Linking Agricultural Crop Management and Air Quality Models for Regional to National-Scale Nitrogen Assessments

Ellen J. Cooter¹, Jesse O. Bash¹, Verel Benson² and Limei Ran³

for submission to

Biogeosciences, Special Issue

September 10, 2012

1\United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Lab, Research Triangle Park, North Carolina

2\Benson Consulting, Columbia, Missouri

3\University of North Carolina, Institute for the Environment, Chapel Hill, North Carolina.

1 Abstract

2 While Nitrogen (N) is an essential element for life, human population growth and de-3 mands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented, to promote a more integrated, process-based 4 5 and system-level approach to the estimation of ammonia (NH₃) emissions resulting from the ap-6 plication of inorganic nitrogen fertilizers to agricultural soils in the United States. The United 7 States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) 8 model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental U.S. This information is coupled with a process-based air quality 9 10 model to produce continental-scale NH₃ emission estimates. Regional cropland NH₃ emissions are driven by the timing and amount of inorganic NH₃ fertilizer applied, soil processes, local 11 12 meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC simulated cumulative planted area compares 13 14 well with similar USDA reported estimates. EPIC annual inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the 15 16 EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH₃ 17 emissions that improves current simulations of observed atmospheric particle nitrate concentra-18 19 tions. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH₃ emissions than previous factor-based NH₃ inventories, and will facili-20 tate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated 21 with future climate and land use changes. 22

24 1.0 Background and Introduction

25 Nitrogen (N) is an essential element required for the growth and maintenance of all biological tissues, but human population growth and increased demands for energy, transportation 26 and food have lead to dramatic increases in N production (Galloway et al., 2008). While benefi-27 28 cial in N limited systems, excess N associated with these trends can adversely impact both terres-29 trial and aquatic ecosystems (Lovett and Tear, 2008). In addition to implications for ecosystem 30 health and sustainability, atmospheric ammonia (NH₃) gas will neutralize atmospheric acids, 31 most notably sulfuric and nitric acid, to form ammonium (NH_4^+) aerosols, a major constituent of fine particulate matter $(PM_{2.5})$ (Nenes et al., 1999), which can negatively impact human health 32 33 (Pope and Dockery, 2006), reduce visibility and affect atmospheric radiative forcing (Hertel et al., 2011). The USEPA Science Advisory Board (United States Environmental Protection 34 Agency, 2011) and the European Nitrogen Assessment (Sutton et al., 2011) emphasize the need 35 for integrated, multimedia and transdisciplinary approaches to communicate effectively the risks 36 associated with key societal threats from excess reactive nitrogen. Linking an agro-ecosystem 37 model that includes cropland management decisions with a regional air-quality model to simulate 38 39 continental-scale bidirectional NH₃ fluxes marks a significant step forward towards a more systems-level framework for N assessment. 40

The 2008 United States Environmental Protection Agency (EPA) National Emissions Inventory (NEI) (http://www.epa.gov/ttn/chief/eiinformation.html) estimates that 83% of U.S. NH₃ emissions are associated with commercial crop and livestock production. Ammonia emissions originating from soils receiving commercial N fertilizer applications account for 33% of all agricultural NH₃ emissions. This inventory was developed from a combination of emission factors and inverse modeling (Gilliland et al., 2006) that assumes unidirectional emission from soil and vegetation canopies; however, NH₃ is known to exhibit bidirectional behavior (Sutton et al.,

1995), and recent studies suggest that inclusion of bidirectional NH₃ behavior will alter regional
nitrogen budget simulations in ways that are important for ecosystem and human health (Dennis
et al., 2010).

The bidirectional (i.e., compensation point) approach described in Sutton et al. (1998) 51 and Nemitz et al. (2001) employs a resistance-based flux model that compares the equilibrium 52 concentrations of NH_4^+ and NH_3 in leaf apoplast to ambient NH_3 air concentrations. Cooter et al. 53 (2010) confirm that this same paradigm can simulate the measured magnitude and temporal vari-54 ability of post application inorganic fertilizer NH₃ emissions from grain-corn soils in the U.S. 55 56 southern Coastal Plain. This approach promises to improve current uni-directional factor-based inventories, but its national scale implementation is challenging. The foremost challenge is de-57 velopment of fertilizer management information on the temporal and spatial scales needed to 58 59 support the dynamic regional air quality models that are used to perform regional and national scale N budget analyses. This information should reflect a range of current and alternative farm 60 management actions that will support analysis of N budget response to future policy and alterna-61 tive climate conditions. In addition, since future climate may require innovative management 62 adaptation strategies, these estimates must rely minimally on historical data (i.e., should be pro-63 64 cess driven) and should respond to intra-annual, inter-annual and multi-decadal weather and climate as well as land use and land cover changes. The discussion that follows describes the de-65 velopment of such a fertilizer simulation system, evaluates two key aspects of this system, and 66 67 closes with an example of the integration of this information into a regional air quality model application with bidirectional ammonia flux. 68

69

70 2.0 The Agricultural Fertilizer Modeling System

71 The primary objective of fertilizer application in the U.S. is to maximize economic return related to commodity production. Crop- and region-specific fertilizer management strate-72 gies are employed by farmers to meet this objective and so proper characterization of these strat-73 egies is critical. In addition, the post-application biogeochemical fate of the fertilizer is needed 74 to properly link NH₃ fertilizer application with evasion. Models that simulate the effect of both 75 76 farm management practices as well as biogeochemical processes on soil nitrogen concentrations can be characterized as being process, empirical or semi-empirical process based. Process-based 77 models attempt to simulate processes at the most fundamental level and are extremely useful for 78 79 basic research or exploratory site-specific studies that seek to better understand the nature of these processes. Empirical models simulate many of the same processes through parameteriza-80 tions requiring less detailed input information. These models are appropriate for applications 81 82 that ask broad, "what-if" questions. Semi-empirical process models use more detailed parameterizations based on process research, still support "what-if" scenario studies, but are detailed 83 enough to highlight specific areas in need of additional process-level analysis. Given this char-84 acterization, the Environmental Policy Integrated Climate (EPIC) model was selected for this 85 application. 86

EPIC is a semi-empirical biogeochemical process model originally developed by the United States Department of Agriculture (USDA) in the early 1980's to assess the effect of wind and water erosion on crop productivity (Williams et al., 2008;Williams et al., 1984). It is a daily time step, field-scale model, where computational "fields" can extend up to 100 ha in area. In the beginning, EPIC's focus was the characterization of the physical processes associated with erosion in order to simulate management solutions that maximize crop production while reducing soil and nutrient losses. Model options included characterization of various tillage practices,

e.g., conventional, reduced-till, no-till, contour plowing, and engineering changes such as the
construction of terraces and the installation of tile drainage. It included a heat-unit driven aboveand below-ground plant growth model, soil hydrology and soil heat budgets for multiple soil
layers of variable thickness. EPIC also contained an economic component that supported farmfirm economic budget analysis including input costs, e.g., equipment amortization, fuel use/cost,
supplemental nutrient cost and application as well as production benefits in terms of biomass and
yield.

