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1. Introduction

The various instrumental techniques, human studies, and diagnostic tests
that produce data from samples of exhaled breath have one thing in com-
mon: they all need to be put into a context wherein a posed question
can actually be answered. Exhaled breath contains numerous compounds;
just the volatile organic fraction alone has been estimated to represent in
excess of 500 different chemical species. In addition, the aerosol fraction
contains proteins, signaling molecules, dissolved inorganic compounds, and
even bacteria and viruses adding to the complexity of the total sample.

No single technique can detect everything in breath, in fact, even the
most broadly designed breath measurcments result in suites of compounds
restricted by the methods used. For example, reactive oxygen species may
be observed using real-time sensors or real-time mass spectrometry (MS),
but not by gas chromatography — MS (GC-MS), whereas GC-MS can dis-
criminate among a varicty of hydrocarbons, alcohols, and ketones that
may overlap completely in a real-time MS instrument without benefit of
chromatographic separation. Furthermore, the fraction of the breath (gas-
phase or acrosol phase) also determines what measurements can be made;
for example proteins and signaling molecules could be detected in exhaled
breath condensate via enzyme-linked immuno-sorbent assay (ELISA), nu-
clear magnetic resonance (NMR), or liquid chromatography (LC) MS, but
not with any gas-phase instruments such as those based on optical spec-
troscopy or gas chromatography.

The first issue that the data analyst faces is that all data he or she sees,
regardless how complex or detailed, is not comprehensive but always strat-
ified (restricted) by the chemistry, instrumentation, and thermodynamics
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of the choices made for sampling and analysis. The second issue is that a
suite of compounds measured in any given sample does not represent an in-
dependent set of variables; sub-groups of biomarker compounds often have
appreciable covariance reflecting similar metabolic pathways or exogenous
sources. The third issue relates to variability; any given sample is unique
and it can never be taken for granted that the constituents of the breath
arc the same between people nor within one person over time. Finally,
any individual compound in breath can have a wide range of concentra-
tions that are all considered “normal” or “unremarkable” in the apparently
healthy general population. This has implications for assessing health or
exposure status based on just a few data points; under such constraints,
the analyst can only interpret a measurement as a statistical probability
that the concentration is probative.

2. Data interpretation

In this chapter, we describe a series of mathematical and statistical ap-
proaches geared specifically to the interpretation of volatile organics in
exhaled breath that can be implemented to address the four issues out-
lined above. Although all methods interact, we have assigned them to five
categories for the purposes of this discussion as follows:

(1) Data visualization and summary statistics

(2) Variable independence and clustering

(3) Population statistics and variance components
(4) Stochastic models and meta-data

(5) Dynamic models and longitudinal data

Each of these approaches can provide distinet information about a
breath data set, generally increasing in detail in the order listed. We note
that the broader interpretations gleaned from categories 1, 2, and 3 feed
the modeling processes in 4 and 5. We further note that not all of these
procedures need to be performed; often it is sufficient. to answer a question
with a simple analysis based on a graph or a summary table. In the follow-
ing, we describe these categories and show how they can progressively tell a
story about acquired data. We assume that multiple compounds have been
measured across a number of people, subjects may be grouped as cases and
controls, host factor meta-data have been collected, and measurements may
have been repeated, either with or without intervention or treatment.
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2.1. Data visualization and summary statistics

