102 (Suppl 8), 25–32.
562		
563 564	[5]	F. Lipfert, R. Wyzga, Journal of Air Waste Management Association, 1997, 47 (4):517–523.
565		
566		
567	[6]	R. Williams, A. Rea, A. Vette, C. Croghan, D. Whitaker, C. Stevens, S. McDow, R.
568		Fortmann, L. Sheldon, H. Wilson, J. Thornburg, M. Phillips, P. Lawless, C. Rodes, and
569		H. Daughtrey, Journal of Exposure Science and Environmental Epidemiology, 2009; 19,
570		643.

[7] EPA 2012 (<u>http://www.epa.gov/dears/</u>)

573

574 [8] R. Duval, D. Olson, G. Norris, J. Burke, R. Vedantham and R. Williams, *Atmospheric*575 *Environment*, 2012, 47, 491.

576

577 [9] S. Bereznicki, J. Sobus, A. Vette, M. Stiegel and R. Williams, *Atmospheric Environment*,
578 2012, doi.org/10.1016/j.atmosenv.2012.07.008.

579

580 [10] B. George, D. Whitaker, R. Gilliam, J. Swall and R. Williams, J. Air and Waste
581 Management Association, 2010, 60, 1094.

582

583 [11] Thornburg, J., Rodes, C., Lawless, P., and Williams, R., 2009, Atmospheric Environment
584 43, 4251.

585

586 [12] C. Rodes, P. Lawless, J Thornburg, R. Williams and C. Croghan, *Atmospheric*587 *Environment*, 2010, 44(11), 1386.

588

- 589 [13] D. Martuzeviciusa, S. Grinshpuna, T. Reponena, R. Gornya, R. Shuklaa, J. Lockeya, S.
- 590 Hub, R. McDonald, P. Biswas, L. Kliucininkas and G. LeMasters, *Atmospheric*
- 591 *Environment*, 2004, **38**, 1091.

593	[14]	B. Ostro, W. Feng, R. Broadwin, B. Malig, R. Green and M. Lipsett, Occupational and
594		Environmental Medicine, 2008, 65, 750.
595		
596	[15]	W. Gauderman, E. Avol, F. Gilliland, H. Vora, D. Thomas, K. Berhane, R. McConnell,
597		N. Kuenzli, F. Lurmann, E. Rappaport, H. Margolis, D. Bates and J. Peters, New England
598		<i>Journal of Medicine</i> , 2004, 351(11) ,1057.
599		
600	[16]	A. Peters, E. Liu, R. Verrier and J. Schwartz, American Journal of Epidemiology, 2000,
601		11 , 11.
602		
603 604	[17]	R.B. Schlesinger, F. Cassee, Inhal Toxicol, 2003, 15:197.
605 606 607	[18]	J.C. Seagrave, J.D. McDonald, E. Bedrick, E.S. Edgerton, A.P. Gigliotti, J.J. Jansen JJ, et al., Environ Health Perspect. 2006, 114 , 1387.
608	[19]	T.J. Grahame and R.B. Schlesinger, Inhal Toxicol. 2007; 19:457.
609		
610		
611	[20]	J. Cavallari, E. Eisen, S. Fang, J. Schwartz, R. Hauser, R. Herrick and D. Christiani,
612		Environmental Health. 2008, 9, 7.
613		

614	[21]	M. Valko, C. Rhodes, J. Moncol, M. Izakovic and M. Mazur, Chemico-Biological
615		Interactions, 2006, 160, 1.
616		
617	[22]	L. Oglesby, N. Künzli, M. Röösli, and C. Braun-Fahrländer, Journal of the Air & Waste
618		Management Association, 2000, 50, 1251.
619	[23]	J. Lau, W. Hung and C. Cheung, Atmospheric Environment, 2009, 43, 769.
620		
621	[24]	A. Kousa, L. Oglesby, K. Koistinen, N. Kunzli and M. Jantunen, Atmospheric
622		Environment, 2002, 36 , 3031.
623		
624	[25]	F. Violante, A. Barbieri, S. Curti, G. Sanguinetti, F. Graziosi and S. Mattioli,
625		Chemosphere, 2006, 64, 1722.
626		
627	[26]	K. Olofson, P. Anderson, M. Hallquist, E. Ljungstraem, L. Tang, D. Chen and
628		J. Peterson, Atmospheric Environment, 1994, 43, 340.
629		
630	[27]	N. Motallebi, C. Taylor, K. Turkiewicz and B. Croes, Journal of the Air & Waste
631		Management Association, 2003, 53, 1517.

