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Abstract 18 

The manufacture of novel synthetic chemicals has increased in volume and variety, but often the 19 

environmental and health risks are not fully understood in terms of toxicity and, in particular, 20 

exposure.  While efforts to assess risks have generally been effective when sufficient data are 21 

available, the hazard and exposure data necessary to assess risks adequately are unavailable for 22 

the vast majority of chemicals in commerce.  The US Environmental Protection Agency has 23 

initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential 24 

for  exposure.  In this context, a model is presented in which chemicals are evaluated based on 25 

inherent chemical properties and behaviorally-based usage characteristics over the chemical’s 26 

life cycle.  These criteria are assessed and integrated within a decision analytic framework, 27 

facilitating rapid assessment and prioritization for future targeted testing and systems modeling.  28 

A case study outlines the prioritization process using 51 chemicals.  The results show a 29 

preliminary relative ranking of chemicals based on exposure potential.  The strength of this 30 

approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, 31 

allowing for an initial tier assessment that can further inform targeted testing and risk 32 

management strategies. 33 

 34 

 35 

Introduction 36 

Manufactured chemicals are widely used in products such as cosmetics, plastics, and 37 

electronics, and have applications in almost all industrial processes in sectors including energy, 38 

agriculture, and pharmaceuticals [1]. Increasing dependence on manufactured chemicals has not, 39 

however, been matched by an adequate increase in our understanding of the risks these may pose 40 
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to the environment and human health [2]. Many chemicals in U.S. commerce today have 41 

unknown environmental fates and poorly understood potential for human exposure, including 42 

some of the most ubiquitous commercial chemicals, such as surfactants, fragrances, cleaning 43 

agents and pesticides [3, 4]. In this context, exposure is the contact of a stressor (i.e., a chemical 44 

agent) with a receptor (i.e., a human or a human population) for a specific duration of time [5]. 45 

Because of the lack of resources and sufficient scientific information on toxicity [6] and 46 

exposure [3] for the assessment of all chemicals, efforts are typically, and rationally, devoted to 47 

assessing those chemicals believed to pose the greatest potential risks based on production 48 

volume and chemical properties. 49 

Within the domain of human health risk assessment, toxicity is an indication and 50 

measurement of the severity of adverse health effects a chemical causes in relation to an 51 

exposure level (dose). We broadly define exposure to be the contact of a stressor with a receptor 52 

for a specific duration of time [5]. The stressors of interest are chemical agents that can 53 

potentially lead to an adverse impact and the receptors of interest are individuals or population of 54 

individuals. Exposure is complex and dynamic in nature due to its spatial and temporal 55 

characteristics. For this reason, exposure-based prioritization efforts focus on relative exposure 56 

potential as a means to evaluate and rank chemicals. While prioritization is in of itself a risk 57 

management strategy, other risk management decisions may follow to include the allocation of 58 

scarce resources to complete future risk assessments, collection of additional data or testing, 59 

and/or (bio) monitoring.  Therefore, the resolution and precision of the data incorporated in these 60 

efforts may vary according to the overall objective of the prioritization. 61 

 The U.S. EPA Office of Chemical Safety and Pollution Prevention recently performed a 62 

chemical prioritization exercise to identify 83 “TSCA Work Plan Chemicals” [7] as candidates 63 
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for risk assessment during the next few years.  Broad stakeholder input was used to identify 64 

prioritization and screening criteria and data sources.  Chemicals were evaluated based on their 65 

combined hazard, exposure potential, and persistence and bioaccumulation characteristics using 66 

a two-step process.  In the first step, a set of data sources was used to identify 1,235 chemicals 67 

meeting one or more criteria suggesting concern, namely: known reproductive or developmental 68 

effects; persistent, bioaccumulative, and toxic (PBT) properties; known carcinogenicity; and 69 

presence in children’s products.  Excluding those chemicals not regulated under TSCA and those 70 

with physical and chemical characteristics that do not generally present significant health hazards 71 

narrowed the number of chemicals down to 345 candidates. In the second step, a numerical 72 

algorithm was used to score each chemical based on three characteristics: hazard, exposure, and 73 

potential for persistence or bioaccumulation. Candidate chemicals that ranked highest on the 74 

basis of their total score were identified as work plan chemicals; those that could not be scored 75 

because of an absence of exposure or hazard data were identified as candidates for information 76 

gathering. 77 

 Using the methodology described above, EPA has been able to identify a priority set of 78 

chemicals for near-term assessment based on criteria widely accepted as warranting concern. The 79 

scoring algorithm is transparent and the data sources are well documented. Focusing on 80 

chemicals with documented evidence of concern (i.e. “data-rich”) is reasonable in light of 81 

limited prototypes for post hoc screening and the paucity of available resources.  However, this 82 

approach may not adequately address the need to make decisions about the thousands of 83 

chemicals in commerce and the hundreds of new chemicals introduced each year for which there 84 

is little or no information [1,3].  85 
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To support the development of novel rapid approaches for evaluating potential exposure 86 

of both existing and emerging chemicals, the EPA has initiated the ExpoCast research program 87 

[8].  This program is keenly interested in characterizing exposures across the chemical life cycle 88 

–manufacturing, transportation, product formulation, consumer product usage and finally 89 

disposal.  EPA seeks to build on current chemical exposure models and knowledge to generate 90 

robust new protocols that better support chemical evaluation, risk assessment and risk 91 

management. Recent activities under this program have  evaluated  utility of available 92 

approaches for the purpose of rapidly prioritizing large numbers of chemicals on the basis of 93 

exposure [9, 10].  94 

A number of exposure models were recently comparatively evaluated through the EPA 95 

Expocast  model challenge, where a set of approximately 50 data-rich chemicals of different 96 

classes were ranked by several different approaches [10]. The chemicals were chosen to include 97 

high interest chemicals with a range of properties. Each modeling approach was capable of 98 

analyzing a different number of chemicals from the full set because of varying input 99 

requirements. Key findings of the comparative analysis among the prioritization schemes 100 

indicated significant differences in chemical ranking as a result of several factors: (1) which 101 

processes the model described across the source to effects continuum [11]; (2) the exposure 102 

metric or surrogate metric used for prioritization and which statistic (i.e., median, upper bound or 103 

lower bound estimate); (3) whether the model inputs included actual, modeled or unit emissions; 104 

