Quantifying and Mapping Habitat-Based Biodiversity Metrics Within an Ecosystem Services Framework

ACES Conference, Ft . Lauderdale, FL

- William Kepner, EPA
- Ken Boykin, NMSU
- David Bradford, EPA
- Rachel Guy, UGA
- Darin Kopp, NMSU

- Allison K. Leimer, NMSU
- Elizabeth A. Samson, NMSU
- N. Forrest East, NMSU
- Anne Neale, EPA
- Kevin Gergely, USGS

Ecosystem Services

- The benefits humans derive from ecosystems (MEA 2005)
- Provisioning services such as food, water, timber, habitat, and fiber
- Regulating services that affect climate, floods, disease, wastes, and water quality
- Cultural services that provide recreational, aesthetic, and spiritual benefits
- Supporting services such as soil formation, photosynthesis, and nutrient cycling

Atlas Vision/Implementation

Contain series of clickable background maps

0

- Select ecosystem services from Table of Contents
- Allow "stacking" of multiple services
- Multiple metrics for each category
- Ancillary data
- Include potential and future scenarios

• Allow user to place their "area" in context of others

Our Conceptual Envelope Model

Study Approach

Develop and produce habitat provisioning metrics & maps (an ecosystem service and surrogate measure of biodiversity) based on current condition and available data for placebased, regional, and national scales of interest.

Collect and compile information on habitat associations and develop deductive habitat model for each species

Range Delineation

Hydrologic Units

Habitat Variables

- Land Cover
- Elevation (min/max)
- Slope/Aspect
- Hydrology (Proximity)
 - Streams, lakes, springs
- Soil
- Patch Size

Gap Analysis Products and Data Sources (Southwest Regional Example)

Deductive Habitat Models (817 spp)

- Knowledge based/expert based
- Wildlife Habitat Relationships
- Habitat based
- Top down general to specific

Cluster Metrics to Measure Biodiversity

Terrestrial Vertebrates	Species of Greatest Conservation Need	Harvestable Species	Ecological Systems (Land Cover)			
All Vertebrate Species Amphibians	All Vertebrate SGCN Amphibians	All Harvestable Big Game	Richness/Diversity			
Birds	Birds	Small Game				
Mammals	Mammals	Upland Game				
Reptiles	Reptiles	Furbearers				
Bats	Bats	Waterfowl				
T & E Species		Example - All Bats				

Regional Analysis

_	Rio Grande (9,723 km ²)			San Pedro (8,317 km²)			Southwest (1,389,000 km ²)			_
Biodiversity Metric (Richness)	Max	Mean	SD	Max	Mean	SD	Max	Mean	SD	Total Number Species/ Classes in SW
Vertebrate Species Ri	ichness	Wittan	50	Mux	Witan		WIUA	Ivican	50	5.11
All	258	141.32	37.33	260	162.72	31.73	271	110.46	37.20	817
Amphibians	7	2.14	0.92	7	1.55	0.87	11	1.41	1.03	37
Birds	154	65.22	22.01	174	76.45	19.73	180	54.94	22.98	435
Mammals	71	50.03	14.00	75	56.71	11.18	78	40.97	12.48	215
Reptiles	49	23.93	11.39	41	28.00	7.69	54	13.14	10.58	130
Bats	18	13.16	2.18	23	17.74	3.66	24	11.23	4.22	30

_	Rio Grande (9,723 km²)		San Pedro (8,317 km ²)			Southwest (1,389,000 km ²)			-	
Biodiversity Metric (Richness)	Max	Mean	SD	Max	Mean	SD	Max	Mean	SD	Total Number Species/ Classes in SW
T & E Species										
Richness	10	4.19	1.56	7	3.89	1.26	11	3.81	1.55	21
Harvestable Species 1	Richness									
All	35	15.60	5.20	36	17.79	3.62	48	14.54	5.23	93
Big Game	8	3.91	1.72	9	5.02	1.77	10	4.17	2.07	15
Furbearers	13	7.34	2.31	10	6.50	1.42	15	6.10	2.12	21
Small Game	20	5.03	2.32	20	6.91	1.95	22	4.07	2.52	36
Upland Game	11	5.26	2.16	11	7.16	1.94	14	4.66	2.22	31
Waterfowl	24	33	1.41	23	0.09	0.65	25	0.47	1.89	25
Ecosystem										
Diversity	13	4.55	1.86	13	5.68	1.73	20	4.45	2.32	125

Ν

■ Rio Grande ■ San Pedro □ Southwest

Visual Displays

Radar Graphs

Habitat/Maintenance of Biodiversity

Average Index Value

Average of each mapped pixel value in study area /highest mapped pixel value in area.

Bar Graph

Habitat/Maintenance of Biodiversity

General Conclusions

- Deductive modeling appears promising for mapping and quantifying metrics of habitat provisioning at multiple scales;
- First level effort to cluster species distribution models into functional groups (metrics) is underway at local and regional scales;
- Ultimately should be applicable to national scale via EPA & USGS/GAP initiative;
- Provides reference conditions for alternative future scenarios (e.g. climate change, urbanization);
- Establish common sense *indicators of ES* for end-user and decision maker needs, e.g.
 - Landscape Conservation Cooperatives
 - State Wildlife Action Plans
 - Potentially also for IPBES, TEEB, GEO BON, DIVERSITAS, etc.

Species Richness & Mapping Approach by Scale

Taxon	San Pedro	Southwest	Southeast	Nation
Amphibians	16	37	124	310
Birds	287	435	259	719
Mammals	88	215	99	555
Reptiles	61	130	124	509
Total Species	452	817	606	2094

Contact Information

William G. Kepner David F. Bradford Anne C. Neale USEPA, Office of Research and Development Las Vegas, NV and Research Park, NC kepner.william@epa.gov bradford.david@epa.gov

Kenneth G. Boykin Center for Applied Spatial Ecology, New Mexico State University, New Mexico Cooperative Fish and Wildlife Research Unit Las Cruces, NM kboykin@nmsu.edu

Kevin J. Gergely USGS National Gap Analysis Program Moscow ID

http://gapanalysis.nbii.gov http://fws-nmcfwru.nmsu.edu/swregap/ http://www.epa.gov/nerlesd1/land-sci/gap.htm