The first step in any analysis of newly acquired data is to get a “feel” for
how the experiment turned out. Generally, we make graphs and calculate
averages, standard deviations, data ranges, cte. We have found that it is
very helpful to get all of the data into some form of visual representation,
cither as bar graphs, cluster plots, or heat maps, depending on complexity
of the data structure. For example, in a recent publication, we described
measurements of a series of polar volatile organic compounds (PVOCs) in
exhaled breath condensate (EBC) made during an intervention study of
diesel exhaust exposure. Human subjects, (3 males, 6 females) were each
exposed for 2 hrs to a dilute diesel exhaust atmosphere and to a puri-
fied air atmosphere on separate oceasions.? A variety of samples, including
EBC, were collected immediately before and after the exposures, and again
24 hrs later; EBC means data for eight of the most prevalent compounds
were plotted by nine subjects grouped by gender (Figure 1). We noted a
slight gender bias for some compounds, but otherwise the results were un-
remarkable and we went on to assess the data from a statistical perspective.
In a subsequent publication, however, we developed methodology for data
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Figure 1. Bar graph visualization of balanced exhaled breath data from an intervention
study of diesel exhaust exposure. Summary breath data for nine subjects and eight
compounds.
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visualization using heat map style graphics.? Briefly, heat maps are visual
representations of quantitative data on two axces; the z-axis reflects indi-
vidual samples and the y-axis consists of groups of measured parameters.
The field between the axes is comprised of an array contiguous boxes color
coded to reflect quantitation. The term “heat map” is derived from the
convention that the higher levels tend towards red, the lower levels tend
towards blue.

We revisited the data set from Hubbard et al.! and found that heat map
visualization was capable of showing more pattern detail. This technique
had to be restricted to seven subjects with complete data to avoid blank
spots on the heat map as we lost a few samples to follow-up. Figure 2 shows
this alternate approach; note that we now have access to results from indi-
vidual subjects’ samples, for all 16 measured PVOCs, and the flexibility for
grouping samples by gender and longitudinal parameters. Here, the gender
effect becomes obvious; males were expressing much higher levels of many
of the measured PVQCs, cspecially 2-methyl propanal, 1-heptanol, butanal,
pentanal, 1-hexanol, and 3-methyl-3-pentanol. Only hexanal and heptanal
reverse this trend. We further see that there is no apparent treatment effect
or longitudinal time effect, that is, there are no obvious pattern differences

Male Female

Figure 2. Heat map visualization of balanced exhaled breath data from an intervention
study of diesel exhaust exposure. Individual samples grouped by longitudinal time frame
' (pre-exposure, post- exposure and 24 hr post-exposure) as well as by gender.
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between diesel exposures and air exposures, nor pre- and post-exposure
data. These simple visualization approaches, coupled with summary statis-
tics, can provide hints as to how more detailed mathematical approaches
could be implemented to quantify these observations. Also, we note that
the visualization methods for complex data make the subscquent statistical
calculations more accessible to the readership.

2.2. Variable independence and clustering

One of the most vexing problems encountered in data interpretation pro-
cedures is the determination of actual independence of what we generally
denote as “independent variables”. Subsequent statistical evaluations rely
on the notion that measurcments that arc used in models are not overly
correlated. For example, consider the height and weight parameters of hu-
man subjects as host factor data in a complex breath experiment. ' We know
that taller people tend to be heavier, and so there is significant correlation
expected. If one were to treat height and weight as independent and place
them both into a model for predicting a health outcome (along with a series
of breath biomarkers), one can get completely different interpretations as to
their respective importance depending upon which was entered first. This
why one often sees body-mass index (BMI) used as a composite param-
eter instead. Now consider unexpected correlations among variables, for
example, among compounds measured in the exhaled breath of subjects in
an intervention or case-control study. If certain compounds are repeatedly
behaving the same way, then their inclusion in even simple multivariate
regression models will result in mathematical instability.

We cannot know a priort if different analytes are fracking the same out-
come, however, we can perform various correlation tests among presumed
independent variables to assess the degree of independence. The most fun-
damental method is the correlation matrix wherein the regression between
pairs of variables (V;, V) is calculated as the Pearson correlation coeffi-
cient “r” which has possible values ranging from —1 to 1. Positive r-values
indicate that a larger V; is associated with a larger Vi, whereas a negative
r indicates that a larger V; is associated with a smaller V. The closer
the r-value is to 0, the more independent the two variables. For example,
in a study measuring height (H), weight (W), and percent body fat (BF),
r = 0.486 for W vs H, r = 0.074 for H vs BF, and r = 0.613 for W vs BF.*
Based on the results of this simple correlation matrix, one would probably
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not include both parameters H and W, nor both W and BF, but would
keep H and BF as host factors in a resulting model. '

The correlation matrix approach is considered a semi-gquantitative mea-
sure for overall data independence interpretation because it treats vari-
ables two at a time; one cannot discern directly how multiple variables,
or combinations of variables, correlate. A more sophisticated approach is
available wherein Eigen-vector projections are calculated for all variables
in n-dimensional space. Using statistical software such as Proc VarClus
from SAS Inc. (Cary, NC, USA), it is possible to develop a “dendrite”
diagram that can be used to create clusters of variables that have certain
levels of auto-correlation. This is similar to principle components analysis
(PCA), but rather than grouping samples, this approach groups variables.
Variable clustering serves two purposes, it improves model stability by iden-
tifying /removing collinearity, and reduces the total number of variables for
a more parsimonious model.”