In the mid-2000's, the soil organic matter model used in the CENTURY biogeochemical 101 102 model was modified and incorporated into EPIC (Izaurralde et al., 2006;Parton et al., 1994; Vitousek et al., 1994). Details of these modifications and a description of N treatment is 103 provided in Appendix A. Figure 1 illustrates the current EPIC biogeochemical configuration for 104 105 N and Carbon (C). As noted in Izaurralde et al. (2006), a unique aspect of EPIC is that it treats explicitly changes in the soil matrix (density, porosity and water retention) as well as changes in 106 soil constituents, such as organic C, thereby allowing feedback mechanisms to operate. In this 107 108 way, EPIC is well suited for simulation of scenarios such as land use, land management and cli-109 mate change in which soil moisture supply and soil matrix properties vary concurrently. Simulation output frequency is user-specified, ranging from daily to annual summaries of biogeochemi-110 cal process rates, nutrient pools and management activity. The current EPIC community code 111 can be downloaded from http://epicapex.brc.tamus.edu . A relatively recent bibliography of EP-112 113 IC publications is available at http://www.card.iastate.edu/environment/interactive-114 programs.aspx. 115

116 2.1 EPIC Inputs

117	EPIC requires input information regarding soils, crop area, crop management and weath-
118	er. Although our goal is to be as spatially explicit as possible, we recognize the limitations of
119	available data and the spatial scale (regional) of the application. A multi-scale approach was
120	adopted with crop management characterized at the coarsest scale (~ 10^4 km ²), followed by crops
121	and soil/hydrology ($\sim 10^3$ km ²), and weather ($\sim 10^2$ km ²). Rather than targeting behaviors of a spe-
122	cific, potentially unique, farm-firm that might have only a limited spatial scale of influence, this
123	approach facilitates the characterization of broad trends in current and future crop management
124	and fertilizer application practices that are likely to affect air quality and atmospheric deposition
125	on regional to national scales. The target EPIC simulation resolution for integration with a grid-
126	ded regional air quality model is 144 km ² i.e., 12km by 12km rectangular grid cells.

127

128 2.1.1 Crop Management

129 Figure 2 illustrates the USDA Farm Production Regions used to characterized EPIC management practices. Each region defines a geographic area in which crops and cropping practices 130 131 are similar. The USDA National Agricultural Statistical Service (NASS) Agricultural Resource Management Survey (ARMS) (http://www.ers.usda.gov/Data/arms/) contains information re-132 garding the number, type and general schedule of mechanical operations for each crop grown in 133 each production area. In EPIC, the timing of mechanical operations, e.g., tilling, planting, har-134 vesting are prescribed by the user or are "scheduled" using accumulated heat units (HU) where 135 136 (1)

Where HU is the number of heat units accumulated during a day, TMX and TMN are the maximum and minimum temperatures for the day, and TBSC is the crop-specific base temperature; all variables in °C. A heat unit index (HUI) ranging from 0 at planting to 1.0 at physiological ma-

140 turity is computed by accumulating daily HU values and dividing by the potential heat units of 141 the crop. Resource additions such as fertilizer and irrigation can also be prescribed or triggered in response to "stress" conditions. EPIC modifies optimal plant growth and productivity by tem-142 perature, water, aeration, nutrient and aluminum toxicity stresses (Williams et al., 2008). The 143 present application uses a combination of prescribed and automatically scheduled fertilizer and 144 145 irrigation operations. The prescribed application approach is similar to that reported in Goebes et al. (2003), with some important differences that increase the physical detail as well as the tem-146 poral and spatial resolution of these scenarios. Appendix B contains a detailed description of this 147 148 process.

Knowledge of the reactive N form applied and the method of application are important to 149 the characterization of NH₃ evasion dynamics. Table 1 provides an example of this information 150 151 that has been developed for the present application (see Appendix B). While timing is indicated by "fall, spring and post-plant", specific application dates for each crop and model grid are esti-152 mated by EPIC. Overall, anhydrous ammonia is modeled as the N form of choice for U.S. grain 153 154 corn producers, but other forms also have a role, and dominant form varies by time of year and geographic region. In the U.S. Corn Belt (CB), 45% of annual grain corn N needs are met using 155 156 anhydrous ammonia (injected liquid) in the Spring, while only 15% of Lake States (LK) Springtime grain corn N needs are met using this form. 40% of Delta States (DS) grain corn needs are 157 met through spring application (incorporation) of urea. 9% of Northern Plains (NP) states annual 158 159 grain corn N needs are met using manure that is applied at or prior to planting (never after the crop has emerged). In contrast, 29% of Lake States and 25% of Northeastern (NE) annual grain 160 corn N demand are met through manure. 161

162

163 2.1.2 Crops

- 164 Table 2 lists the crops that are explicitly modeled for this application. A coarse, county-
- 165 level spatial crop assignment is made using the USDA Census of Agriculture
- 166 (<u>http://www.agcensus.usda.gov/Publications</u>). There are more than 3000 U.S. counties ranging
- in size from 67 km² in the Eastern U.S. to 51800 km² in the West. The 2001 United States Geo-
- logical Survey (USGS) National Land Cover Database (NLCD) is used to provide additional
- spatial detail (<u>http://landcover.usgs.gov/uslandcover.php</u>) (Homer et al., 2007). This is a satel-
- 170 lite product for the U.S. that provides 30m pixel-scale information for 29 aggregate land use cat-
- egories. NLCD classes 81 and 82 (pasture/hay and cropland) are of particular interest for this
- application. Accuracy of this product is described in Wickham et al.(2010). In the future (post
- 173 2010), the U.S. Department of Agriculture Crop Data Layer (CDL)
- 174 (http://www.nass.usda.gov/research/Cropland/SARS1a.htm) may offer even more detailed char-
- acterization of agricultural crop species distribution. Landcover data for Canada and Mexico is
- 176 estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS;
- 177 <u>http://duckwater.bu.edu/lc/mod12q1.html/</u>).
- 178
- 179 2.1.3 Soil information

The National Resources Inventory (NRI, <u>http://www.nrcs.usda.gov/technical/nri</u>) links crops to soils within 8-digit Hydrological Cataloging Units (sub-basins or HUCs). A HUC is a geographic area representing part or all of a surface drainage basin, a combination of drainage basins, or a distinct hydrologic feature. There are 2119 8-digit HUCs in the conterminous U.S. with an average extent of ~3800 km². For this application, only the dominant (with respect to area) soil associated with each crop is identified. The minimum soil inputs required by EPIC includes soil layer depth, bulk density, pH, organic carbon, % sand, % silt, calcium carbonate
content and albedo. The nearest U.S. soil is assigned to grid cells in Canada and Mexico pending
acquisition of more representative information.