633	[28]	F. Ledoux, L. Courcot, D. Courcot, A. Aboukais and E. Puskaric, Atmospheric
634		Research, 2006, 82 , 633.
635		
636	[29]	T. Barzyk, B. George, A. Vette, R. Williams, C. Croghan and C. Stevens, Atmospheric
637		Environment, 2009, 43 , 787.
638		
639	[30]	MDOT Traffic Monitoring Information System (TMIS), 2010,
640		http://mdotnetpublic.state.mi.us/tmispublic/
641		
642	[31]	M. Phillips, C. Rodes, J. Thornburg, F. Shamo, R. Whitmore, D. Chowdhury, J. Allpress,
643		A. Vette and R. Williams, Research Triangle Institute Press, 2010; DOI:
644		10.3768/rtipress.2010.2010.mr0021.1011.
645		
646	[32]	R Littell P Henry and C Ammerman <i>Journal of Animal Science</i> 1998 76 1216
0-10	[52]	R. Enten, F. Henry and C. Minnerman, <i>Journal of Human Science</i> , 1996, 16 , 1216.
647		
648	[33]	J. Pinto, A. Lefohn and D. Shadwick, Journal of the Air Waste Management
649		Association, 2004, 54 , 440.
650		
651	[34]	J. Chow, J. Watson, D. Lowenthal, P. Solomon, K. Magliano, S. Ziman and L. Richards.
652		Aerosol Science and Technology, 1993, 18, 105.

J. Chow, J. Watson, E. Fujita, Z. Lu, D. Lawson and L. Ashbaugh, Atmospheric [35] Environment, 1994, 28, 2061. R. W. Williams, P. A. Jones, C. W. Croghan, J. Thornburg, and C. E. Rodes, Journal of [36] Exposure Science and Environmental Epidemiology, 2012, 22(2),109. [37] L. Wallace, Journal of the Air Waste Management Association, 1996, 46(2), 98. A. Ferro, R. Kopperud and L. Hildermann, Environmental Science & Technology, 2004, [38] , 1759. [39] M. Landis, G. Norris, R. Williams and J. Weinstein, Atmospheric Environment, 2001, 35, 6551.

Supplemental T	Bable 1: DEARS residential neighbors	DEARS residential neighborhoods and possible source impacts					
Enumeration Monitoring Areas no.	General location ^a	Potential source impact ^b	Neighborhood proximity to freeway ^c				
1	Zug Island	Heavy industrial	≥ 300m				
3	Ambassador Bridge	Diesel truck traffic	≤ 300m				
4	US 3 and 7 Mile Road	Industry and automotive	\leq 300m and \geq 300m				
5	Dearborn	Industrial	≥ 300m				
6	Southfield Freeway	Mobile source (freeway)	≤ 300m				
7 Belleville		Regional	≥ 300m				
Allen Park Southern Wayne County		Industrial and freeway	≤ 300m				

^a Represents the general area of the neighborhood sampled

^bSource impacts defined here are those believed from a *priori* determinations of the National Emissions Inventory

(NEI) and other information gathered before the study was initiated.

^e Neighborhoods within 300m of busy roadways were considered as potentially impacted by near-road mobile source emissions.

Metric	Туре	Field collection	Analysis	Analysis reference	
PM2.5 mass	PM2.5 mass P, I, O, A 2 l/m PEM filter based		Gravimetric	Lawless and Rodes (1999)	
PM2.5 elements	P, I, O, A	2–4 l/m PEM Teflon filter	ED-XRF	Dzubay et al. (1988)	
PM2.5 EC-OC	I, O, A	2 l/m PEM quartz filter	Thermal–optical reflectance	Birch and Cary (1996)	
PM2.5 nitrate	I, O, A	0.8 l/m Coat denuder/quartz filter	IC	Demokritou et al.(2001)	
NO2, O3, SO2	NO2, O3, SO2 I (NO2)P, A Ogawa passive diffusion		IC	Varns et al. (2001)	

Supplemental Table 2: DEARS sample collection and analysis methods.

P = personal, I = indoor, O = outdoor, A = ambient, PEM= personal exposure monitor, ED-XRF = energy dispersive x-ray fluorescence, IC = ion chromatograhy

Component	N Observations	Mean (ng/m ³)	Std Dev	RSD %	Minimum (ng/m ³)	95 th Pctl(ng/m ³)	Max(ng/m ³)				
Calcium	100 / 70	120 / 117	54 / 74	45/63	39 / 24	400 /348	957 / 1916				
Iron	100 / 70	177 / 158	74 / 98	42/62	31 / 46	637 / 748	2526 / 7130				
Potassium	100 / 70	66 / 55	31 / 32	46/58	18 / 12	155 / 145	390 / 385				
Manganese	100 / 70	6 / 6	3 / 4	54/80	1 / 1	20 / 23	56 / 77				
Lead	100 / 70	6 / 5	4 / 4	68/87	1 / 0	21 / 21	158 / 665				
Zinc	103 / 70	37 / 32	37 / 34	100/107	3 / 4	171 / 132	1262 / 333				
Silicon	100/91	203/103	312/79	154/77	0/0	362/236	2732/519				
Nitrate	102/95	1228/5097	847/4878	69/96	0/0	2437/13973	5513/27822				
Sulfur	100/91	2080/974	1644/799	79/82	241/198	5672/2749	6792/4487				
EC	104/95	887/522	299/273	34/52	380/0	1420/942	1723/1667				
OC	104/95	7170/5842	2637/2277	37/39	1030/2351	12131/9046	15231/14847				
PM _{2.5}	98/91	17850/15808	9806/11397	55/72	3337/2787	40305/37163	43741/66371				