(4) which exposure pathways were considered (i.e., from aggregated sources or through a 105 

dominant pathway); and (5) which type of exposure scenarios were considered (i.e., direct or 106 

indirect, diffuse source or concentrated source, etc.) [10]. Only mechanistic models 107 

characterizing exposure associated with environmental sources could rapidly evaluate and rank 108 
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potential exposure for the majority of chemicals. To a great extent, this was due to both the 109 

minimum data requirements and the availability of predictive tools (i.e., QSARs) to generate 110 

model inputs that could be used to describe fate and transport under steady state and equilibrium 111 

conditions.  Of the other models evaluated in the EPA Expocast model challenge, those designed 112 

for evaluation of chemicals in specific exposure scenarios lacked data for chemical and scenario 113 

specific input parameters and were thereby inhibited in their ability to produce ordinal rankings 114 

for the 55 chemicals.  115 

Arguably, one of the major limitations of the models evaluated, and perhaps one of the 116 

larger knowledge gaps in exposure-based chemical prioritization itself, involves complex social 117 

behaviors that determine how humans come in contact with manufactured chemicals, particularly 118 

those emanating from near field sources (e.g., residential and consumer products). Thus there is a 119 

pressing need for enhancing current approaches with tools and techniques developed for 120 

understanding human behaviors, such as human factors engineering and marketing research, to 121 

better define scenarios describing how products are used. Accurate use scenarios among 122 

population groups of interest are necessary to properly characterize the consumer use component 123 

of a chemical’s life cycle.  124 

Decision support tools borne out of the social sciences may also have a place in chemical 125 

prioritization. Multi-criteria Decision Analysis (MCDA), a rule-based method of classification 126 

for priority setting, is both a set of techniques and an approach for ranking alternatives [12, 13]. 127 

MCDA is a promising approach for exposure-based prioritization because it is transparent and 128 

understandable, yet complex and rigorous enough to include scenario-based reasoning, stochastic 129 

processes and value of information analysis.  Moreover, it is amenable to sparse data [14, 15, 16, 130 

17]. These characteristics complement some of the limitations of currently available statistical, 131 
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mechanistic, or logic models, which provide useful frameworks for gathering relevant data but 132 

lack the social and policy context for risk-informed decision making. MCDA can merge a variety 133 

of types of exposure metrics from descriptions of physical chemical properties to the 134 

socioeconomic measures which characterize human activity, chemical use and contact to 135 

ultimately inform screening level risk estimates.  Permitting structured integration of different 136 

types of information, MCDA methods provide a means for combining quantitative chemical 137 

property, production and use data with expert judgments and stakeholder preferences. MCDA 138 

assessment criteria can be adaptively weighted and modified in real time to evaluate both data-139 

rich and data-limited chemicals.  140 

Use of MCDA methods to support prioritization decision making under high uncertainty 141 

has been demonstrated many times including hazard identification and assessment. Risk 142 

management alternatives of industrial hazards or industrial consequences were relatively ranked 143 

using an MCDA approach by Paralikas and Lygeros [18]. The method recognizes that a single 144 

factor could not be used to define flammability and that different methods, tools, codes and 145 

legislation use varying sets of fire hazard properties as an example. Using the MCDA 146 

framework, the different decision criteria were successfully integrated using fuzzy logic to deal 147 

with linguistic variables and uncertainties allowing broad application for chemical hazard 148 

ranking decisions. In another example, life cycle assessment (LCA) was incorporated within a 149 

decision framework to prioritize future research and evaluate sensitivities to missing information 150 

in an assessment of processes for synthesizing single walled carbon nanotubes [14]. Engineered 151 

nanomaterials present uncertainties similar to chemicals in consumer products in terms of 152 

unknown environmental and human health across all life stages from formulation to disposal. 153 
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This paper demonstrates how analytical tools, such as LCA and MCDA, can offer a 154 

versatile and transparent approach to exposure-based prioritization utilizing results from several 155 

approaches evaluated in the EPA ExpoCast model challenge. The purpose of prioritization 156 

within this context is to focus resources on further evaluation of safety for chemicals with high 157 

potential for exposure and risk.   A combination of exposure assessment model output with 158 

qualitative exposure criteria within such a decision framework has been recommended in the 159 

exposure-based waiving protocol within Europe’s REACH Regulation [19] which shares some 160 

similar goals for human and environmental health protection.   161 

Materials and Methods 162 

We propose a decision analytic approach for exposure-based chemical prioritization to 163 

address the need for novel, rapid exposure potential screening protocols. In this approach, we 164 

build on current research and existing models by evaluating relevant chemical exposure criteria 165 

within a larger MCDA framework. We employ a two-part prioritization model that incorporates 166 

both properties of the chemical itself and properties of the chemical’s life cycle (Figure 1).  167 

The chemical property and life cycle property assessments are structured to analyze 168 

exposure-related information associated with specific chemical properties and distinct life cycle 169 

phases, respectively.  Relevant chemical and life cycle properties are grouped into several 170 

criteria based upon the means by which each property contributes to the chemical’s overall 171 

exposure potential (e.g., properties associated with a chemical’s ability to bioaccumulate vs. 172 

those associated with its ability to be metabolized by the human body). Chemical and life cycle 173 

properties in each criterion are then further divided into various sub-criteria. The numerical 174 

values associated with these properties for a given chemical serve as inputs to the model. Input 175 

data can be obtained from a number of different sources, including existing databases, current 176 
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literature and expert judgment. The criteria within this decision model were selected by 177 

reviewing those used in the models submitted to the ExpoCast model challenge, [10] and then 178 

structured into a hierarchical framework based on discussions with exposure science experts. 179 

Within each sub-criterion, the constituent chemical or life cycle property is evaluated to 180 

determine its contribution to overall exposure potential. Input values for individual properties are 181 

compared against established numerical thresholds, which define distinct levels of risk that span 182 

the range of possible values for the given sub-criterion. Thresholds are used to score property 183 

values based on the indicated level of risk (e.g., a compound with a longer half-life may have 184 

higher potential for exposure than a compound with a shorter half-life, all other things being 185 

equal).   186 

Following an MCDA approach, sub-criterion scores are then combined according to 187 

explicit decision rules to derive scores for their higher-level criterion.  Chemical property and 188 

life cycle phase criterion scores are then combined to produce a Chemical Properties Exposure 189 