Current soil structure information provided as input to EPIC may not reflect the desired land management scenario, and so EPIC is run for a 25-yr spin-up period to allow nutrient pools and soil characteristics to adjust to the defined management environment. The average annual plant demand N determined during the last 5-years of this spin-up is used to guide fertilizer form scenario development and to provide initial conditions for simulation of year-specific weather. This ability to adjust the physical and chemical site characteristics to represent changing land use and cropping practices is critical to the modeling system's value for alternative-future analyses.

196

197 2.1.4 Weather

EPIC requires time series of radiation, maximum and minimum temperature, precipita-198 tion, mean relative humidity and mean 10m wind speed conditions. These data can come from 199 200 local observations, or may be simulated within EPIC. Daily precipitation is simulated after Nicks (1974), temperature and radiation follow Richardson (1982), wind speed and direction are 201 202 modeled after Richardson and Wright (1984) and relative humidity is simulated as described in Williams (2008). Recommended practice for the spin-up simulation (see section 2.1.3) is to use 203 the weather simulator and the climatological characteristics of the closest weather station to each 204 205 EPIC model grid cell selected from a set of nearly 1000 historical locations. Results of the last 5-yrs of this spin-up were used for system development, quality control and preliminary evalua-206 tion (see section 3.0). In the future, year-specific gridded weather conditions generated by nu-207 208 merical models such as the Weather Research Forecast Model (WRF) (Skamarock et al., 2008)

209 will be used to ensure greater consistency between farm management and regional air quality 210 models. In addition, time series of daily wet and dry deposition from these models will be input to explore the interplay between fertilizer N additions and atmospheric sources of N. 211 212 2.2 Example EPIC results 213 Appendix C contains an example scenario created when section 2.1 inputs are combined 214 to describe the emission environment for grain corn in the Southeast production region. Figure 3 215 illustrates the 5-year average EPIC-estimated date of first fertilizer application and inorganic 216 217 NH₃ application rate for winter wheat across the U.S. Winter wheat is planted in the fall, undergoes vernalization, resumes growth in the spring and then is harvested in the late spring or early 218 summer. The grey areas in Figure 3A indicate grid cells in which the first fertilizer application is 219 220 not simulated as occurring until after vernalization. Figure 3B indicates the rate for all first applications for any grid cell containing 16 or more ha of wheat. A value of zero indicates that 221 wheat is reported in a grid cell, but no fertilizer is applied. 222 223 3.0 Continental-scale EPIC application and evaluation 224 3.1 Continental-scale application of EPIC 225 This application assumes that each 12km model grid cell contains multiple EPIC mono-226 culture "fields", but the location of each field within a grid cell is spatially indeterminate. This 227 228 approach has been shown to be adequate for modeling regional emission and transport of atrazine (Cooter and Hutzell, 2002b, a) As described in section 2.1.2, agricultural area in a grid cell 229 is determined using the 30m 2001 NLCD data layer (classes 81 and 82), and the distribution of 230 231 specific crops within these NLCD grid areas is determined using the USDA county crop statis-

tics. Each 12km grid cell is assigned to a county polygon and is assumed to mirror that county's 232 233 crop distribution. When a grid cell spans multiple county polygons, the NLCD-determined agricultural area is assigned proportionally to each county, and the appropriate county crop distribu-234 235 tion is applied to those area fractions. An EPIC field, then, is defined as the agricultural area assigned to a specific crop within a 12km grid. There can be up to 42 "fields" (21 rainfed or 236 irrigated crops, see Table 2) in a grid cell. As noted in section 2.1.1 and 2.1.3, specific crop and 237 soil combinations vary by 8-digit HUC, and crop-specific management varies on an agricultural 238 production area basis. Grid cell crop area is assigned to HUCs and farm production regions 239 240 based on the proportion of area contained within a HUC or production region polygon, resulting in a suit of field-scale scenarios for each grid cell. EPIC is then run for each crop scenario in 241 each grid cell (~246,000 scenarios) across the full model domain. These results are then area-242 243 weighted to an aggregate grid-cell estimate of fertilizer inputs which are then shared with the regional air quality model. 244

245

246 3.2 Fertilizer Application Timing Evaluation

Peak NH₃ emissions are tightly coupled to the timing and amount of fertilizer application. Periodic national-scale management surveys report relative application timing, e.g., pre-plant, at plant, post-plant and the average number of applications, but date-specific application reports are rarely available. The most commonly available information for a variety of crops is date of planting and harvest. As stated previously, the majority of inorganic N is applied just prior to, or at planting so the proper characterization of this event is key. Harvest date, including the removal of some or all crop residue, impacts soil temperature and soil moisture, which influence sub-

sequent nutrient transformations as well as rates and timing of fertilizer applied to fall-sowncrops.

Weekly crop progress data, reported as a fraction of crop area within a state or county on 256 which the operation has been completed, is available in digitized form from the National Agri-257 cultural Statistical Services (http://www.nass.usda.gov/Data_and_statistics/Quick_Stats). A re-258 porting week runs from Monday through Sunday, with reports beginning the week ending the 259 first Sunday in April (week #13). First, the mean planting and harvest dates from the last 5 EPIC 260 spin-up years for each grid cell are assigned to crop progress weekly "bins." Next, the fraction 261 262 of crop-specific area in each bin is estimated and is summed through time creating a time series of cumulative planted area. Figure 4A illustrates 5-year USDA reported and EPIC estimated 263 cumulative planted area for rainfed grain corn in Iowa (Corn Belt) and rainfed winter wheat in 264 265 Kansas (Northern Plains). Figure 4B shows a similar comparison for harvest dates. While Figures 4A and 4B results show good agreement with observations, relationships for other crops and 266 locations require further refinement. For instance, winter wheat in the U.S. is grazed as well as 267 268 harvested for grain. It is currently assumed that all simulated wheat is grown primarily for grain production. When wheat is intended to be grazed, it is planted 6 to 8 weeks earlier than wheat 269 planted primarily for grain. In Figure 4C, Texas planting dates appear to be simulated approxi-270 mately 6 weeks later than observed, while harvest dates show good agreement with observations. 271 This suggests an alternative management scenario is needed in this geographic region, i.e., 272 273 Southern Plains in which wheat is grazed and, following vernalization, is then allowed to mature to be harvested for grain. 274

275

276 3.3 Application Rate Evaluation

A second key aspect of EPIC for use in process-based air-quality models is the amount of fertilizer applied. This is explored through comparison of the EPIC simulation results to three alternative annual inorganic N application estimates. Figure 5A shows the distribution of EPIC 5-yr average annual fertilizer applications to agricultural lands in each U.S. County based exclusively on crop N demand. A *ca*. 2002 timeframe is a common U.S. air quality baseline year and so it is used in this initial analysis. County total on-farm use is determined as shown in equation 2.