As an example, consider the dendrite diagram (dendrogram) in Figure 3
where we show a generie example of both host factor and measurement data
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Figure 3. Example dendrogram of variable cluster analysis. Starting with a total of
m = 13 independent variables (p = 6 host factors and g = 7 environmental variables),
forming 8 clusters (HF1, HF2, HF3+HF4, HF54+HF6, RV1, RV2, RV34+RV4+RV5+RV6,
and RV7) results in explained variance of ~ 93%. Collapsing the clusters further to
2 explains ~ 83% of the variance, but now is difficult to interpret.
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clustering.® In this case, we use a hypothetical data structure with 6 host
factors (gender, BMI, age, ete.) and 7 environmental /biomarker variables
(e.g. concentration measurements in blood or urine). This methodology
has been applied to complex environmental dioxin congener data® and to
studics of jet fuel exposure in the US Air Force.”

By collapsing the more highly correlated variables into clusters, we do
not lose much explanatory power, but improve the interpretive power of
subsequent models by increasing the ratio (n/m) between number of sam-
ples “n” and the number of independent variables “m”. We have observed
that n/m = 10 is a good rule of thumb for assessing the importance of indi-
vidual variables.® We caution that this procedure requires a certain amount
of judgment on the part of the investigator. The first issue is choosing the
variance level vs. number of clusters. This is very dependent on the even-
tual n/m paramecter. The sccond issue is how to combine information from
variables collapsed into clusters. There are a munber of choices that depend
on the nature of the variables; in the above example, we use a simple sum,
but other strategies can be employed as well. For example, given highly
correlated variables such as HI'3 and HF4 (especially if they are not contin-
uous), one can just discard one or the other. For measured concentrations,
it is sometimes better to normalize each measurement to a total to avoid
having a particular variable overwhelm the sum.

2.3. Population statistics and variance components

Traditional mathematical analyses of breath biomarkers, both for clini-
cal and environmental research applications, utilize measurement statistics
(c.g., mean and median) to evaluate differences between groups. Tor exam-
ple, it is common to evaluate measurements statistics to compare cases vs.
controls, exposed vs. unexposed subjects, or males vs. females (as shown in
our earlier example of a diesel intervention study). Furthermore, it is com-
mon to employ stratified data analyses — that is, analyses using multiple
levels of organization — to reduce the impacts of confounding variables. Con-
sider the evaluation of smoking effects on breath biomarker levels; one could
perform a single evaluation using all subjects (smokers vs. non-smokers),
two cvaluations after stratifying by sex (male smokers vs. male non-smokers;
female smokers vs. female non-smokers), four evaluations after stratifying
by sex and discase status (male smoker [case] vs. male smoker [control];
male non-smoker [case] vs. male non-smoker [control]; female smoker [casc]
vs. female smoker [control]; female non-smoker [case] vs. female non-smoker


priggsbe
Rectangle


Pleil

[control]), and so on. These stratified analyses can narrow down the po-
tential origins of an observed effect, but require larger sample numbers
with each level of stratification. Thus, an investigaior must balance the
desired outcome of a given analysis with costs required to achieve sufficient
statistical power and sensitivity.