Score (CPES) and a Life Cycle Exposure Score (LCES) for each chemical. These scores reflect 190 

relative estimates of chemical exposure potential as indicated by available chemical property and 191 

life cycle property data, respectively. Exposure scores may then be integrated to derive aggregate 192 

measures of exposure potential, which can be used to compare and prioritize chemicals on a 193 

relative basis, or can remain separate and be plotted on a risk matrix for a more qualitative 194 

assessment. 195 

Chemical property and life cycle phase criteria can be weighted within each assessment 196 

to reflect their relevance to the user’s management objectives. Weights may indicate a specific 197 

focus of the assessment or reflect expert judgment of a criterion’s predictive reliability or relative 198 

importance.  Criterion weights can be adjusted to refine the scope of a particular assessment to a 199 
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particular class of chemicals (e.g., pesticides), a particular exposure scenario (e.g., occupational 200 

exposure), or a particular exposure target (e.g., environmental contamination). When eliciting 201 

subjective weights, it is important to utilize best practices to avoid potential biases and 202 

inconsistencies [20, 21].  Numerous elicitation techniques exist, including rank-based methods 203 

and swing-weight methods [13, 21, 22].   204 

Chemical Properties Assessment 205 

As seen in Figure 1, the Chemical Properties Assessment considers four main criteria to 206 

estimate potential risk for human exposure: bioaccumulation potential, persistence, ADME 207 

(Absorption, Distribution, Metabolism, and Elimination), and physical hazard potential. Each 208 

criterion constitutes a unique set of sub-criteria, which define the distinct chemical property data 209 

points that serve as inputs to the assessment. Observed chemical properties used to estimate 210 

exposure potential are defined by the specific sub-criteria under each of the four main criteria. 211 

Using thresholds established for each sub-criterion, individual data points are evaluated and 212 

assigned scores representing the potential for exposure indicated by the observed chemical 213 

property. Once these initial scores have been calculated, the highest within each set of sub-214 

criteria is assigned as that criterion’s exposure score.  215 

 When certain chemical-specific data are unavailable, as is often the case in this context, it 216 

may not be possible to assign scores to each sub-criterion. By defining each criterion’s exposure 217 

score as the highest of its associated sub-criteria scores, we account for this possibility. By 218 

employing this approach, criterion scores can be assigned even in the presence of sparse data. 219 

 Each chemical’s bioaccumulation, persistence, ADME, and physical hazard scores are 220 

combined with their associated weights. Weighted criteria exposure scores are then summed to 221 

produce initial chemical property exposure score for each chemical. Once this has been done for 222 
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the set of chemicals being assessed, the initial chemical property exposure scores are normalized 223 

from 0 to 1 to produce relative rankings. 224 

Bioaccumulation 225 

Bioaccumulation is a process in which a chemical substance is absorbed by an organism 226 

via all routes of exposure in the natural environment, for example through dietary and ambient 227 

environmental sources, and increases in concentration over time [23]. Using three 228 

bioaccumulation-related sub-criteria, we evaluate surrogate chemical properties in order to 229 

predict the compound’s ability to bioaccumulate. 230 

Bioconcentration Factor (BCF): A compound’s BCF is a dimensionless number 231 

representing the relative concentration of the compound in organic tissues. In general, chemicals 232 

with relatively higher BCFs have greater potential for exposure, and thus are more likely to 233 

adversely impact human health and the environment. In this model, four distinct numerical 234 

thresholds were used to evaluate chemical BCF data. These thresholds are shown in Table 1, and 235 

were used to assign each chemical a BCF sub-criteria score from 1-4 based on the indicated level 236 

of bioaccumulation potential. Thresholds are based on previously published values employed by 237 

existing exposure assessment models: the EPA Design for the Environment Program [24], and 238 

the Clean Production Action’s Green Screen for Safer Chemicals Initiative [25]. To address 239 

minor numerical discrepancies, the more conservative thresholds were chosen when values 240 

differed between models.  241 

Log Kow: A compound’s Kow, or octanol-water partition coefficient, describes its ability 242 

to transition between water and carbon-based media.  Chemical compounds with relatively 243 

higher log Kow are capable of greater movement within the environment; they are thus more 244 

adaptive and have higher potential for human exposure and absorption. In this model, four 245 
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distinct numerical thresholds were used to evaluate chemical Kow data. These thresholds are 246 

shown in Table 1, and were used to assign each chemical a log Kow sub-criteria score from 1-4 247 

based on the indicated level of bioaccumulation potential. Thresholds are based on previously 248 

published values employed by existing exposure assessment models: the EPA Design for the 249 

Environment Program [24], and the Clean Production Action’s Green Screen for Safer 250 

Chemicals Initiative [25], with the more conservative threshold chosen when values differed 251 

between models.  252 

Molecular Weight: Previous studies have identified a significant correlation between a 253 

compound’s molecular weight and its ability to bioaccumulate [26, 27]. Results from these 254 

studies support the general conclusion that heavy molecules do not easily bioaccumulate, as their 255 

size hinders passage through lipid membranes. Lower weight chemicals thus possess a relatively 256 

greater potential for human exposure. These and similar findings have been used to inform 257 

chemical testing policy and legislation such as the OECD Chemical Substance Control Law 258 

(CSCL) in Japan [28] and the EPA Toxic Substances Control Act (TSCA) in the United States 259 

[29].  260 

A single cut-off threshold is employed by our model to evaluate molecular weight data. 261 

Molecules 1000 amu or greater are given a bioaccumulation criteria score of 1, regardless of 262 

their other sub-criteria scores within the bioaccumulation category (BCF & log Kow). The 1000 263 

amu cut-off follows TSCA premanufacture notification policy [29], and is based on current 264 

understanding that molecular weights in this range are generally better indicators of chemical 265 

bioaccumulation potential than other surrogate properties [26]. 266 

Persistence 267 

Persistence corresponds to the length of time a chemical can exist in the environment 268 
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before degrading or being transformed by natural processes [23]. Persistent chemicals are more 269 

likely to come into contact with humans compared to chemicals that degrade quickly in the 270 

environment. We consider the half-life in water, soil, sediment, and air for each chemical as 271 

surrogate indicators of persistence for the purpose of evaluating exposure potential. 272 

The numerical thresholds used for evaluating chemical half-life data are shown below in 273 

Table 1. Thresholds were used to assign each chemical four distinct half-life sub-criteria scores 274 

from 1-4 based on the level of persistence indicated by each of the four half-lives (in water, soil, 275 

sediment, and air). Threshold values for water, soil, and sediment are based on previously 276 

published values employed by existing exposure assessment models: the EPA Design for the 277 

Environment Program [24], and the Clean Production Action’s Green Screen for Safer 278 

Chemicals Initiative [25], using the more conservative thresholds. The threshold value for air 279 

follows science-based guidance for evaluating chemical long-range transport potential and 280 

overall persistence [30]. Chemicals with half-lives in air that are less than two days are assigned 281 

an associated sub-criteria score of 1 (“Low”), while those with half-lives in air greater than or 282 

equal to two days are assigned an score of 3 (“High”). 283 

ADME 284 

Properties that describe a chemical’s ability for absorption, distribution, metabolism, and 285 

excretion (ADME) are indicators of the potential for biologically relevant human exposure. 286 

