

Species-Specific Predictive Signatures of Developmental Toxicity using the ToxCast Chemical Library

Nisha S. Sipes

U.S. EPA, ORD, National Center for Computational Toxicology

ILSI HESI Dart

2nd Species Workgroup

September 25, 2012 Washington, DC

Office of Research and Development

Disclosure

The authors of this research have no financial or other interests which pose a conflict of interest.

This research was funded by the United States Environmental Protection Agency, Office of Research and Development.

Disclaimer: views are those of the presenter and do not necessarily reflect Agency policy nor imply endorsement of software used here.

High-throughput screening (HTS)

Toxicity Testing in the Twenty-first Century: A Vision and a Strategy - National Academy of Sciences (2007) http://iccvam.niehs.nih.gov/docs/about_docs/NAS-Tox21.pdf

- Move away from animal testing to HTS
 - Understand how chemicals perturb cellular functions
 - Broader coverage of chemicals and biological activities
 - Reduce cost and time for testing
 - Use fewer animals
- Establish relationships between in vitro perturbation (toxicity pathways) and in vivo outcomes (adverse outcome pathways)
 - ➤ ToxCastTM Program: Chemical prioritization and predictive model development

Predictive Model Development

Predictive Model Development Workflow

Databases

ToxCast in vitro ToxRefDB in vivo

HTS Data ≈ 3.2 Million Data Points • Cell-free (biochemical) • Cell-based -Primary & cell lines • Complex culture -Cell signaling responses • Integrative model -Zebrafish embryogenesis

Phase I chemicals tested 271 (87%)

- 251 Prenatal Rat
- 234 Prenatal Rabbit
- 214 overlap (79%)

Developmental Effects (dLEL)

- ■Fetal weight reduction
- Malformations
 - ■(e.g. cleft lip, eye & skeletal defects)
- ■Prenatal loss

Spectrum of Developmental Endpoints

Endpoint Class	Number of Chemicals									
	Rat	Rabbit	Overlap							
Developmental (dLEL)	146	106	65							
Fetal Weight Reduction (FWR)	87	45	20							
Malformation (MAL)*	127	75	39							
Skeletal (axial)	113	53	25							
Skeletal (appendicular)	49	22	7							
Skeletal (cranial)	40	19	3							
Urogenital (renal)	15	2	0							
Urogenital (ureteric)	11	2	0							
Jaw/Hyoid	14	6	0							
Cleft Lip/Palate	10	2	0							
Neurosensory (eye)	2	4	0							
Neurosensory (brain)	7	5	0							
Body Wall (somatic)	5	1	0							
Viscera (splanchnic)	4	8	0							
Cardiovascular (heart)	2	3	0							
Cardiovascular (major vessels)	1	3	0							
Prenatal Loss (PNL)	86	136	47							

Predictive Model Assay Selection

What assays are statistically associated with the in vivo endpoints?

Assay Set Aggregation & Reduction

Assay Set 1 (e.g. IL) Assay 2 – BSK_BE3C_IL1a_up Assay 5 – BSK_LPS_IL1a_up Assay 39 – BSK_LPS_IL8_up

MULTIVARIATE MODEL

code from Martin et al 2011

Assay Set X

Species-Specific DevTox Predictive Model Features

MULTIVARIATE MODEL LDA Model Optimization

Rat_{PM}

		_
Features	Description	Weight
RAR	Retinoic Acid receptor	0.58
GPCR	G-Protein-Coupled Receptors	0.55
TGFβ	Transforming Growth Factor β	0.38
MT	Microtubule organization	0.30
SENS_CYP	Cytochrome P450 (sensitive)	0.26
AP1	Activator protein 1	0.24
SLCO1B1	Organic anion transporter 1B1	0.11
СҮР	CYPs (other)	0.06
HLA-DR	MHC complex	-0.38
PXR	Pregnane X receptor	-0.24
IL8	Interleukin 8	-0.23
PGE2	Prostaglandin E2 response	-0.18

5 fold cross validation balanced accuracies: 71% Rat_{PM}, 74% Rabbit_{PM}

Chemical Rank Order Visualization

ToxPi Visualization

Toxicity Prioritization Index (Reif et al 2010)

- Graphical view of multiple parameters
- Intended for quick comparisons

Rat_{PM}

Features	Weight
RAR	0.58
GPCR	0.55
TGFβ	0.38
MT	0.30
SENS_CYP	0.26
AP1	0.24
SLCO1B1	0.11
CYP	0.06
HLA-DR	-0.38
PXR	-0.24
IL8	-0.23
PGE2	-0.18

Ex. ToxCast Phase I Chemical Rank Order

Does each 1st generation species model contribute unique information?