Where *Use* is the county total inorganic N application in kg, *n* is the number of whole or partial 284 model grid cells assigned to the county, *crop* is the number of crops contained within the grid 285 cell, N_{ii} is the 5-yr average plant-demand N in kg ha⁻¹, *manure* is the portion of that demand met 286 through manure application (kg ha⁻¹) (e.g., Table 1), cf_{ij} is the fraction of the simulated 12 km 287 grid cell assigned to crop j (adjusted for partial grid cells) and 144000 ha grid⁻¹ is an area con-288 289 version constant. The total agricultural crop or pasture area in each grid cell is constrained to 290 NLCD land use classes 81 and 82. These totals are fractionally distributed by crop species as suggested by the 2002 USDA Census of Agriculture. Open counties contain no agricultural or 291 hay/pasture landuse (via NLCD). Figures 5B and 5D show patterns of fertilizer use from the 292 293 Ruddy et al. (2006) United States Geological Survey (USGS) analysis and the USEPA National 294 Emissions Inventory (NEI). Both the USGS and USEPA estimates use Association of American 295 Plant Food Control Officials (AAPFCO) data for direct farmer sales (e.g., AAPFCO, 2002), but each Agency processes these data differently. The USGS estimate (Figure 5B) allocates the 296 297 state-level AAPFCO data to counties using USDA Survey-based estimates of farmer fertilizer

298 expenditures. If no farmer expenditures are reported, a valid value of zero is assigned. The 299 USEPA estimates (Figure 5D) are annual sums generated by Carnegie Mellon University (CMU) (Goebes et al., 2003) that have been reallocated to aggregate agricultural land use classes. The 300 original CMU estimate uses county level AAPFCO reports for the 26 available states and the 301 302 USGS state allocation method elsewhere. If no sales are reported for a county in a state that re-303 ports county sales, a value of zero is assigned to that county. The USEPA inventory does not distinguish between agricultural and non-agricultural fertilizer sales, and values shown in Figure 304 5D include both sources. A domain-wide comparison of the USEPA and USGS values for farm 305 306 plus non-farm use agree to within about 6%. Clearly, the USGS and USEPA estimates are not independent, and so a third Survey-based estimated is provided. Figure 5C is based on the 1997 307 Agricultural Practice Survey (Potter et al., 2006). Gray areas in this map represent federally 308 309 owned lands or areas in which there were too few survey responses to meet non-disclosure requirements. 310

311 The Figure 5A geospatial pattern, based solely on simulated plant N demand, appears to be a reasonable hybrid solution of sales and survey results. Estimated N manure applications 312 have been removed from the EPIC total to be commensurate with the other inorganic N esti-313 314 mates. Overall, EPIC results are about 7% below USGS domain-wide totals, but tend to be higher than USGS estimates in the Eastern U.S. and lower than the USGS estimates in the West. 315 Potential sources of these regional differences will continue to be explored and management sce-316 317 narios further refined, but EPIC plant demand-based N use estimates are always expected to be less than sales-based estimates since farmer "overfertilization" action to reduce production un-318 certainty is not included. It is unclear that any one Figure 5 estimate is inherently superior to 319 320 another, but the EPIC rates appear to lie within the range of published estimate uncertainty

(Sabota et al., accepted). The greatest advantage of the EPIC estimate over those derived from
sales or survey-based information is that it is process-driven and does not rely on historical observation. This characteristic supports the use of EPIC to gage physically-driven N demand response to a variety of alternative environmental or policy scenarios that may or may not have
historical analogs. Another means of determining the value of the EPIC estimates is to use them
in an air quality modeling application, and to compare those results to atmospheric observations.
An example of such an application is presented in section 4.0.

328

329 4.0 Coupling to a Regional Air Quality Model

The system developed in Section 2 and evaluated in Section 3 provides management and process-driven inorganic NH₃ fertilizer application rate, timing method of application and soil pH information at spatial and temporal scales appropriate for the bidirectional version of the Community Multi-Scale Air Quality (CMAQ) model version 5.0, which includes the Nemitz et al. (2001) two layer resistance model for bidirectional NH₃ exchange. A brief description of this implementation and example results are presented below. A more complete model description and presentation of results is provided in Bash et al. (submitted this issue).

The CMAQ 5.0 modeling system employs a 3-dimensional Eulerian modeling approach 337 to address air quality issues such as tropospheric ozone, fine particles, acid deposition and visi-338 bility degradation (Byun and Schere, 2006). Traditionally, air quality models have addressed indi-339 340 vidual pollutant issues, such as urban ozone, regional acid deposition, particles, nitrogen, and toxics prob-341 lems, separately. In contrast, the CMAQ modeling system is a comprehensive, state-of-the science, multiscale, multipollutant, "one atmosphere" system that includes a meteorological model to 342 describe atmospheric conditions, emission models for anthropogenic and natural emissions that 343 are released into the atmosphere, and a chemical-transport model (CTM) to simulate chemical 344

345 transformations, atmospheric transport and fate. Most anthropogenic and biogenic emissions are parameterized as emission factors and activity rates, or are hourly estimates of temporally-and-346 spatially allocated emissions from point, nonpoint and mobile source inventories. Emissions 347 from inorganic fertilizer applications were removed from the inventories when using the CMAQ 348 NH₃ bidirectional flux option to avoid double counting. The NEI estimates of animal feeding 349 350 operation emissions are retained to characterize direct ammonia emissions from organic sources (manure). EPIC only models NH₃ emissions derived from manure mineralization and subse-351 quent nitrification of the mineralization product (NH_4^+). The CMAQ CTM parameterizes wet 352 353 and dry deposition processes, transport due to horizontal and vertical advection and diffusion, 354 and the dynamic partitioning of pollutants, including NH₃, to fine and coarse aerosols. Changes in one pollutant can influence the concentrations and sinks of other pollutants directly or indi-355 356 rectly through chemistry, transport and aerosol processes.