Chemicals that can be easily absorbed by the body and that are resistive to metabolism or 287 

excretion pose a greater threat for extended exposure; therefore it is useful to focus on the 288 

entrance and exit of the chemicals within the context of the body. Though recent and current 289 

ADME-related research efforts have focused on establishing appropriate surrogate properties and 290 

developing predictive models, general consensus has not been reached regarding an accepted 291 
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approach to ADME assessment for environmental chemicals [10]. Building on current research 292 

and existing models, a new ADME assessment protocol intended for screening-level exposure-293 

based chemical prioritization was incorporated into the framework [10]. This method utilizes 294 

QikProp software Version 3.0 [31], a QSAR-based model to obtain surrogate chemical property 295 

values, which were then integrated to evaluate ADME properties along various sub-criteria 296 

briefly discussed below. All QikProp values are based on a 24-hour exposure period. 297 

Incidentally, QikProp is a three-dimensionally based structure method, so the SARs depend on 298 

the solvent accessible surface area. The properties calculated are dependent on the conformer 299 

adopted at the time of calculation and could be sensitive to molecular orientation. In addition, 300 

QikProp was designed exclusively to develop organic pharmaceutical compounds, so cannot be 301 

used for metals and inorganic compounds. Thus, if the analytics discussed herein are to be 302 

applied to metals and inorganic compounds, another QSAR system is needed. 303 

 Absorption: The chemical absorption assessment is based on two QikProp predictors 304 

which describe oral availability. The first descriptor represents a qualitative measure of oral 305 

absorption potential, and takes values of 1, 2, or 3 for low, medium, or high, respectively. The 306 

second descriptor represents a numerical probability of oral absorption on a 0 to 100% scale, 307 

with <25% and >80% designating low and high probability, respectively. These values were 308 

combined to derive an absorption score (1-3) for each chemical. 309 

Distribution/Excretion: Distribution and excretion-related properties were combined into 310 

a single assessment.  QikProp predicted octanol/water partition coefficients, serving as 311 

surrogates for half-life within the human body, were categorized into bins using subjective 312 

thresholds to derive a distribution/excretion score (1-4) for each chemical.  313 

Metabolism: The assessment of metabolism was derived from the QikProp descriptor 314 
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representing the number of expected possible metabolites for each chemical over a 24-hour 315 

period in the human body. These values were categorized based on the predicted half-life of each 316 

chemical in order to represent metabolism via natural degradation in the body.  These values 317 

were combined to generate average metabolism scores (1-4) for each chemical. 318 

Physical Hazard Potential 319 

Highly flammable and reactive chemicals pose human and environmental threats that 320 

may not be considered in standard exposure or toxicity-based assessments. Though the properties 321 

that determine a given chemical’s flammability and reactivity may be distinct from those that 322 

determine its environmental fate and transport, the threat of physical hazard is nonetheless 323 

directly related to the likelihood of exposure. The risk of physical hazards (e.g., combustion) is 324 

thus an exposure-related risk, and we assess each chemical’s hazard-related properties in order to 325 

anticipate threats that may not be considered in other exposure or toxicity-based screenings. In 326 

accordance with existing National Fire Protection Association (NFPA) standards and 327 

classifications [32], flammability and reactivity were assigned scores of (1-4) using established 328 

NFPA thresholds. 329 

Chemical Life Cycle Properties Assessment 330 

Similarly to the assessment of chemical properties, we estimate potential for human 331 

exposure by assessing three main life cycle phases of manufactured chemicals: production, 332 

consumer use, and disposal. Each phase constitutes a unique subset of exposure-related criteria, 333 

which define the distinct life cycle characteristics that serve as inputs to the assessment. 334 

The different criteria associated with each of the three life cycle phases designate the 335 

individual life cycle properties that will serve as indicators of a chemical’s exposure potential 336 

during the relevant phase. All life cycle criteria are evaluated quantitatively, with higher values 337 
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indicating higher potential for exposure. Instead of establishing thresholds for each sub-criteria 338 

as in the assessment of chemical properties, raw values are used but then normalized across the 339 

set of chemicals for each individual sub-criteria.  This provides bounds for the range of values 340 

and assists in making comparative assessments.   341 

Criteria scores are then calculated by summing the sub-criteria scores.  Again, these 342 

scores are normalized across the set of chemicals to account for criteria containing more sub-343 

criteria than others, and then multiplied by their weights to produce an initial Life Cycle 344 

Properties Exposure Score (LCES). Once initial LCESs have been calculated for all chemicals, 345 

we derive final LCESs by normalizing initial scores to the highest and lowest observed scores 346 

across all chemicals. 347 

Production 348 

Number of Potential Exposure Sources: Each chemical is evaluated to determine the 349 

possibility for human exposure during processes associated with production of the chemical. We 350 

consider one potential source (occupational microenvironments) defined as any workplace 351 

environment in which a release might occur during chemical manufacture and/or processing.  352 

Each chemical is assigned a score of either 0 or 1 based on whether the compound presents risk 353 

of exposure during production. 354 

 Projected Average Annual Number of Production Sites: A chemical’s exposure risk is 355 

increased if it is produced in many locations.  Ubiquity classifications for each chemical were 356 

used to estimate the amount of chemical production sites [10]. Higher scores indicate increased 357 

potential for human exposure during chemical production: very widespread (5), widespread (4), 358 

moderate (3), localized (2), low (1).  359 

 Regional Geometric Mean Production Quantity (MQR): In addition to how widespread 360 
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production is, estimates are made of the quantity produced.  This is estimated using the Regional 361 

Geometric Mean Production Quantity (MQR), measured in units of kilotons per year.  This is an 362 

estimated quantity, but production quantities could also be provided by industry. 363 

Consumer Use 364 

The assessment evaluates several sub-criteria relevant to the consumer use phase in the 365 

life cycle of manufactured chemicals. Based on the intended uses of each chemical, primary 366 

consumer class is defined as either strictly industrial, or industrial and individual. Chemicals 367 

used during industrial processes (e.g., monomers, solvents) and chemicals otherwise noted to 368 

have primarily industrial consumers were defined to have a strictly industrial consumer class. 369 

Chemicals used in agriculture (e.g., pesticides, insecticides, herbicides) or as food/cosmetic 370 

additives (e.g., preservatives, anti-microbials) were defined to have both industrial and individual 371 

consumers. Chemicals directly incorporated into consumer products during their production 372 