Supplemental table 3: Mean Descriptive Statistics for the Central Monitoring Site Summer/Winter

*Conversions used in the manuscript to quantify SO₄: SO₄ = S x 4.125, *Conversions used in the Table OC = OC x 1.4

Supplemental Table 4: Residential Outdoor Concentrations in the Enumeration Monitoring Areas (Summer)								
Enumeration Monitoring Areas	Component	N Observations	Mean (ng/m ³)	Std Dev (ng/m ³)	RSD %	Minimum (ng/m³)	95 th Pctl (ng/m ³)	Max (ng/m ³)
	Calcium	122	206	109	53	47	406	641
	Iron	122	370	248	67	81	889	1217
	Potassium	122	90	58	65	25	207	390
	Manganese	122	11	6	58	2	25	31
	Lead	122	14	18	136	1	29	158
1	Zinc	122	85	100	118	10	266	712
	Si	122	290	338	117	<mql 200<="" td=""><td>575</td><td>3599</td></mql>	575	3599
	NO ₃	121	1997	1200	82	184	5501	6779
	EC	122	900	300	33	300	1400	1700
	OC	126	7600	2600	34	2000	13000	16000
	PM 2.5	121	18554	9800	53	4332	37428	55581
	Calcium	167	176	109	62	24	375	957
	Iron	167	215	158	73	47	447	1546
	Potassium	167	69	33	48	22	138	231
	Manganese	167	7	4	61	<mql< td=""><td>13</td><td>32</td></mql<>	13	32
	Zinc	167	60	101	167	0.0	20	825
3	Si	167	227	151	67	18.6	493	1168
	NO ₃	152	1400	900	64	40	1900	3100
	S	167	1883	1471	78	191	5183	7449
	EC	168	900	400	44	300	1600	2100
	OC	168	7400	2400	32	1800	11600	15000
	PM 2.5	167	17026	8677	51	4686	34004	43445
	Calcium	107	104	201	192	12	192	1/5/
	Potassium	67	97 71	76	105	<moi< td=""><td>166</td><td>556</td></moi<>	166	556
	Manganese	108	4	4	119	<mql <mol< td=""><td>100</td><td>31</td></mol<></mql 	100	31
	Lead	67	4	5	124	<mql< td=""><td>11</td><td>23</td></mql<>	11	23
4	Zinc	109	48	155	323	<mql< td=""><td>100</td><td>1173</td></mql<>	100	1173
4	Si	127	203	270	133	<mql< td=""><td>2100</td><td>499</td></mql<>	2100	499
	NO ₃	124	1400	1000	71	200	3400	5100
	S	127	1948	1535	79	65.5	5249	6875
	EC	129	600	200	33	150	900	1700
	PM	129	16922	2300 9693	57	751	37179	45652
	Calcium	83	311	152	49	81	606	763
	Iron	83	444	330	74	74	925	2526
	Potassium	83	97	42	43	28	167	233
	Manganese	83	15	8	55	3	28	54
	Lead	83	15	14	91	1	43	76
5	Zinc	83	110	172	156	15	415	1263
	Si NO	83	345	206	60	67.6	816	5400
	S S	83	2086	1671	80	276	6175	6872
	EC	85	800	300	38	<mol< td=""><td>1300</td><td>1500</td></mol<>	1300	1500
	OC	85	8700	2800	32	3800	14600	17500
	PM 2.5	83	19725	9150	46	5393	38990	46741
	Calcium	142	108	67	62	<mql< td=""><td>221</td><td>479</td></mql<>	221	479
	Iron	142	153	67	44	5	264	463
	Potassium	142	60	32	53	<mql< td=""><td>103</td><td>288</td></mql<>	103	288
	Lood	142	4	5 A	5/ 71	<mql <mot< td=""><td>9</td><td>15</td></mot<></mql 	9	15
	Zinc	142	28	29	105		79	25
6	Si	142	194	192	99	<mol< td=""><td>478</td><td>1714</td></mol<>	478	1714
	NO ₃	143	1400	1000	71	140	3600	6600
	S	142	1845	1605	87	7.8	5319	6883
	EC	147	700	300	43	100	1300	1900
	OC	147	7100	2500	35	2100	11800	16400
	PM _{2.5}	140	16344	9040	55	4463	36067	43140
	Calcium	94	85	65	77	22	252	412
	Iron Potossir	94	50	130	62	22	253	1283
	Totassium	94 94		5/	02	1	108	290 56
	Lead	94	5	3	69	<mol< td=""><td>10</td><td>17</td></mol<>	10	17
-	Zinc	94	22	18	83	2	52	147
7	Si	94	183	251	137	<mql< td=""><td>330</td><td>2158</td></mql<>	330	2158
	NO ₃	87	1000	800	80	200	2500	5700
	S	94	2047	1639	80	175	5522	6860
	EC	99	600	200	33	<mql< td=""><td>900</td><td>1400</td></mql<>	900	1400
	DC DM .	99	6200	2200	35	1100	10300	12500
	PINI 2.5	94	10052	9404	59	U	42407	39300