Given adequate sample numbers for stratified group analyses, it is pru-
dent to first investigate the underlying distribution(s) of the biomarker data
in question. Our ecarlier examples for data analysis (i.c., data visualization
and variable clustering) can be considered qualitative or semi-quantitative,
and generally have no a priori conditions for data structure. IHypothesis
testing on the other hand, is entirely quantitative, and in many cases relies
on distributions of measurement data being approximately Gaussian, or
“normal”. Simple diagnostic procedures exist in most software packages to
evaluate data distributions. Often times, simple histograms, normal proba-
bility plots, or quantile-quantile plots can be visually inspected to evaluate
normality assumptions. More advanced statistical packages offer statistical
tests (e.g., Shapiro-Wilk and Kolmogorov-Smirnov) to confirm results from
visual inspection.

Measurements of analytes in biological media are often “log-normally”
distributed; that is, the distribution of the logged values is approximately
normal. Log-normal data can be identified by a right-skewed distribution
of the original (non-transformed) data, reflecting few values at exceedingly
high levels, and many values near, but not below, a lower threshold (gener-
ally zero). Additional signs of log-normally distributed data include (1) an
observed arithmetic mean value that is larger than the median (reflecting
the differential effects of extremely high values on these statistical parame-
ters), and (2) an observed confidence interval that includes negative values
(it is impossible to have negative amounts of a biomarker). When one en-
counters these signs, it is best to cvaluate data transformation approaches
before pursuing quantitative hypothesis testing.

“Parametric” testing procedures are generally used to evaluate normally
distributed data and log-normally distributed data that have been log-
transformed. Commonly used parametric tests include the Student's t-test,
the paired £-test, and analysis of variance (ANOVA). A Student’s #-test eval-
uates differences in biomarker measurements across two groups (e.g. men
vs. women); a paired t-test evaluates differences in biomarker measure-
ments between paired samples from individuals (c.g. pre-intervention vs.
post-intervention); and ANOVA compares biomarker measurements across
multiple groups (e.g. children vs. adolescents vs. adults). In the event that
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biomarker data are not Gaussian, or cannot be mathematically transformed
to approximate normality, “non-parametric” methods exist for hypothesis
testing. For example, the Mann-Whitney test, Wilcoxon test, and Kruskal-
Wallis test arc common substitutes for the Student’s t-test, paired #-test,
and ANOVA, respectively. These tests generally approximate the results of
the parametric tests given a large enough sample size. However, the exact
data requirements (¢.g., sample number, sample independence, random se-
lection) for any given test should always be considered prior to hypothesis
testing,

The statistical tests discussed thus far generally utilize a single obser-
vation for cach subject. (While the paired t-test uses two observations per
subject, the difference between the two values [i.e., a single value] is used
for hypothesis testing). Therefore, different approaches to data analysis are
required when multiple measurements exist for each subject. At the most
basic level, it is of interest to evaluate the spread of the data, or the “vari-
ance”, between and within subjects. To do this, the total variance across
all measurements is first partitioned into that which is observed across
repeated measurements of individual subjects, known as “within-person
(intra-individual) variance”, and that which is observed across average lev-
els of all subjects known as “between-person (inter-individual) variance”.
These between- and within-person variance components can be calculated
using a number of techniques.® The simplest of these methods is analy-
sis of variance (ANOVA) which is suitable for balanced data sets where
the same mmber of measurements exists for each subject. More complex
methods, such as restricted maximmm likelihood estimation (REML), may
be required when working with unbalanced data sets; these methods are
typically available only in more advanced statistical software packages.

Once the variance components are established, they become instrumen-
tal for identifying the origins of exposure or disease, and in turn, the best
opportunitics for mitigation or intervention. Large within-person variance
and small between-person variance indicates little difference between sub-
jects on average, but large differences over time for each subject. This
result may point to a temporal event, random or otherwise, that affects
cach subject equally. Alternatively, small within-person variance and large
between-person variance indicates little change over time, but marked dif-
ferences between subjects. This result may point to a host-specific param-
eter (e.g., genotype, fitness-level) that dictates biomarker response. In the
first example, a general intervention strategy, equally applicable to all sub-
jects, might be suitable to reduce an exposure or limit a biological response.


priggsbe
Rectangle


Pleil

10

In the second example, a targeted strategy would likely be necessary to fivst
identify the cause of elevated biomarker levels for certain individuals, and
then for intervention.