(e.g., plastics, coatings, fabrics, flame retardants) are also defined to have both industrial and 373 

individual consumers.  374 

 Number of Potential Exposure Sources: Each chemical was evaluated to determine the 375 

possibility for human exposure during processes associated with both industrial and individual 376 

consumer uses of the chemical. Ten distinct potential sources associated with consumer exposure 377 

were considered (i.e., outdoor air, water, soil, biota, indoor air/dust, in-vehicle air, object contact, 378 

tap water, other water, food/beverages) by assigning each chemical a score from 0-10 based on 379 

possibility for exposure via each unique source during consumer use of the compound.  380 

 Projected Average Annual Number of Individual Consumers: Chemicals defined as 381 

having industrial and individual consumer classes were assessed to determine their potential for 382 

exposure to individual consumers in non-industrial settings. Chemical ubiquity classifications 383 
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were used to represent the relative size of each chemical’s average, annual, individual consumer 384 

base. Chemicals defined as having strictly industrial consumer classes were assigned individual 385 

consumer scores of 0. Remaining chemicals were assigned scores from 1-5 based on their 386 

ubiquity, with higher scores indicating increased potential for individual consumer exposure 387 

during non-industrial use: very widespread (5), widespread (4), moderate (3), localized (2), low 388 

(1). 389 

 Projected Average Annual Number of Industrial Consumers: To assess chemicals’ 390 

potential for exposure to industrial consumers, we employ the ubiquity classification to estimate 391 

the average, annual size each chemical’s industrial consumer base. As none of the chemicals 392 

assessed were defined as having a strictly individual (non-industrial) consumer base, all 393 

chemicals were assigned scores from 1-5 based on their ubiquity classification, with higher 394 

scores indicating increased potential for industrial consumer exposure during use of the 395 

chemical: very widespread (5), widespread (4), moderate (3), localized (2), low (1). 396 

 Projected Average Annual Quantity Consumed Per Individual/Industrial Consumer: The 397 

average annual quantity of each chemical consumed per consumer was predicted using the 398 

relative size of the chemical’s total consumer base (including both individual and industrial 399 

consumers), and its MQR. Relative measures of consumption quantity per consumer (Q) were 400 

calculated by dividing each chemical’s projected mean production volume by their total number 401 

of consumers, assuming chemicals with higher consumption quantities to have increased 402 

potential for consumer exposure. Projected annual quantities consumed per individual consumer 403 

were calculated using the same equation as that for industrial consumers: 404 

(1)   ( )liIndustrialiIndividuaR nnMQQ += /  405 

where (niIndividual + niIndustrial) represents the chemical’s total consumer base, or the number of 406 
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individual consumers plus the number of industrial consumers. 407 

 Susceptible Populations: To determine if there was a heightened exposure risk to 408 

susceptible populations (in this case, children), particular processes associated with individual 409 

consumer use of the chemical were evaluated. Nine distinct potential sources associated with 410 

exposure to children were considered (Outdoor Air, Water, Soil, Indoor Air/Dust, In-Vehicle 411 

Air, Object Contact, Tap Water, Other Water, and Food/Beverages), and each chemical was 412 

assigned a score from 0-9 based on possibility for exposure via each unique source. 413 

Disposal 414 

Number of Potential Exposure Sources: Each chemical was evaluated to determine 415 

potential for human exposure resulting from disposal events. We consider four distinct disposal-416 

related sources (Outdoor Air, Water, Soil, Biota), assigning each chemical a score from 0-4 417 

based on potential for exposure via each unique source during and after disposal of the 418 

compound. 419 

 Projected Average Annual Number of Disposal Events: Each chemical’s total number of 420 

consumers was estimated to determine an annual number of associated chemical disposal events. 421 

Assuming that each chemical’s industrial and individual consumers dispose of equal amounts of 422 

the compound, we define the projected number of disposal events as each chemical’s total 423 

number consumers, and assign scores of 1-10, with higher scores representing greater potential 424 

for disposal-related human exposure. 425 

Projected Average Annual Quantity Disposed: To account for assumed variations in the 426 

actual quantities disposed during industrial and individual consumer disposal events, we assume 427 

that 0.1% of the net production volume of each chemical is disposed of in order to evaluate 428 

disposal-related exposure potential.  Note that the use of this unit value assumes that no 429 
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chemical- or product-specific data were available. With larger disposal quantities indicating 430 

higher potential for post-disposal chemical exposure, we calculate relative disposal quantities of 431 

each chemical (QDISP) as: 432 

(2)                                                  RDISP MQQ *)001(.=  433 

Integrating Chemical Properties and Life Cycle Exposure Scores 434 

Once assessments of chemical properties and life cycles have been performed on all 435 

chemicals, those chemicals lacking sufficient data to calculate either a chemical properties 436 

exposure score or life cycle exposure score are removed from the remainder of the prioritization. 437 

Though these chemical’s available scores may indicate significant threat of exposure, they are 438 

excluded from the integration process as their scores can skew final exposure potential 439 

relationships. The remaining chemicals are renormalized as: 440 

(3)                       
MinMax

MinInitial
Final xESxES

xESxESxES
−
−

=  441 

where xES denotes the relevant exposure score (either chemical or life cycle). Next, the 442 

remaining chemicals’ exposure scores (chemical property and life cycle property) are summed to 443 

produce aggregate exposure scores. These scores represent cumulative measures of exposure 444 

potential based on each chemical’s distinct properties and characteristics of its projected life 445 

cycle. Aggregated exposure scores, which all lie in the range of 0-2, are used to numerically rank 446 

chemicals based on their potential for human exposure. 447 

In addition to this quantitative integration, chemical property and life cycle scores can be 448 

visualized using a risk-reporting matrix (Figure 2) for a more qualitative assessment of 449 

aggregate chemical exposure potential.  450 

In this method of integration, chemical property and life cycle exposure scores are 451 

converted from a scale of 0-1 to a scale of 0-5 by multiplying the initial score by a factor of five 452 
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to place them within the 5x5 risk matrix, with each chemical’s position representing a 453 

qualitative, cumulative measure of exposure potential based on both chemical and life cycle 454 

properties. Qualitative exposure potential thresholds (red, yellow, or green) can be defined 455 

within the matrix to designate high, moderate, and low risk regions.  456 

Case Study 457 

Data Set 458 

 For the case study, a set of 51 chemicals was selected from those presented and evaluated 459 

in the model challenge (Table 2), representing a wide variety of chemical classifications (e.g., 460 

organics, metals, etc.).  Sub-criteria scores for these chemicals were collected from numerous 461 

reports and online databases, and the sources for each sub-criterion are listed in Table 3.  Case 462 

study data can be found in the online Supporting Information. 463 

Prioritization 464 

 First, the data for each chemical was compiled.  It was found that some chemicals were 465 

difficult to assess due to a lack of readily available data.  If a chemical did not have any sub-466 

criteria scores for at least one of its criteria, that chemical was removed from the analysis process 467 

as having too little data for analysis.  Nine of the 51 chemicals (largely metals) were removed for 468 

this reason. 469 

 Following the MCDA approach outlined above, each of the remaining test chemicals was 470 

assessed.  Scores for each criterion were weighted by allocating equal weights (i.e., 471 

bioaccumulation, persistence, ADME, and physical hazards each weighted 25%; production, 472 

consumer use, disposal each weighted 33.33%).  The final prioritization under this weighting 473 

distribution is shown in Table 4. The risk matrix comparison under this weighting distribution is 474 

shown in Figure 3. 475 
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Discussion  476 