*Conversions used in the manuscript to quantify SO₄: SO₄ = S x 4.125, *Conversions used in the Table OC = OC x 1.4

Supple	Supplemental Table 5: Residential Outdoor Concentrations in the Enumeration Monitoring Areas (Winter)							
Enumeration Monitoring Areas	Component	N Observations	Mean (ng/m ³)	Std Dev	RSD %	Minimum (ng/m³)	95 th Pctl (ng/m ³)	Max (ng/m ³)
	Calcium	73	161	112	70	13	347	769
	Iron	73	325	260	80	26	893	1248
	Potassium Manganese	73	68	51	79	14 <moi< td=""><td>22</td><td>268</td></moi<>	22	268
1	Lead	73	9	8	85	1	20	58
	Zinc	73	47	35	75	7	123	139
	Si	73	133	107	80	<mql< td=""><td>272</td><td>692</td></mql<>	272	692
	NO ₃	114	4500	3700	82	200	11000	16000
	5 FC	113	600	300	50	<mol< td=""><td>2050</td><td>2433</td></mol<>	2050	2433
	OC	113	6500	2100	32	2700	9900	14000
	PM 2.5	105	15041	8689	58	3231	32437	39340
	Calcium	79	164	109	67	10	392	523
	Iron	79	236	186	79	28	674	952
	Potassium Manganese	79	9	9	92	10 <moi< td=""><td>29</td><td>276</td></moi<>	29	276
	Lead	79	8	7	85	<mql< td=""><td>23</td><td>27</td></mql<>	23	27
3	Zinc	79	51	46	90	4	170	203
5	Si	79	119	81	68	<mql< td=""><td>277</td><td>431</td></mql<>	277	431
	NO ₃	152	5500	5900	107	100	14300	47000
	5 FC	153	600	300	50	<223	1200	1800
	OC	153	7300	3000	41	2000	13000	18000
	PM 2.5	146	16920	11881	70	2431	34228	85611
	Calcium	62	78	48	62	8	181	227
	Iron	62	110	69	63	23	268	325
	Potassium	62	51	3/	/3	14 <moi< td=""><td>100</td><td>2/3</td></moi<>	100	2/3
	Lead	62	5	4	80	<mol< td=""><td>12</td><td>14</td></mol<>	12	14
	Zinc	62	32	32	102	4	90	200
4	Si	62	86	60	70	<mql< td=""><td>180</td><td>520</td></mql<>	180	520
	NO ₃	102	4400	3300	75	300	11000	14000
	S FC	62	888	488	55	145 <moi< td=""><td>1734</td><td>2371</td></moi<>	1734	2371
	OC	105	5900	200	36	1600	9100	11300
	PM 2.5	99	13292	7378	55	2016	29861	32364
	Calcium	38	348	363	104	11	1176	1917
	Iron	38	921	1469	160	25	5530	7130
	Potassium	38	85	44	52	9	162	258
	Lead	38	42	113	273	1	240	665
-	Zinc	38	92	77	84	12	319	333
5	Si	38	230	178	77	<mql< td=""><td>596</td><td>1003</td></mql<>	596	1003
	NO ₃	64	4000	3400	85	100	10000	17000
	5 FC	38	500	424	40	< <u>MOI</u>	1659	2300
	OC	65	6000	2000	33	1700	9700	11000
5	PM 2.5	62	16573	6792	41	3176	29295	40687
	Calcium	82	116	85	73	10	269	432
	Iron	82	186	138	75	23	501	714
	r otassium Manganese	82	6	5	80 88	4 0.0	101	25
	Lead	82	5	6	128	<mql< td=""><td>16</td><td>34</td></mql<>	16	34
6	Zinc	82	35	37	105	2	101	192
U	Si	82	105	83	79	168	224	483
	NO ₃	117	4800	4100	85	20	14000	25000
	5 EC	119	500	300	60	<mol< td=""><td>900</td><td>1600</td></mol<>	900	1600
	OC	119	6300	2700	43	2000	11700	18000
 _	PM 2.5	116	15313	11511	75	3176	40990	73865
	Calcium	69	67	42	62	6	155	217
	Iron	69 60	87	84	97	10	229	612
	r otassium Manganese	69	4	30	97	- 14 <mol< td=""><td>110</td><td>215</td></mol<>	110	215
	Lead	69	4	5	117	<mql< td=""><td>13</td><td>31</td></mql<>	13	31
7	Zinc	69	22	25	115	1	66	170
/	Si	69	71	51	72	<mql< td=""><td>170</td><td>193</td></mql<>	170	193
	NO ₃	91	4500	4000	89	200	11000	22000
	5 FC	09 95	957 300	300	81	216 <moi< td=""><td>2560</td><td>4189</td></moi<>	2560	4189
	OC	95	5700	2700	47	50	13000	14000
	PM 2.5	92	12410	9162	73	1667	33163	56815