2.4. Stochastic models and meta-data

After identifying group-based differences in biomarkers levels, and within-
and between-subject variance components (for repeated-measures studies
only), the next step is to develop statistical models using study meta-data.
Statistical models serve two functions for breath rescarch; (1) they allow
investigators to simultaneously identify multiple significant predictors of
breath biomarker-levels; and (2) they provide a platform for predicting
breath biomarker levels in other studies where only meta-data exist.

An important decision for model development is identifying a dependent
variable; this is not as easy as it sounds. Often, the dependent variable is
obvious by design and represents the “outcome” for a subject; it can be
binomial, that is, cancer/not cancer, infected/not infected, or it can be
a continuous health outcome variable such as cholesterol level, total uri-
nary protein, pulmonary function (e.g. forced expiratory volume in 1 sec
(FEV1), forced vital capacity (FVC)), or DNA damage (c.g. sister chro-
matid exchange (SCE), strand breaks), among others.

However, there are many occasions when the choice of the dependent
variable is not obvious, espeeially in environmental or cross-sectional public
health studies for which the analyst was not consulted in sampling design.
For example, suppose one has measured a suite of exogenous chemicals and
metabolites in exhaled breath, and has acquired meta-data concerning re-
cent activity, job type, height, weight, gender, ethnicity, etc., but no health
effects information was collected or observed. What could the dependent
variable be for interpretation purposes? In such cases, the first question
to be addressed is: What do we want to know? Generally, we would like
to explore the linkages between suspected exposure sources and the re-
sulting internal dose in human subjects. Suppose that in the totality of
all measurements, we observe benzene, toluene, ethyl-benzene and xylenes
(BTEX), plus many other organic compounds in breath. If one of the sus-
pected sources for all exposures is automobile exhaust, we could sum the
BTEX numbers into one composite parameter and use this to represent the
dependent variable for overall fuels exposure. This is a bit of a bootstrap-
ping approach, especially if we keep the individual BTEX compounds as


priggsbe
Rectangle


Pleil

11

independent continuous variables, but often this is the only way to build a
stochastic model in the absence of a designed dependent variable.

Given that we have a number of “independent variable” measurements
and related meta-data and some consensus dependent (outcome) variable,
then the next step is to determine which independent variables and data
actually tell a story relating to the changes in the identified outcome vari-
able. This requires some form of a modeling approach, and if the data
include both host factors and continuous variables, the best approach is a
generalized linear model, or a “mixed eflects” model.®9

A general form of such a model is:

ij — {,81X1MJ. + IBQXQMJ e ﬁ,,Xp,lij} + ap + bpi + €nij
where:

e Y}, is the value of some relevant biological parameter for the j*"
observation of the i subject in the A*™® group;

® X1,.0 X241+ 02 Xpyy; are the values of the fixed effect variables
such as environmental chemical concentrations (in air, water, food,
dust, ete.), and host factors such as age, health state, gender, genetic
polymorphisms, ethnicity, ctc.;

e pis the total number of fixed effects (note: the host factors may be
fixed for all § within a given i);

e 81,B2,..-, 8, are the corresponding modeled coefficients for the
fixed effects and host factors;

e ay is the random effect for the A" group;

o by; is the random effect for the ith subject from the ht® group;

o ¢35 is the residual (unexplained) error for the j th phservation of the

ith subjeet from the A group.

Software applications for this style of approach are commercially avail-
able (e.g. proc MIXED, SAS). Upon calculation, the coefficients and their
p-values and can be interpreted to determine the effect of including the par-
ticular fixed effect or random effect variable in the final model for explaining
the variance in the biological parameters’ values. This can be done with
iterative steps of forward addition or reverse elimination with the eventual
objective being a parsimonious model without appreciable loss of modeling
power. Once the final model is established, we can observe which exposure
parameters and fixed effects are more likely to cause perturbations to the
systems biology.”
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In an carlier example, based on published results from a diesel exhaust
intervention study, we demonstrated how visualization tools can be used to
identify likely predictors of breath biomarker levels. Specifically, we used a
3D bar graph and a heat map to show the likely effect of gender, and the
unlikely effects of the exposure intervention and sample time, on PVOC
levels in EBC. Following from this qualitative work, we now demonstrate
a statistical asscssment of this data using mixed models. We note that
these methodologies and results have been published alongside the afore-
mentioned graphical work.!