As stated above, one of the major limitations of currently available exposure models 477 

involves the inability to fully characterize the influence of complex social behaviors on resulting 478 

exposures or contact between humans and manufactured chemical across all life stages of the 479 

chemical.  This is especially true for chemicals used in residential and consumer products, those 480 

arising from near field sources. A multi-criteria decision model was developed to combine 481 

typical physiochemical screening level data with measures to characterize human activities. As a 482 

proof of concept to show the utility of this approach, a case study was conducted on a small set 483 

of chemicals that were also analyzed using higher tiered statistical and mechanistic exposure 484 

models in a model challenge [10]. The models used in the model challenge considered different 485 

types of exposure scenarios including indirect exposures from diffuse environmental sources and 486 

direct, concentrated exposures from micro-environmental sources (i.e. from a personal care 487 

product or within a residence), though the latter had significant limitations in terms of necessary 488 

data to produce exposure estimates. Ranking results were obtained by three models and the 489 

comparative analysis is reported elsewhere [10]. Some agreement between ranking results was 490 

observed, but in general these models produced widely incongruous results across a number of 491 

different domains of information. Interestingly, some of the results using the MCDA model 492 

developed herein coincide with results from these more complex models. The majority of the 493 

chemicals (13 of 14) ranked in the top one-third of the list in Table 4 (Rank 1 – 14), are also 494 

ranked in the top one-third of one of the models evaluated in the challenge. In general this 495 

agreement is with a “far-field” indirect diffuse source model which does not incorporate human 496 

activity at the micro-environmental level. Nonylphenol was the exception as it was ranked low 497 

by all other mechanistic models. Similarly, the bottom third of the ranked list in Table 4 (Rank 498 
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28 – 42) shows high agreement with results from a model from the challenge. One model used 499 

characterized both far-field and near-field exposures and the other two were far-field models.  500 

Because this analysis was conducted as a proof of concept, an exhaustive search for 501 

quality data and subsequent data validation was not conducted independently of the model 502 

challenge. However, the absence of the mechanistic relationships involved in the exposure 503 

models as well as the equal weighting scheme used in our example would lead to the assumption 504 

that the input drivers of the challenge models would be different than the input drivers of MCDA 505 

model. To fully explore this assumption and the utility of this methodology for larger scale 506 

research prioritization or policy guidance, the results of the case study underscore the need for 507 

quality data inputs.  Only nine of the chemicals had to be excluded. These chemicals have 508 

properties that exclude them from the domain of applicability of the analytics, e.g. models, 509 

QSAR type, and other tools. As mentioned, metals and inorganic compounds are not 510 

characterized by the ADME models used in this study. 511 

  For the majority of compounds that fall within the domain of applicability, the MCDA 512 

approach is useful. As shown in Table 4, the majority of the chemicals used in plastics appear in 513 

the top half of the ranked list denoting highest exposure potential by highest aggregated exposure 514 

score.  Plastics are broadly related to exposures that occur in all locations across the life-cycle of 515 

the chemicals. The chemicals in the bottom half of the ranked list (lower exposure potential) fit 516 

into a number of other of categories, but 11 of 21 are or were used as pesticides/herbicides, 517 

agriculturally, in homes or in public and commercial areas. The two pesticides/herbicides, 518 

Parathion and Methoxychlor, are ranked relatively low on the list in Table 4. Both chemicals 519 

were exclusively used in agriculture only, but have been previously banned or restricted by the 520 

EPA and do not have other uses like 1,2,3-trichlorobenzene, ethylene thiourea, and 521 
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hexachlorobenzene which were also used exclusively in agriculture but are now used as a 522 

nonfood commercial additives. The remaining chemical in the agricultural only category is 523 

aldicarb. Aldicarb was restricted more recently in 2010 and will not be completely phased out 524 

until 2018, so exposure potential may be higher than the others in this category. 525 

It should be noted that the nature of this analysis is to score chemicals in a comparative 526 

and relative manner, as opposed to assigning an absolute measure of exposure risk, which would 527 

not be practical or appropriate for a screening tool such as this.  The relative assessment of 528 

chemical exposure potential is therefore dependent upon the set or sub-set of chemicals under 529 

consideration, and must be considered when designing the analysis and interpreting the results.   530 

If a risk matrix is used for interpretation or communication of exposure potential results, 531 

it is important to note that a chemical with a high chemical property score and low life cycle 532 

property score (or vice versa) may be displayed has having a low exposure risk.  When the risk 533 

matrix is used for score integration, however, these chemicals will appear on the boundaries of 534 

the matrix and can easily be identified as outliers that may warrant further assessment. Figure 3 535 

shows the results of the case study on such a risk matrix.  The risk matrix approach can be used 536 

to graphically visualize qualitative risk categories such as high, medium and low risk. The case 537 

study chemicals mostly fall within the same middle risk range of the matrix. Six chemicals fall 538 

into the higher exposure risk potential category and seven chemicals fall into the low exposure 539 

risk potential category based on the delineations shown in Figure 2. As a high tier screening, this 540 

type of representation may be useful for rapid visualization and categorization of large number of 541 

chemicals; however risk matrices should be used with caution when guiding risk management 542 

decisions [35].  543 
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Both the ranking and risk matrix approaches highlight the potential promise of multi-544 

criteria decision analytic models for exposure-based prioritization, but further development 545 

beyond this effort is warranted. Given that the baseline weighting scenario – equal weights 546 

distributed among the chemical property and life cycle criteria – is likely an unrealistic one, a 547 

sensitivity analysis should be conducted to explore the effects of uncertainty in both the scoring 548 

of chemical parameters and the weighting schemes on the final chemical prioritization.  This will 549 

help identify chemicals which are targets for further exposure assessment and data collection, 550 

ideally including better release characterization, proximal exposure assessment, and 551 

biomonitoring.   552 

Finally, it is important to recognize that these results are strictly a measure of exposure 553 

potential and do not consider toxicological properties.  Risk is a function of both hazard and 554 

exposure. The means by which organisms are exposed to stressors are complex; with many 555 