*Conversions used in the manuscript to quantify SO₄: SO₄ = S x 4.125, *Conversions used in the Table OC = OC x 1.4

Suppleme	ntal Table 6:	Residenti	al Indoor C (Su	oncentratio mmer)	ons in the Er	numeration]	Monitoring	Areas
Enumeration Monitoring Areas	Component	Observations	Mean (ng/m³)	Std Dev	RSD %	Minimum (ng/m ³)	95 th Pctl (ng/m ³)	Max (ng/m ³)
	Calcium	105	145	74	51	44	328	366
	Iron	105	254	179	70	49	643	954
	Potassium	105	51	55	108	21	218	382
	Lead	105	12	4.5	125	1.3	31	121
	Zinc	118	71	87	123	5	260	638
1	Si	105	253	357	141	27	433	3603
	NO ₃	115	907	631	68	113	2108	4147
	S	105	1683	1409	84	188	4439	6474
	EC OC	122	18313	5701	32	355	27869	40516
	PM 25	105	19063	9010	47	6270	38148	40510
	Calcium	62	99	44	44	33	180	200
	Iron	62	145	103	71	20	345	513
	Potassium	62	66	35	53	8	124	175
	Manganese	62	5	3	60	l < MOI	21	13
	Zinc	63	38	37	97	4	131	180
3	Si	62	213	215	101	30	518	1498
	NO ₃	64	548	442	81	37	1293	1867
	S	62	1425	1256	88	128	3903	5442
	EC	65	890	484	54	194	1860	2/33
	PM	63	14949	8660	58	3607	32681	46422
	Calcium	125	67	31	46	22	133	184
	Iron	125	70	38	54	16	157	179
	Potassium	125	74	82	111	9	193	579
	Manganese	125	3	2	67	< MQL	7	10
	Zinc	125	4	106	252	< MQL	9	858
4	Si	125	203	362	178	< MQL	516	3838
	NO ₃	121	789	537	68	90	1672	2728
	S	125	543	1114	205	135	3587	4819
	EC	125	577	299	52	161	1154	2267
	PM	125	25521	26368	98	5593	79733	210724
	Calcium	80	199	121	61	43	460	774
	Iron	80	286	216	75	46	795	946
	Potassium	80	95	79	83	26	198	596
	Manganese	80	9	7	78	0.6	22	46
	Zinc	80	12	231	83	< MQL	35 452	1774
5	Si	80	247	144	58	43	553	881
	NO ₃	85	724	593	82	76	1843	3183
	S	80	1668	1433	86	262	5331	6496
	EC	85	820	501	61	279	1464	3482
	PM 25	80	20321	10030	50	8780	40120	55193
	Calcium	139	79	43	54	19	185	273
	Iron	139	92	50	54	10	159	294
	Potassium	139	33	60	182	8	170	411
	Manganese	139	3 4	2	0/ 75	< MQL < MOI	6 10	10
	Zinc	143	20	22	110	2	56	201
6	Si	139	310	1254	405	< MQL	484	12553
	NO ₃	143	586	532	91	38	1712	2657
	S	139	1434	1289	90	149	3807	5630
	EC OC	136	675 20144	5494	83	< MQL 4992	31096	6365
	PM 2.5	139	18362	14597	79	3087	38876	140632
	Calcium	27	54	19	35	19	88	93
	Iron	27	43	40	93	9	85	219
	Potassium	27	44	26	59	11	88	117
	Lead	27	3 2	4	142	< MQL < MOI	/	13
_	Zinc	30	11	7	66	2	23	34
7	Si	27	133	121	91	18	350	612
	NO ₃	30	426	480	113	< MQL	1392	1826
	S	27	896	974	109	67	3395	3621
	EC	30	395	219	55	< MQL 5769	789	911
	PM 25	27	11510	9615	84 84	1086	33482	35626

*Conversions used in the manuscript to quantify SO_4 : $SO_4 = S \times 4.125$, Conversions used in the Table $OC = OC \times 1.4$