An example of the coupling of daily EPIC output and processes for each CMAQ dynamic 357 model time step (~5 minutes for 12 km grid spacing) with bidirectional exchange is shown in 358 359 Figure 6. Crop specific EPIC simulated inorganic NH₃ fertilization rates, timing, method, and managed soil pH values are used to estimate $[NH_4^+]$ and the corresponding $[H^+]$ changes for each 360 crop assigned to the NLCD agricultural area fraction of the grid cell. The EPIC fertilizer appli-361 cation method information is used to allocate the fertilizer to the plow depth (10cm) for injected 362 or knifed-in applications or to the surface for spray or drip applications. These inputs are com-363 364 bined with the grid cell crop distribution from BELD4, a standard CMAQ input data set that links NLCD-constrained Census of Agricultural crop areas to CMAQ grid cells, and supports 365 biogenic emission estimation for 230 natural and managed vegetation species. The result is a 366 367 temporally and spatially detailed description of the increase in soil emission potential, Γ_s , due to

368 fertilizer application in agricultural land use categories. Following Walker et al. (2006), a nonagricultural Γ_s of 20 is used for other land covers. Ammonia evasion and NH₄⁺ nitrification loss-369 es were modeled for CMAQ soil layers with depths of 1 cm and 10 cm, leading to a dynamic, 370 process-driven estimate of Γ_s temporal decay. Nitrification losses were modeled within CMAQ 371 as in EPIC (Williams et al., 2008), and NH₃ evasion was modeled using the CMAQ bidirectional 372 373 exchange based on the two layer resistance model of Nemitz et al. (2001). Ammonia fluxes and micrometeorological variables were calculated for each NLCD land use category, and then were 374 aggregated to the grid cell and weighted by the area of the land use categories from BELD4 to 375 376 estimate the grid scale flux. Bidirectional exchange of NH₃ in CMAQ conserves the mass of both atmospheric NH_3 and the soil NH_4^+ concentrations for agricultural land use categories, and 377 Γ_s is updated to reflect evasion, deposition and nitrification processes. The temporal dynamics of 378 $\Gamma_{\rm s}$ following fertilization is driven by the evasive and nitrification losses of NH₄⁺ in the soil ra-379 ther than a decay time constant (Massad et al., 2010) or seasonal Γ_s factors (Zhang et al., 2010). 380 Figure 7A shows estimated annual bi-directional CMAQ 5.0 NH₃ emissions for 2002 381 compared to the factor-based USEPA NEI ammonia emissions estimates. Overall, CMAQ annu-382 al emissions are approximately one-half of the NEI estimates. The largest spring and fall emis-383 384 sion reductions are largely in the Upper Midwest (Corn Belt), where precipitation biases resulted in an overestimation in the NEI NH₃ emission estimate (Gilliland et al., 2006). Elsewhere, dif-385 ferences are driven by the timing of spring and fall fertilizer applications and temperature de-386 387 pendence on the compensation point in the bidirectional model. The changes in emissions were evaluated against ambient NO_3^- observations because the largest changes in the emissions were in 388 the early spring and late fall when the NO₃⁻ aerosol is sensitive to changes in ambient NH₃, and due to the 389 lack of IMPROVE NH₄⁺ and ambient NH₃ observations (Pinder et al., 2008). Reductions in the esti-390 mates of the PM_{2.5} nitrate (NO₃⁻) aerosol concentration biases at urban Chemical Speciation 391

392 Network (CSN, Figure 7B) and rural Interagency monitoring of PROtected Environments (IM-PROVE, Figure 7C) sites support these shifts in the continental U.S. NH₃ emissions. CSN PM_{2.5}-393 NH4⁺ observations were not included in this evaluation to be consistent with IMPROVE observa-394 tions, and in recognition of the uncertainty that PM_{25} -SO₄²⁻ model biases may add to the PM₂₅-395 NH₄⁺ evaluation. The similarity in the evaluation results at rural and urban sites indicates that 396 NH₃ emissions and deposition at rural/agricultural locations can impact regional PM_{2.5} concen-397 trations. These bidirectional NH₃ CMAQ differences reflect the simulation of dynamic, weather-398 driven spring and fall application rates and dates in EPIC as opposed to fixed application rates 399 400 and activity windows. In addition, bi-directional exchange in CMAQ is a function of grid cell specific weather and ammonia-ammonium Henry's Law and solubility equilibria conditions 401 (Nemitz et al., 2000), while factor-based estimates simulate emissions temperature response by 402 403 imposing a fixed seasonal distribution and/or seasonal and spatial distributions based on inverse modeling that can incorporate model biases into the emission estimates. Further regional emis-404 sion and aerosol estimate improvement is expected when CMAQ is provided with year-specific 405 406 rather than 5-yr average EPIC inputs.

407

408 5.0 Conclusions

A methodology has been described that facilitates assessment of the process-driven regional-to-national response of agricultural soil emissions of NH₃ to changing land use, policy and climate under a set of user-defined fertilizer management conditions and nationally consistent, spatially and temporally resolved inputs for the conterminous U.S. A preliminary evaluation of 5-yr average results suggests good agreement between simulated and observed timing of fertilizer applications at planting, and that regional and national patterns of sales and survey

based annual application rates are captured. Use of the temporal and spatial allocation approach
such as those reported in Gobes et al (2003) have supported ammonia emission inventory improvement over previous, static average values. The approach described here builds on this
foundation by adding temporal and spatial detail through a flexible, process-based approach that
explicitly includes human behavioral response i.e, management, to National policy and regional
climate change analyses.

Future system improvements will include refinement of planting and harvest dates, ex-421 pansion to year-specific weather conditions to explore emission response to interannual weather 422 423 variability, soil and management information for Northern Mexico and Southern Canada and the 424 addition of missing soil processes such as organic N mineralization to CMAQ. Massad et al. (2010) suggest that this process could be a significant factor controlling temporal patterns of Γ_s 425 426 in some agricultural systems and inclusion of mineralization in CMAQ will provide a more complete systems-level characterization of N behavior in the environment. A user-friendly inter-427 face, the Fertilizer Emission Scenario Tool for CMAQ (FEST-C) is being developed to facilitate 428 429 generation I/O API formatted inorganic NH₃ fertilizer application rate information on a daily basis for the Continental U.S. domain and a 12 km x 12 km rectangular grid resolution. FEST-C 430 431 should be released to the air quality modeling community through the Community Modeling and Analysis System (CMAS) Center by the close of 2012. At that time we anticipate FEST-C will 432 support generation of this information for any gridded U.S. CMAQ domain and resolution for 433 434 which consistent hourly weather and landcover information is available.