feedback loops (e.g., an outcome may itself become a stressor or modify other stressors). Risks 556 

related to chemical ingredients in products depend not only on the inherent properties of that 557 

chemical, but also the manner in which the chemical is formulated and used. Exposure potential 558 

therefore might be integrated with computational toxicology to paint a more complete picture of 559 

risk and to effectively prioritize the numerous chemicals in commerce. 560 

Conclusions 561 

In this paper, we have presented a decision analytic approach to exposure-based 562 

prioritization of manufactured chemicals. The proposed methodology allows for structured and 563 

transparent analysis of chemical exposure potential through integration of heterogeneous metrics 564 

used to evaluate exposure risk-related information associated with both chemical properties and 565 

life cycle phases. The model is scalable to assess as many chemicals as is necessary for the 566 
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project scope, and the MCDA framework is able to accommodate varied inputs and exposure 567 

potential indicators, providing an adaptive and easy-to-use screening tool for rapid prioritization 568 

in the face of sparse data. In addition, the use of weighting in the model allows for specific user 569 

objectives, expert judgment, and data availability considerations to be explicitly implemented 570 

within the assessment. 571 

 The proposed approach builds on earlier models and current research relating to rapid 572 

evaluation of exposure potential. Specifically, it integrates the results of mechanistic and 573 

statistical approaches with semi-quantitative categorical data to describe exposure potential. In 574 

this paper, we attempt to address the need for high-level screening tools that (1) are capable of 575 

more detailed assessments than those provided by simpler predictive models (i.e., limited to 576 

persistence and bioaccumulation as indicators of exposure), and (2) have less intensive data 577 

requirements than more complex models, so as to remain efficient at the screening level.  578 

It is important to note that work on this model is ongoing, and that the initial framework 579 

presented in this paper is primarily intended to illustrate the application of decision analytic 580 

methods to supplement existing exposure potential estimation techniques.  Currently, our 581 

developmental efforts are focused on: (1) refining ADME assessment criteria and calculations; 582 

(2) identifying optimal surrogates for bioaccumulation potential; (3) implementing value of 583 

information (VOI) techniques to quantify data gaps and prioritize further research efforts; (4) 584 

improving normalization algorithms; and (5) developing a supplemental logic model for more 585 

specific exposure scenario evaluation. Additionally, we are working to develop formal means of 586 

considering expert judgment and empirical chemical exposure data within our assessments. In 587 

the future, we anticipate that the decision analytic approach will be able to provide decision 588 
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makers with important and reliable information to support efficient, exposure-based 589 

prioritization of manufactured chemicals.  590 
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Table 1: Thresholds for Bioaccumulation Potential and Environmental Persistence 693 

Score 1 (Low) 2 (Moderate) 3 (High) 4 (Very High) 
Bioaccumulation     

BCF < 100 > 100 to 1000 > 1000 to 5000 > 5000 
Log Kow < 2 > 2 to 3 > 3 to 5 > 5 

Persistence     

Half Life in Water < 168 days > 168 to  
960 days 

>960 to  
1440 days > 1440 days 

Half Life in Soil < 384 days > 384 to 1440 
days 

> 1440 to 4320 
days > 4320 days 

Half Life in 
Sediment < 384 days > 384 to 1440 

days 
> 1440 to 4320 

days > 4320 days 

Half Life in Air < 2 n/a >= 2 n/a 
  694 
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Table 2: Case Study Chemicals 695 

Chemical CAS # Chemical CAS # 
Formaldehyde 50000 Malathion 121755 
DDT 50293 Perchloroethylene 127184 

Parathion 56382 1-methoxy-4-(2-propen-1-yl)-
benzene 140670 

gamma-Hexachlorocyclohexane 58899 decaBDE 1163195 
Carbaryl 63252 Trifluralin 1582098 
Methoxychlor 72435 PFOS 1763231 
Vinyl Chloride 75014 Atrazine 1912249 
1,1,2,2-tetrachloroethane 79345 Lead 7439921 
Tetrabromobisphenol A 79947 Manganese 7439965 
Bisphenol-A 80057 Cadmium 7440439 
p-tert-Pentylphenol 80466 Butylhydroxyanisole 8003245 
Diethyl phthalate 84662 Perchlorate (Mg salt) 10034818 

Di-n-butylphthalate 84742 Tris (l,3-dichloro-2-propyl) 
phosphate 13674878 

1,2,3 Trichlorobenzene 87616 Methyl mercury 22967926 

Pentachlorophenol 87865 Phenol, (l,l-dimethylethyl)-4-
rnethoxy 25013165 

2,4,5-Trichlorophenoxy acetic 
acid 93765 Nonylphenol 25154523 

2,4-D 94757 Hexabromocyclododecane (HBCD) 25637994 
Ethylene thiourea 96457 8-2 fluorotelomer acid 27854315 
Methylparaben 99763 Aroclor_1260 35065271 
Styrene 100425 Aroclor_1254 38380017 
n-Hexane 110543 Vinclozolin 50471448 
Tris (2-chloroethyl) phosphate 115968 Permethrin 52645531 
Aldicarb 116063 Penta BDE 60348609 
DEHP, Di(2-
ethylhexyl)phthalate 117817 C10-C13 Chloroalkanes 85535848 

Hexachlorobenzene 118741 octaBDE 207122165 
Ethylparaben 120478   

 696 
697 
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Table 3: Data Sources 698 
Criteria Sub-Criteria Data Sources 
Chemical Properties     
ADME Absorption (A) QikProp software Version 3.0 [31] 
ADME Distribution / Excretion 

(D/E) 
QikProp software Version 3.0 [31] 

ADME Metabolism (M) QikProp software Version 3.0 [31] 
Bioaccumulation Bioconcentration Factor 

(BCF) 
PBT Profiler [33]; Estimation Programs 
Interface Suite™ (EPI suite) [23] 

Bioaccumulation Log Kow EPA Exposure-Based Prioritization 
Challenge [34]  

Bioaccumulation Molecular Weight EPA Exposure-Based Prioritization 
Challenge [34] 

Persistence Half Life in Air EPA Exposure-Based Prioritization 
Challenge [34]; Mitchell, et al. [10] 

Persistence Half Life in Water EPA Exposure-Based Prioritization 
Challenge [34]; Mitchell, et al. [10] 

Persistence Half Life in Soil EPA Exposure-Based Prioritization 
Challenge [34]; Mitchell, et al. [10] 

Persistence Half Life in Sediment EPA Exposure-Based Prioritization 
Challenge [34]; Mitchell, et al. [10] 