PVOC levels in breath were treated individually as model dependent
variables, whereas model independent variables included fixed effects for
the time of sample collection (pre-intervention vs. post-intervention vs. 24-
hr post-intervention), the type of intervention (diesel exhaust vs. purified
air), and gender (male vs. female), as well as random effects for subject and
residual error. Results of the models are shown in Table 1, and confirm a
significant gender effect (p < 0.1) for four out of nine modeled PVOCs,
with men having higher levels than women in all cases. While not shown
in Table 1, results also confirm no significant effects (p > 0.1) of collection
time or exposure intervention on these PVOCs. These quantitative results
corroborate those of the earlier qualitative analyses. Furthermore, these
results include variance components estimates (listed under “Random ef-
fects” in Table 1) that can be used to explore subject susceptibilities and
possible intervention strategies.!0:11

2.5. Dynamic models and longitudinal daia

Dynamic models are used to interpret time dependence. In some study
designs, the breath data structure investigates certain applied or observed
external conditions. In diagnostic medicine, this could be a pre/post drug
treatment study, or a time-dependent study to monitor post-operative re-
covery status. In envirommental studies, this could be a sample time-series
to determine the rates of uptake and elimination from different profiles
of deliberate or incidental exposures to chemicals. Regardless of the ex-
act design, the primary focus is temporally resolved data. Such studies
are invaluable for deducing the time constants of absorption, distribution,
metabolism and elimination of exogenous compounds like pharmaceuticals
and environmental pollutants, and for assessing different metabolic path-
ways. The underlying assumptions of such a study are that kinetic and
physiological parameters measured under controlled conditions will be con-
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sistent for other exposure or treatment profiles. This allows us to model
different scenarios to assess internal dose and metabolism.

For example, consider that we have gathered a series of breath samples
pre-, during-, and post-exposure to a well-defined concentration of a specific
compound.'?~!* There are a number of ways of interpreting such data using
classical pharmacokinetic principles. Researchers including Lance Wallace
from US Environmental Protection Agency (EPA), Clifford Weisel from
Rutgers University, and James Raymer from Research Triangle Institute
constructed closed form solutions from dynamic measurcments to assess
the time constants and internal (hypothetical) compartments of the human
body such as blood and lymphatic fluids, highly perfused tissues including
organs and muscle, poorly perfused tissues including tendons, bone mar-
row, and connective tissues, and finally adipose tissue.’® ' These models
were based on simple exponential uptake and decay behaviors with differ-
ent time constants assigned empirically to the hypothetical compartments.
This provided important information regarding the internal distribution of
specific compounds, but did not provide organ specific dose, nor did it allow
generalizing to random intermittent exposures.

Subsequently, new methods were developed for interpreting observa-
tional kinetic data and estimating response to input functions for the gen-
eral case. These included very complex physiologically based pharmacoki-
netic models (PBPK) that require a great deal of specific data, and also
prior knowledge about organ dose kinetics, partition functions, and dif-
fusion parameters that are generally only available from invasive animal
studies.!8:19 Although PBPK models are powerful tools, they are beyond
the scope for this discussion.

A hybrid method was developed by Pleil et al.,}2 wherein the closed form
solution was replaced with an iterative solution. This approach requires a
starter set of empirical data linked precisely to well-characterized exposure
data. Typically, this is generated in a human exposure chamber.”*® The
methodology is based on conversion of differential equations to difference
equations that can then be casily evaluated in standard spread sheet soft-
ware as follows:

In the simplest form, consider that one has concentration measurements
of the central compartment (blood), Ciloed(t), and matching environmen-
tal air measurements, Cair(t) for some exogenous compound. One further
assumes some stable (1°¢ order) rate constant for inhalation uptake (k)
and some aggregate 13 order elimination rate constant k. in 1/time units.
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Under the assumption of linear kinetics,
dOrl:ulc:n:ud (t)/dt =, kucair(t) - Ji‘i'e:C’TI-J]c»cui (t)