435

437 Appendix A: EPIC Biogeochemical Treatment of N and C

438 EPICv0509 splits soil organic C and N into three compartments: microbial biomass, slow 439 humus and passive humus (Williams et al., 2008). Organic residues added to the soil surface or belowground are split into metabolic and structural litter compartments as a function of C and N 440 441 content. Following the CENTURY (Parton et al., 1994) approach, EPIC goes on to include the use of linear partition coefficients and soil water content to calculate movement as modified by 442 sorption, which are used to move organic materials from surface litter to subsurface lavers: tem-443 444 perature and water controls affecting transformation rates are calculated internally in EPIC; the surface litter fraction in EPIC has a slow compartment in addition to metabolic and structural 445 litter components; and lignin concentration is modeled as a sigmoidal function of plant age 446 (Izaurralde et al., 2006). EPICv0509 has been modified further such that the upper 15 to 45 cm 447 of the soil layer reflects the impact of specific tillage practices on biogeochemical process rates. 448 The N budget includes inputs from fertilizer application (NH₃ or NH₄⁺ in solid or liquid 449 form), N fixation by legumes and decaying organic matter, and will be modified to accept time 450 451 series of wet and dry atmospheric deposition of oxidized and reduced N. EPIC simulates the transformation of NH_4^+ to NO_3^- through nitrification. Nitrate undergoes denitrification to pro-452 duce N₂ and N₂O, and organic N undergoes mineralization. Nitrogen is absorbed by plants, re-453 moved in harvested crops, and is dissolved in water or attached to particles that leave the field. 454

456 Appendix B. Fertilizer Application Scenario Development

457 In addition to USDA data bases and fertilizer sales data noted in Goebes et al. (2003), recommendations from knowledgeable agricultural experts are used to sensibly allocate phos-458 phorus (P) and N. In most cases, the majority of N is applied immediately before or at crop 459 planting. Prior to the growing season, a farmer has limited *a priori* information regarding future 460 461 market price and weather and so these decisions tend to be based on previous experience with the goal of maximum production, i.e., climatology. For each crop and U.S. State, Goebes et al. 462 (2003) assign a fixed pre-plant allocation, applied during a fixed window lasting several weeks 463 to 2 months across all simulation years. For the present application, for each 12 km by 12 km 464 grid-cell and crop, the amount of N initially applied is a fixed fraction of an annual EPIC 5-yr 465 466 climatological average amount, but the date of application will vary with crop, crop variety, local soil and weather conditions leading to more spatially and temporally resolved application esti-467 468 mates. The N form dictates the equipment used to apply the fertilizer, the depth of application and application timing, which in turn affects subsequent volatilization and other biogeochemical 469 process rates as well as surface and sub-surface losses. The fraction-of-annual-total for each 470 471 fertilizer form is distributed to meet crop N demand in a production region based on documented crop management practices and yield value. For example, more costly N forms are assigned to 472 higher-value crops. When crop demand exceeds inorganic agricultural N sales (AAPFCO, 473 2002), the shortfall is assumed to be met with manure. These estimates show good agreement 474 with national estimates of regional organic (manure) N use by major commercial crop (Potter et 475 476 al., 2006). Different manure sources exhibit different biogeochemical behaviors. For this appli-477 cation a single, dominant manure source is assumed for each production region, e.g., poultry litter in the Southeastern U.S., dairy manure in the Northeast, etc. The present scenario reflects 478

market conditions for a base year, 2002, but economic model projections of fertilizer production
costs, market prices, National policy directives, or alternative sales data could be used to modify
these initial scenarios.

Goebes et al. (2003) assume that post-planting applications take place in a window 1 482 month after planting. In the present EPIC application, post-planting fertilizer applications use 483 the "automatic" option, with each application defined as a region and crop-specific fraction of 5-484 yr average annual use. If a second application is triggered, the amount applied for a specific grid 485 and crop is a fixed fraction of the annual total, but the timing will vary with crop demand, which 486 is a function of local soil and weather conditions. This avoids the simulation of an unrealistic 487 number of small fertilizer applications as well as too large an area receiving an application on the 488 same day. If drought or other extreme conditions exist such that crop N demand is minimal, no 489 490 second application will occur. Additional applications are possible if N losses or crop demands are particularly high, but in most cases, applications cease once the crop has reached 50% of 491 492 maturity.

Fertilizer is applied to Hay/pasture areas receiving irrigation to support 3 cuttings per model year, while rainfed production systems are assumed to support one hay cutting, followed by livestock grazing. Stocking rates and subsequent manure introduction are determined for each model grid cell as a function of potential evapotranspiration and precipitation. Fescue hay is simulated north of 35 degrees latitude or 1500m elevation. Bermuda hay is simulated elsewhere.

499 Appendix C: An Example Scenario

Figure C1 presents an example of an EPIC management scenario for grain corn in a 500 501 Southeastern Farm Production Area grid cell. Prior to planting, heat units accumulate using a base temperature of 0° C. On a climatological basis, there are 5710 annual base 0° C heat units 502 for this grid cell. Reasonable year-to-year operation date variability is simulated by referencing 503 a particular year to climatological conditions. In this production area, corn farmers perform an 504 initial cultivation prior to planting. Cultivation depth is 0.1 m, with 30% soil mixing efficiency, 505 resulting in a surface roughness of 20 mm. Corn variety selection reflects the climatological 506 507 growing season length. If soils are sufficiently warm for germination to occur, and are dry enough to support heavy machinery, corn is then planted (drilled) at a density of 6 plants m^{-2} . A 508 10% soil mixing efficiency produces a surface roughness of 10mm. After the crop is planted, 509 heat units are accumulated using a crop and variety appropriate heat unit base, in this case 8°C. 510 511 Additional operations are scheduled by comparing year-specific accumulations against a climato-512 logical time-to-maturity total, in this case 1680. By day 162, the model determines that there is less than 95% of the nitrogen present that is needed for optimal production and an N application 513 is triggered. A second cultivation is scheduled when 30% of growing season heat units have 514 accumulated. The crop reaches maturity when the crop-specific heat unit sum reaches its clima-515 516 tological value (e.g. 1.0). For corn, an additional in-field dry-down period (1680*1.15) is simu-517 lated prior to harvest.