Physical Hazard Flash Point (Flammability) Material data safety sheets 
Physical Hazard Explosivity (Reactivity) Material data safety sheets 
Life Cycle Properties     
Production Number of Potential 

Exposure Sources 
EPA Exposure-Based Prioritization 
Challenge [34] 

Production Projected Avg. Annual 
Number of Production 
Sites 

EPA Exposure-Based Prioritization 
Challenge [34] 

Production Regional Geometric Mean 
Production Quantity 
[MQR] 

EPA Exposure-Based Prioritization 
Challenge [34] 

Consumer Use Number of Potential 
Exposure Sources 

EPA Exposure-Based Prioritization 
Challenge [34]  

Consumer Use Projected Avg. Annual 
Number of Individual 
Consumers 

EPA Exposure-Based Prioritization 
Challenge [34] 

Consumer Use Projected Avg. Annual 
Number of Industrial 
Consumers 

EPA Exposure-Based Prioritization 
Challenge [34] 

Consumer Use Projected Avg. Annual 
Quantity Consumed Per 
Individual Consumer 

EPA Exposure-Based Prioritization 
Challenge [34] 
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Consumer Use Projected Avg. Annual 
Quantity Consumed Per 
Industrial Consumer 

EPA Exposure-Based Prioritization 
Challenge [34] 

Consumer Use Susceptible Populations: 
Number of Potential 
Exposure Sources to 
Children 

EPA Exposure-Based Prioritization 
Challenge [34] 

Disposal Number of Potential 
Exposure Sources 

EPA Exposure-Based Prioritization 
Challenge [34] 

Disposal Projected Avg. Annual # 
of Disposal Events 

EPA Exposure-Based Prioritization 
Challenge [34] 

Disposal Projected Avg. Annual 
Quantity Disposed 

EPA Exposure-Based Prioritization 
Challenge [34] 

 699 
700 
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Table 4: Exposure Rankings with Even Weighting 701 
 702 

Rank Chemical Name CAS # Chemical 
Property Score 

Life Cycle 
Score 

Aggregate 
Exposure Score  

1 Trifluralin3 1582098 0.67 0.80 1.47 
2 Styrene2 100425 0.56 0.87 1.43 
3 decaBDE4 1163195 0.67 0.76 1.43 
4 Nonylphenol4 25154523 0.56 0.86 1.42 

5 DEHP, Di(2-
ethylhexyl)phthalate2 117817 0.44 0.92 1.37 

6 n-Hexane4 110543 0.56 0.78 1.33 
7 Atrazine3 1912249 0.44 0.88 1.33 
8 Tetrabromobisphenol A2 79947 0.56 0.76 1.32 
9 Pentachlorophenol3 87865 0.56 0.76 1.32 

10 Di-n-butylphthalate2 84742 0.33 0.96 1.29 
11 Diethyl phthalate2 84662 0.33 0.96 1.29 

12 Hexabromocyclododecane 
(HBCD)2 25637994 0.56 0.64 1.20 

13 octaBDE2 207122165 1.00 0.17 1.17 
14 Tris (2-chloroethyl) phosphate2 115968 0.33 0.82 1.15 
15 2,4-D3 94757 0.22 0.92 1.15 
16 Aldicarb3 116063 0.33 0.80 1.13 
17 Vinyl Chloride1 75014 0.67 0.45 1.12 
18 p-tert-Pentylphenol3 80466 0.44 0.66 1.11 
19 Penta BDE4 60348609 0.89 0.17 1.06 

20 Tris (l,3-dichloro-2-propyl) 
phosphate2 13674878 0.44 0.60 1.05 

21 Phenol, (l,l-dimethylethyl)-4-
rnethoxy5 25013165 0.44 0.60 1.05 

22 gamma-Hexachlorocyclohexane3 58899 0.44 0.57 1.01 
23 Carbaryl3 63252 0.00 1.00 1.00 
24 Aroclor_12541 38380017 0.67 0.33 1.00 
25 1,2,3 Trichlorobenzene3,4 87616 0.56 0.41 0.96 
26 1,1,2,2-tetrachloroethane1 79345 0.44 0.47 0.92 
27 Vinclozolin3 50471448 0.44 0.46 0.91 
28 Methylparaben5 99763 0.00 0.90 0.90 
29 PFOS4 1763231 0.44 0.44 0.89 
30 Formaldehyde1,4 50000 0.44 0.42 0.86 
31 Aroclor_12601 35065271 0.56 0.29 0.85 
32 Hexachlorobenzene3,4 118741 0.56 0.29 0.85 
33 Malathion3 121755 0.22 0.57 0.79 
34 Ethylparaben5 120478 0.22 0.56 0.79 
35 DDT3 50293 0.78 0.00 0.78 
36 Perchloroethylene1 127184 0.44 0.31 0.75 
37 Permethrin3 52645531 0.33 0.42 0.75 

38 1-methoxy-4-(2-propen-1-yl)-
benzene5 140670 0.56 0.16 0.72 

39 Ethylene thiourea3,4 96457 0.22 0.41 0.63 
40 Parathion3 56382 0.44 0.07 0.51 
41 Methoxychlor3 72435 0.33 0.07 0.40 
42 Bisphenol-A2 80057 0.33 0.07 0.40 

 2,4,5-Trichlorophenoxy acetic 93765 n/a n/a Insufficient Data  
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acid3 
 Lead4 7439921 n/a n/a Insufficient Data  
 Manganese5 7439965 n/a n/a Insufficient Data  
 Cadmium4 7440439 n/a n/a Insufficient Data  
 Butylhydroxyanisole5 8003245 n/a n/a Insufficient Data  
 Perchlorate (Mg salt)1 10034818 n/a n/a Insufficient Data  
 Methyl mercury1 22967926 n/a n/a Insufficient Data  
  8-2 fluorotelomer acid4 27854315 n/a n/a Insufficient Data  
 C10-C13 Chloroalkanes4 85535848 n/a n/a Insufficient Data  

 703 
Key:  704 
1. Industrial/occupational additives and byproducts 705 
2. Plastics 706 
3. Pesticides and herbicides 707 
4. Additives in commercial products 708 
5. Additives in food and commercial products 709 
 710 
 711 
 712 
 713 
 714 
 715 
  716 
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Figure Legends 717 
 718 

 719 
Figure 1: MCDA Framework for Exposure-Based Chemical Prioritization 720 

 721 
 722 
 723 
 724 

 725 
Figure 2: Example Chemical Exposure Potential Risk Matrix 726 

 727 
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 728 
Figure 3: Risk Matrix Comparison of Exposure Potential with Even Weighting 729 

 730 

 731 

Supporting Information Legends 732 

Supporting Information: Case Study Data (Excel file) 733 

 734 