For a well controlled air concentration profile (e.g. Chi:(0) = 0 and
Chair(t > 0) = Cy), this differential equation is easily solved with the closed
form solution:

Chlood (t) = CU (ku/{ke)[]. = cxp(—ket)]

when the boundary conditions are applied. This function can then be fit-
ted to the real data of the proposed step function exposure as could be
gencrated in an environmental chamber, and the rate constants k, and k.
can be estimated. Regrettably, such closed form solutions are only possible
in the simplest conceptual models. In gencral, there are multiple com-
partments (blood, highly perfused tissues, poorly perfused tissues, adipose
(fatty) tissues, connective tissues, ete.) that all have different capacities
and time constants. Each compartment may further exhibit different elim-
ination pathways and time constants as well. As such, the only way to
model behavior is via iterative computational methods. We have devel-
oped a difference equation approach to compute bipmarker concentrations
from essentially any complex system given initial conditions, some kinetic
data, and a reasonable conceptual model of the compartmental structure.

Using the simple example above, one can rewrite the differential equa-
tion as a difference equation in the form of:

ACh1o0d (t)/ At = kyCair (t) — keChiooal(t)
which can be expanded for any arbitrary time increment as:
[Chlood (t + At) — Chicod (t)]/[(t + At) — 1] = kyCair (t) — keChiood(t)
and subséqucntly rearranged as:
Chilood (t + At) = Chiood (t) + [FuCair (t) — keChiooa ()] At

which is a form wherein each future concentration can be calculated from
the previous point for any complex exposure function Cy, (t) as long as the
rate constants and initial conditions are known. This iterative procedure
is suceessful for more complex models for which we can draw a conceptual
diagram because we never need to deduce a closed form solution. Although
beyond the scope of this discussion, Pleil?! has presented a detailed discus-
sion and application of these techniques for blood and breath biomarkers,
multiple compartments, and human metabolites.
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Figure 4. Observed concentrations and empirical models of MTBIE and TBA biomarkers
in (A) human blood, and (B) human exhaled breath resulting from a lhr exposure to
3 ppmv MTBE. Note that the phase-1 metabolite response of TBA is damped with
half-life of ~ 12 hrs in contrast to the native compound MTBE with half-life of ~ 1 hr.

Figures 4A and 4B show applications of this' procedure to time-
dependent blood and breath data for methyl tertiary butyl ether (MTBE)
chamber exposures and the resulting phase-1 human metabolite tertiary
butyl alcohol (TBA). Note that breath data have the same kinetic behavior
as the blood data and that the TBA metabolite exhibits biological damp-
ing (delayed response) making it a longer time-frame marker for MTBE
exposure.

Once the rate constant parameters for the known chamber exposures
arc calculated, the model can then be applied to any arbitrary exposure
input function under the assumption that the concentration lie within the
regime of linear kinetics. For environmental levels, this is almost always the
case. As such, a solid longitudinal data sct from known (controlled) expo-
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sures with precise empirical biomonitoring data can be used to implement
a generalized model for any exposure profile.

3. Conclusions and recommendations

The premise of this chapter is simple: the value of breath analysis does
not end with making a series of measurements. It is critically important
to understand the underlying structure of the data, and then to apply
the appropriate mathematical and statistical interpretations to be able to
use the data to actually answer a particular question. Certainly, the level
of detail and the exact techniques are dependent on the available data and
meta-data (as well as the question). If one only wants to know what kind of
compounds may be found in breath using a chosen sampling and analytical
scheme, then simply listing a set of chemieals and their means and ranges
may be sufficient. If one wants to determine how fast an anesthetic is
climinated after a surgery or an environmental compound is metabolized,
then a simple time serics analysis based on classical pharmacokinetics (rate
constant) analysis will suffice. If, however, one wants to use breath analysis
for discerning the reasons for a particular adverse health outcome, then
a much more complex analysis that includes host factor data, suites of
compounds, repeated measurements, and a sufficiently large subject pool
is required. In short, the data tell a story only if the mathematics and
statistics are sound, and also if the sampling design is suited to actually
answer the posed question in the first place.
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