Supplemental Table 7: Residential Indoor Concentrations in the Enumeration Monitoring Areas (Winter)						s (Winter)		
Enumeration Monitoring Areas	Component	Observations	Mean (ng/m³)	Std Dev	RSD %	Minimum (ng/m ³)	95 th Pctl (ng/m ³)	Max (ng/m ³)
	Calcium	69	269	784	291	23	755	4824
1	Iron	69	173	143	83	31	449	772
	Potassium	69	89	81	91	14	304	399
	Manganese	69	5	4	80	< MQL	12	24
	Lead	69	6	5	83	1	10	40
	Zinc	69	289	48	206	19	94	312
	NO ₂	99	1156	1199	104	95	3788	5992
	S	69	666	500	75	126	1428	3392
	EC	99	628	1445	230	< MQL	1159	13595
	OC	99	24701	8588	35	13631	42276	69504
	PM 2.5	99	16004	14007	87	0	39585	95517
	Calcium	72	74	41	55	15	157	227
	Iron Potoscium	72	55	113	96	6	438	226
	Manganese	72	5	6	120	< MOL	22	230
	Lead	72	5	5	100	< MQL	16	23
2	Zinc	72	33	32	97	2	117	135
3	Si	72	112	111	99	< MQL	277	670
	NO ₃	76	1089	1335	122	< MQL	3750	7029
	S EC	/2	885	890	100	112 < MOI	3354	3044
		77	18948	4520	24	~ MQL 2402	25325	30547
	PM 2.5	70	10462	7471	71	0	26938	33404
	Calcium	55	61	49	80	14	168	284
	Iron	55	59	40	68	11	148	179
	Potassium	55	103	170	165	11	588	814
	Manganese	55	3	2	67	0 < MOI	7	7.6
	Zinc	55	22	23	104	< MQL	70	138
4	Si	55	100	121	121	< MOL	350	604
	NO ₃	66	907	892	98	18	2817	4162
	S	55	598	332	56	69	1320	1436
	EC	74	494	1680	340	< MQL	963	14587
	OC DM	74	32714	21052	64	13229	72750	139060
	PM 2.5 Calcium	74	153	125	82	1932	378	200786
	Iron	29	252	232	92	39	439	617
	Potassium	29	80	50	63	25	182	230
	Manganese	29	8	5	63	0.5	21	22
	Lead	29	14	37	264	01	22	665
5	Zinc	29	60	56	93	7	148	286
	SI NO:	29 52	1593	2333	83 146	42 < MOI	552 6750	12339
	8	2.9	667	285	43	219	1114	1233
	EC	55	503	778	155	< MQL	2983	3803
	OC	55	27475	9263	34	15213	47537	67292
	PM 2.5	54	21042	16974	81	2713	60251	85782
	Calcium	81	60	43	72	15	127	284
	Potassium	81	46	35	76	7	140	192
	Manganese	81	2	2	100	< MQL	6	12
	Lead	81	2.9	3.4	117	< MQL	10	17
6	Zinc	81	18	17	94	1	50	97
0	Si	81	86	83	97	< MQL	274	413
	NO ₃	97	789	769	97	45	2256	5105
	5 FC	61 103	381	328	87	125 < MOI	969	1867
	OC	103	26504	19622	74	1985	45266	17827
	PM 2.5	102	16599	31433	189	1101	44146	297980
	Calcium	35	52	27	52	15	114	149
	Iron	35	53	47	59	8	167	221
	Potassium	35	40	25	63	12	91	131
	Lead	35	3	2 	0/	0 < MOI	12	9
	Zinc	35	16	15	94	2	54	69
7	Si	35	68	61	90	< MQL	159	313
	NO ₃	32	527	600	114	< MQL	2125	2143
	s	35	647	552	85	113	1920	2012
	EC	35	455	231	51	116	1021	1036
	PM	30 35	20759 9652	6008 8937	29 93	/016 1050	330/5 29448	30335 40748

*Conversions used in the manuscript to quantify SO₄: SO₄ = S x 4.125, *Conversions used in the Table OC = OC x 1.4