518

520 Acknowledgements:

The authors wish to thank Dr. Jimmy Williams, Senior Research Scientist, with the Texas 521 AgriLife Blackland Research and Extension Center located at Temple Texas for his continued 522 interest and generous intellectual support of this work. We also wish to thank Joe Slater, Man-523 524 ager Fertilizer/AG Lime Control Services, University of Missouri Agricultural Experiment Station, Columbia, MO for his invaluable insights regarding fertilizer sales and use, and Ms Melanie 525 526 Wilson of CSC, Raleigh, NC for graphics assistance. Portions of this research were completed 527 with funding provided under U.S. EPA contracts EP-D-07-102 and GS-35F-4381G, Task Order 1522. Although this work was reviewed by EPA and approved for publication, it may not neces-528 sarily reflect official Agency policy 529

<u>References</u>

AAPFCO: Commercial Fertilizers 2002, Washington, D.C., 2002

Bash, J. O., Cooter, E. J., Dennis, R., Walker, J. T., and Pleim, J. E.: Evaluation of a regional air quality model with bidirectional NH3 exchange coupled to an agro-ecosystem model, Biogeosciences Special Issue, submitted this issue.

Byun, D. W., and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Applied Mechanics Reviews, 59, 51-77, 2006.

Cooter, E. J., and Hutzell, W. T.: A regional atmospheric fate and transport model for atrazine 1. Development and implementation, Environ. Sci. Technol., 36, 4091-4098, 2002a.

Cooter, E. J., and Hutzell, W. T.: A regional atmospheric fate and transport model for atrazine 2. Evaluation, Environ. Sci. Technol., 36, 4593-4599, 2002b.

Cooter, E. J., Bash, J. O., Walker, J. T., Jones, M. R., and Robarge, W.: Estimation of NH₃ flux from managed agricultural soils, Atmospheric Environment, 44, 2107-2115, 2010.

Dennis, R., Mathur, R., Pleim, J. E., and Walker, J. T.: Fate of ammonia emissions at the local to regional scale as simulated by the Community Multiscale Air Quality model, Atmospheric Pollution Research, 1, 207-214, 2010.

Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the Nitrogen Cycle: Recent trends, questions, and potential solutions, Science, 320, 889-892, 10.1126/sceince.1136674, 2008.

Gilliland, A. B., Appel, K. W., Pinder, R. W., and Dennis, R.: Seasonal NH₃ emissions for the continental United States: inverse model estimation and evaluation, Atmospheric Environment, 40, 4986-4998, 2006.

Goebes, M. D., Strader, R., and Davidson, C.: An ammonia emission inventory for fertilizer application in the United States, Atmospheric Environment, 37, 2539-2550, 2003.

Hertel, O., Reis, S., Skjoth, C. A., Bleeker, A., Harrison, R., Cape, J. N., Fowler, D., Skiba, U., Simpson, D., Jickells, R., Baker, A., Kulmala, M., Gyldenkaerne, S. G., Sorensen, L. L., and Erisman, J. W.: Nitrogen processes in the atmsophere, in: The European Nitrogen Assessment, edited by: Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B., Cambridge University Press, New York, 177-210, 2011.

Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., VanDriel, J. N., and Wickham, J.: Completion of the 2001 National Land Cover Database for the Coterminous United States, Photogrammetric Engineering and Remote Sensing, 73, 337-341, 2007.

Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J., and Quiroga-Jakas, M. C.: Simulating soil C dynamics with EPIC: Model description and testing against long-term data, Ecol. Model., 192, 362-384, 2006.

Lovett, G. M., and Tear, T. H.: Threats from Above: Air Pollution Impacts on Ecosystems and Biological Diversity in the Eastern United States, The Nature Conservancy and the Cary Institute of Ecosystem Studies, 2008

Massad, R.-S., Nemitz, E., and Sutton, M. A.: Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem. Phys., 10, 10359-10386, doi:10.5194/acp-10-10359-2010, 2010.

Nemitz, E., Sutton, M. A., Schjorring, J. K., Husted, S., and Wyres, G. P.: Resistance modelling of ammonia exchange above oilseed rape, Agriculture and Forest Meteorology, 105, 405-425, 2000.

Nemitz, E., Milford, C., and Sutton, M. A.: A two-layer canopy compensation point model for describing bi-directional biosphere-atmosphere exchange of ammonia, Quarterly Journal of the Royal Meteorological Society, 127, 815-833, 2001.

Nenes, A., Pilinis, C., and Pandis, S. N.: Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models, Atmospheric Environment, 33, 1553-1560, 1999.

Nicks, A. D.: Stochastic generation of the occurrence, pattern, and location of maximum amount of daily rainfall, Proc. Symp. Statistical Hydrology, Aug-Sept 1971, Tucson, AZ, USDA Misc. Publ No.1275, 1974. Parton, W. J., Ojima, D. S., Cole, C. V., and Schimel, D. S.: A general model for soil organic matter dynamics: Sensitivity to litter chemistry, texture and management, in: Quantitative Modeling of Soil Forming Processes, SSSA Spec. Public. No. 39

SSSA, Madison, WI, 147-167, 1994.

Pinder, R. W., Dennis, R. L., and Behave, P. V.: Observable indicators of the sensitivity of PM25 nitrate to emission reductions - Part I: derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales, Atmospheric Environment, 42, 1275-1286, 2008.

Pope, C. A., and Dockery, D. W.: Health effects of fine particulate air pollution: Lines that connect, Journal of the Air and Waste Management Association, 56, 709-742, 2006.

Potter, S. R., Andrews, S., Atwood, J. D., Kellogg, R. L., Lemunyon, J., Norfleet, L., and Oman, D.: Model Simulation of Soil Loss, Nutrient Loss, and Change in Soil Organic Carbon Associated with Crop Production, Natural Resources Conservation Service, U.S. Department Agriculture, Conservation Effects Assessment Project (CEAP), Government Printing Office, Washington, D.C., 235 pp, 2006

Richardson, C. W.: Dependence structure of daily temperature and solar radiation, Trans. ASAE, 25, 735-739, 1982.

Richardson, C. W., and Wright, D. A.: WGEN: A model for generating daily weather variables (ARS-8), Agricultural Research Service, 1984

Ruddy, B. C., Lorenz, D. L., and Mueller, D. K.: County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982-2001, US Geological Survey, Reston, VA, 2006 Sabota, D., Compton, J., and Harrison, J.: Reactive nitrogen in the United States: How certain are we about sources and fluxes, Frontiers in Ecology and the Envrionment, accepted.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the Advanced Research WRF Version 3, National Center for Atmospheric Research Boulder, 125, 2008

Sutton, M., Burkhardt, J. K., Guerin, D., Nemitz, E., and Fowler, D.: Development of resistance models to describe measurements of bi-directional ammonia surface-atmopshere exchange, Atmospheric Environment, 32, 473-480, 1998.

Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., and Grizzetti, B. The European Nitrogen Assessment, Cambridge University Press, Cambridge, 612, 2011.

Sutton, M. A., Schjorring, J. K., and Wyers, G. P.: Plant-atmosphere exchange of ammonia, Philosophical Transactions of the Royal Society of London A, 351, 261-278, 1995.

United States Environmental Protection Agency. Reactive Nitrogen in the United States: An analysis of inputs, flows, consequences, and management options (EPA-SAB-11-013),Office of the Administrator, Science Advisory Board (SAB), Retrieved from

http://yosemite.epa.gov/sab/sabproduct.nsf/67057225CC780623852578F10059533D/\$File/EPA-SAB-11-013-unsigned.pdf, Accessed August 7 2012.

Vitousek, P. M., Turner, D. R., Parton, W. J., and Sanford, R. L.: Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models, Ecology, 75, 418-429s, 1994.

Walker, J. T., Robarge, W., Wu, Y., and Meyers, T. P.: Measurement of bi-directional ammonia fluxes over soybean using the modified Bowen-ratio technique, Agriculture and Forest Meteorology, 138, 54-68, 2006.

Wickham, J. D., Stehman, S. V., Fry, J. A., Smith, J. H., and Homer, C.: Thematic accuracy of the NLCD 2001 land cover for the conterminous United States, Remote Sensing of Environment, 114, 1286-1296, 2010.

Williams, J. R., Jones, C. A., and Dyke, P. T.: A modeling approach to determining the relationship between erosion and soil productivity., Trans. ASAE, 27, 129-144, 1984.

Williams, J. R., Izaurralde, R. C., and Steglich, E. M.: Agricultural Policy/Environmental eXtender Model: Theoretical Documentation Version 0604, Texas AgriLIFE Research, Texas A& M University, Temple, TX, 2008. Available at <u>http://epicapex.brc.tamus.edu</u>.

Zhang, L., Wright, L. P., and Asman, W. A. H.: Bi-directional air-surface exchange of atmospheric ammonia: A review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models, Journal of Geophysical Research, 115, D20310, 10.1029/2009JD013589, 2010.

Time o		Region										
Time	Form	NE	AP	SE	LK	CB	DS	NP	SP	MN	PA	
	Anhydrous Ammonia Ammonium nitrate				15	20		25	20	30	30	
	28% solu- tion				5							
Fall	30% solu- tion											
	other phos- phate (DAP)		3		3	3		3				
	Urea	10			15							
	*By Grade	5		5			5					
	Anhydrous Ammonia Ammonium nitrate		50	10	15	45		40	45	30	30	
Spring	28% solu- tion 30% solu- tion	50										
	other phos- phate (DAP)			4	3	5	2	2	5			
	*By grade			35			30					
	Urea						40					
After Plant	Anhydrous Ammonia Ammonium nitrate						10			30		
	28% solu- tion			10	10	20						
	30% solu- tion		30								30	
	32% solu- tion	10	10	30			10	21	25			
	Urea other phos-				5							
	phate (DAP)								1	3	3	
	manure	25	7	6	29	7	3	9	4	7	7	

Table 1. Example of regional grain corn fertilizer amount, timing, form and distribution. Values are in percent of annual N needs met. LK=Lake States, CB=Corn Belt, NP= Northern Plains, SP=Southern Plains, DS=Delta States, SE=Southeast, AP=Appalachia, NE=northeast, MN=Mountain, PA=Pacific .(see Figure 2)

*By grade = blended fertilizer with NPK percentage specified.

Table 2. Crops modeled within the Agricultural Fertilizer Modeling System (AFMS)

Grass Hay	Peanuts
Alfalfa Hay	Potatoes
Other grazed cropland and pasture	Rice
Barley	Rye
Canola	Sorghum for Grain
Edible Dry Beans	Sorghum for Silage
Edible Dry Peas	Soybeans
Corn for Grain	Winter wheat
Corn for Silage	Spring Wheat
Cotton	Other crops
Oats	

Figure Captions

Figure 1. Biogeochemical components of the Carbon and Nitrogen budgets in EPIC.

Figure 2. USDA Farm Production Regions.

Figure 3. EPIC simulated winter wheat A) date of first fertilizer application and B) rate applied on that date across the continental U.S.

Figure 4. Example comparison of USDA operation completion dates to EPIC heat-unit based estimates for rainfed A) Iowa corn and Kansas winter wheat planting, B) Iowa corn and Kansas winter wheat harvest and C) Texas winter wheat plant and harvest

Figure 5. A) 5-yr average annual plant demand-based (i.e., EPIC) estimate of inorganic N use, B) 2001 Inorganic N use Ruddy et al. (2006), C) Survey-based 1997 inorganic N use (NNLSCD; Potter et al., 2006) and D) 2002 Inorganic N use (activity) as used in the US EPA National Emissions Inventory(Goebes et al., 2003). All values are kg-N/county

Figure 6. Flow chart of EPIC coupled with CMAQ bidirectional NH3 exchange. Arrows represent the flow of information, Meteorological processes are in grey, EPIC processes are shown in green, land use and land use derived data are shown in tan, and CMAQ processes are shown in blue.

Figure 7. (A) Monthly total NH₃ emissions Confined Animal Feeding Operations(CAFO), industrial, mobile, and inorganic fertilizer) reported in the 2005 U.S. EPA NEI and estimated by the bidirectional CMAQ with EPIC fertilizer for the Continental U.S. (CONUS), (B) Monthly model ambient NO₃⁻ biases for 2002 at urban CSN observation sites, and (C) rural IMPROVE observation sites. In (B) and (C), red indicates base model simulations and blue indicates bidirectional CMAQ with EPIC fertilizer, the black line within the box represents the median bias, shaded areas represent the range of the 25% to 75% quartile, the whiskers represent the range of 5% and 95% quantiles, and the black triangle represents the mean bias.

Figure C1. Example EPIC grain corn management schedule for the North Carolina Coastal Plain. HUSC is the heat unit scheduling fraction. $STRESS_N$ is the nitrogen stress value.

Figure 1

Figure 2.

Figure 3.

Figure 6.

Figure 7.

Figure C1.

Grain Corn Management Schedule