Supplemental	Table 8:	Personal	Exposures i (Sui	n the Enun mmer)	neration Mo	onitoring Ar	eas	
Enumeration Monitoring Areas	Component	Observations	Mean (ng/m ³)	Std Dev	RSD %	Minimum (ng/m ³)	95 th Pctl (ng/m ³)	Max (ng/m ³)
	Calcium	107	158	117	74	0	278	1131
1	Iron	107	239	169	71	<mql< th=""><th>560</th><th>821</th></mql<>	560	821
	Potassium	71	105	74	71	4	227	391
	Manganese	107	8	5	65	1	20	22
	Lead	71	11	16	144	<mql< th=""><th>45</th><th>93</th></mql<>	45	93
	Zinc	112	67	80	119	1	235	509
	Si	107	283	266	94	<mql< th=""><th>832</th><th>1507</th></mql<>	832	1507
	S	122	1997	1422	82	<mql< th=""><th>5501</th><th>6986</th></mql<>	5501	6986
	PM 2.5	106	19535	9805	50	4769	42082	49313
	Calcium	61	138	93	68	26	304	521
	Iron	61	171	142	83	19	379	952
	Potassium	61	85	56	67	<mql< th=""><th>198</th><th>266</th></mql<>	198	266
	Manganese	61	7	5	83	< MQL	18	28
3	Lead	61	8	11	129	<mql< th=""><th>18</th><th>60</th></mql<>	18	60
	Zinc	64	44	66	149	2	123	507
	Si	61	285	278	98	< MQL	833	1556
	S DM	61	1390	1222	88	33	39/8	5524
	PM 2.5	59	17761	8/55	49	7014	31611	51858
		107	104	201	192	12	192	1/5/
	Iron Detereiter	107	97	101	105		219	191
	Potassium	0/	/1	/5	106	<mql <mql< th=""><th>100</th><th>21</th></mql<></mql 	100	21
4	Manganese	108	4	4	100	<mql< th=""><th>10</th><th>22</th></mql<>	10	22
4	Zina	100	4	J 155	124	<mql< th=""><th>100</th><th>1172</th></mql<>	100	1172
	Si	109	250	155	186	< MQL	718	4126
	SI	107	1380	1068	77	< MQL 113	3668	4120
		107	26238	24588	94	1030	64684	179013
	Calcium	75	20230	119	59	39	525	721
	Iron	75	263	186	71	28	736	843
	Potassium	36	109	104	96	<mol< th=""><th>315</th><th>611</th></mol<>	315	611
	Manganese	75	8	5	61	<mql< th=""><th>19</th><th>24</th></mql<>	19	24
5	Lead	36	11	7	66	<mol< th=""><th>22</th><th>39</th></mol<>	22	39
-	Zinc	75	101	168	166	3	356	1199
	Si	75	296	200	68	< MQL	678	1010
	S	75	1591	1479	93	134	5355	6504
	PM 2.5	76	23820	16335	69	3241	53781	111383
	Calcium	125	92	67	72	26	244	409
	Iron	125	130	223	172	18	236	2289
	Potassium	78	70	57	83	1	191	289
	Manganese	125	5	9	196	<mql< th=""><th>10</th><th>90</th></mql<>	10	90
6	Lead	78	5	5	100	<mql< th=""><th>15</th><th>27</th></mql<>	15	27
	Zinc	129	30	55	186	2	89	566
	Si	125	213	206	97	< MQL	661	1232
	S	125	1426	1283	90	126	3938	5574
	PM _{2.5}	124	18779	10843	58	3497	38820	81436
	Calcium	29	98	82	84	15	340	346
	Iron	29	69	56	81	17	206	250
	Potassium	29	56	40	72	<mql< th=""><th>139</th><th>141</th></mql<>	139	141
_	Manganese	29	3	3	100	<mql< th=""><th>8</th><th>8</th></mql<>	8	8
7	Lead	29	4	7	186	<mql< th=""><th>11</th><th>35</th></mql<>	11	35
	Zinc	30	28	64	228	1	64	357
	Si	29	359	443	123	< MQL	1052	2248
	S DV	29	955	963	101	96	3240	3556
	P IM 2.5	29	13855	9857	/1	1820	54427	39305

 a Conversions used in the manuscript to quantify SO4: SO4 = S x 4.125 $^*EC/$ OC not taken for personal

F

Supplemental Table 9:

Personal Exposures in the Enumeration Monitoring Areas (Winter)

Enumeration Monitoring Areas	Component	Observations	Mean (ng/m³)	Std Dev	RSD %	Minimum (ng/m ³)	95 th Pctl (ng/m ³)	Max (ng/m³)
	Calcium	60	206	477	232	28	1035	2585
	Iron	60	186	218	117	18	541	1520
	Potassium	60	83	79	95	2	222	445
	Manganese	60	7	9	132	<mql< th=""><th>15</th><th>62</th></mql<>	15	62
1	Lead	60	6	6	100	<mql< th=""><th>13</th><th>32</th></mql<>	13	32
	Zinc	60	50	91	181	4	151	651
	Si	60	238	383	161	< MQL	1052	1993
	S	60	603	404	67	40	1474	1941
	PM 2.5	67	16192	11942	74	1566	37955	68659
	Calcium	72	101	90	90	24	211	640
	Iron	72	126	122	97	14	466	556
	Potassium	72	63	53	83	<mql< th=""><th>170</th><th>265</th></mql<>	170	265
	Manganese	72	5	6	108	<mql< th=""><th>18</th><th>28</th></mql<>	18	28
3	Lead	72	6	7	119	<mql< th=""><th>22</th><th>28</th></mql<>	22	28
	Zinc	72	33	33	100	2	124	150
	Si	72	151	138	91	< MQL	473	608
	S	72	823	887	108	76	3322	4021
	PM 25	72	12946	10563	82	803	32017	65618
	Calcium	49	67	53	80	17	156	357
	Iron	49	65	41	63	9	138	179
4	Potassium	49	126	220	175	<mol< th=""><th>642</th><th>1049</th></mol<>	642	1049
	Manganese	49	3	2	75	<mol< th=""><th>8</th><th>10</th></mol<>	8	10
	Lead	49	3	4	135	<mol< th=""><th>10</th><th>14</th></mol<>	10	14
	Zinc	49	24	23	93	2	73	112
	Si	49	134	151	113	< MOL	568	679
	S	49	586	315	54	84	1235	1310
	PM 25	69	33348	5 6 108 $ 6 7 119 33 33 100 2 151 138 91 823 887 108 76 12946 10563 82 803 67 53 80 17 65 41 63 9 126 220 175 3 2 75 3 4 135 3 4 135 3 4 135 3 4 135 3 4 135 3 4 135 3 4 135 33348 41970 126 2184 134 99 74$	2184	113585	225361	
	Calcium	28	134	99	74	42	290	522
	Iron	28	232	192	83	24	426	1011
	Potassium	28	76	48	63	8	175	191
	Manganese	28	8	5	67	<mol< th=""><th>18</th><th>24</th></mol<>	18	24
5	Lead	28	13	35	270	<mol< th=""><th>23</th><th>186</th></mol<>	23	186
-	Zinc	28	49	36	73	7	117	170
	Si	28	204	152	75	< MOL	501	670
	S	28	659	300	46	194	1149	1186
3 4 5 6 7	PM 25	46	23514	21852	93	1339	50479	129312
	Calcium	69	75	56	74	3	189	353
	Iron	69	77	76	98	5	206	509
	Potassium	69	49	39	80	<mql< th=""><th>126</th><th>252</th></mql<>	126	252
	Manganese	69	3	3	100	<mql< th=""><th>8</th><th>12</th></mql<>	8	12
6	Lead	69	3	5	167	<mql< th=""><th>11</th><th>15</th></mql<>	11	15
	Zinc	69	25	31	124	1	74	202
	Si	69	113	121	107	< MQL	351	601
	S	69	541	419	77	7.2	1402	1990
	PM 2.5	89	17887	29819	167	< MQL	54600	255837
	Calcium	29	119	152	127	22	284	815
	Iron	29	67	72	107	11	187	347
	Potassium	29	52	27	52	12	107	121
	Manganese	29	4	3	75	<mql< th=""><th>10</th><th>14</th></mql<>	10	14
7	Lead	29	3	6	200	<mql< th=""><th>15</th><th>20</th></mql<>	15	20
	Zinc	29	27	31	114	1	88	154
	Si	29	209	259	124	< MQL	834	1057
	S	29	670	628	94	112	2063	2539
	PM 2.5	29	10351	6769	65	2137	24082	24581

 a Conversions used in the manuscript to quantify $\mathrm{SO}_4 {:}\ \mathrm{SO}_4 {=}\ \mathrm{S}\ x\ 4.125$

*EC/ OC not taken for personal

Supplemental Table 10	: Indoor vs. Outdoo	r Ratios	
Component	Season	Observations	Factor
Calcium	Summer	521	0.7
Carcium	Winter	332	1.4
Iron	Summer	521	0.7
	Winter	332	0.5
Potassium	Summer	521	1.2
	Winter	332	1.4
Manganese	Summer	521	0.8
	Winter	332	0.5
Lead	Summer	521	0.7
	Winter	332	0.2
Zinc	Summer	546	1.6
	Winter	332	0.8
Silicon	Summer	521	1.4
	Winter	332	1.3
Nitrates	Summer	557	0.6
	Winter	322	0.3
Sulfur	Summer	521	1.0
	Winter	332	0.7
PM _{2.5}	Summer	560	1.0
	Winter	344	1.0

Supplemental table 11: Personal vs. Indoor Ratios						
Component	Season	Observations	Factor			
Calcium	Summer	479	1.4			
	Winter	302	1.0			
Iron	Summer	479	1.4			
	Winter	302	1.0			
Potassium	Summer	321	1.2			
	Winter	302	1.0			
Manganese	Summer	521	1.4			
	Winter	332	1.9			
Lead	Summer	321	1.1			
	Winter	302	0.9			
Zinc	Summer	509	1.6			
	Winter	302	1.0			
Silicon	Summer	479	1.2			
	Winter	302	1.1			
Sulfur	Summer	479	1.0			
	Winter	302	1.0			
PM _{2.5}	Summer	477	1.2			
	Winter	299	1.1			

Supplemental Table 12: MIXED Model Results – Examining the effect of spatial variability using average nean concentrations (ng/m ³) of personal measures adjusting for ambient air by season.								
Component	Season	Enumeration Monitoring Areas (EMA)						p-Value
_		1	3	4	5	6	7	
Calcium	Summer	159	141	111	200	97	103	< 0.01
	Winter	199	103	66	128	74	119	0.178
Iron	Summer	246	167	99	262	134	73	< 0.01
	Winter	192	120	68	233	77	61	< 0.01
Potassium	Summer	104	87	75	120	71	56	0.040
	Winter	88	60	153	76	48	50	0.123
Manganese	Summer	8	7	4	8	5	3	< 0.01
	Winter	7	5	3	8	3	3	< 0.01
Lead	Summer	11	8	4	11	5	4	< 0.01
	Winter	6	6	3	13	4	3	< 0.01
Zinc	Summer	66	47	55	94	29	33	0.12
	Winter	51	31	26	51	25	24	0.02
Silicon	Summer	289	289	209	304	222	361	0.08
	Winter	240	151	132	205	111	208	0.03
Sulfur	Summer	1596	1435	1197	1586	1396	899	< 0.01
	Winter	742	707	638	743	535	523	0.02
PM _{2.5}	Summer	20,400	17,800	24,900	24,100	19,000	13,600	0.031
	Winter	16,200	12,400	34,300	26,900	16,000	9,700	0.014