If yes:

 Predictive model assay targets may also be speciesspecific contributing to differential toxicity

If no:

 Predictive model assay targets may be redundant and could contribute to the same pathways involved in developmental toxicity

Are the Rat and Rabbit Models Unique?

Ability to correctly predict positives

Ability to correctly predict negatives

Conclusions

- 1) These models are species-specific
- 2) They are giving different information

Can we use the models to prioritize testing for one species?

Feasibility for using predictive models for animal model replacements to:

- Reduce animal use
- Decrease cost, increase throughput of chemical testing

Evaluation of Current Predictive Models

- Chemicals tested in both species (214)
- Developmental toxicants = Developmental toxicant in rat OR rabbit (154)

- Rat only (61), Rabbit only (28), Both (65)

PM

in vivo

74

21

26

PM

PM

64

30

33

Rat	in vivo	in vivo
Rabbit	in vivo	PM
BA (%)	100	85
FP (#)	0	15
FN (#)	0	9

Conclusion: The predictive models may allow us to focus testing on one species

- 1) Run rat in vivo prenatal guideline study
- 2) Run rabbit predictive model when needed as a follow-up

Alternative Workflows

Forward Validation (Preliminary)

Top 15 Phase II Chemicals

Preliminary analysis based on data received to date

• data from 70% of 1st generation predictive model (PM) assays/features

no study available developmental toxicity observed no developmental toxicity observed Ranked by Rat _{PM}	ToxRefDB_rat	ToxRefDB_rabbit	Lit Dev Tox
Colchicine			
Crystal violet			
Dieldrin			
Dimethyl malonate			
Dodecyltrimethylammonium chloride			
Mercuric chloride			
Nitrobenzene			
Octanoic acid			
PharmaX ₁			
Phenylmercuric acetate			
Sodium dodecylbenzenesulfonate			
Sodium tetradecyl sulfate			
trans-Retinoic acid			
Tributyltin chloride			
Tributyltin methacrylate			

	B_rat	rabbit	v Tox
Ranked by Rabbit _{PM}	ToxRefD	ToxRefDB_rabbit	Lit Dev Tox
1,4-Dichlorobenzene			
2-(Perfluorohexyl)ethyl methacrylate			
2,4,6-Tris(tert-butyl)phenol			
Acrylamide			
Biphenyl			
Diethanolamine			
Diethylene glycol monomethyl ether			
Isophthalic acid			
Kepone			
Oryzalin			
PharmaX ₂			
PharmaX ₃			
PharmaX ₄			
PharmaX ₅			
PharmaX ₆			

Potential Assays for Addition in 2nd Gen PM

Preliminary analysis based on 162 Phase II chemicals

Top Assays Associated with Developmental Toxicity

Species	Most associated assays						
	Nuclear Receptors (RAR, RXRa)						
	Transcription Factors (Sox1, Pax6, C/EBP)						
Rabbit	Serotonin Transporter (SERT)						
	GPCR (Adora)						
	Mitochondrial Function						
Glucocorticoid Receptor (GR)							
Pot	Serotonin Transporter (SERT)						
Rat	GPCRs (Adrb, Adora, 5HT, mAChR, Oxt)						
	Platelet Tissue Factor						

Selected Chemicals in ToxCast	# assays	ToxRef_rat	ToxRef_rabbit	ECVAM Class	MESC.MHC.D9	MESC.GSC.D4	RAR	RXRa	PXR	GR	Pax6	C/EBP	Sox1	AP1	CCLZ	HLA-DR	Tissue Factor	SERT	H	mAChR	Adora	Opiate	Oxt	Adrb	PGE2	TGFB	Microtubule	Mito Function
4-Aminofolic acid	24	T		E	_		-	<u> </u>	<u>~</u>	0	<u> </u>	<u> </u>	S	4	<u> </u>			S	L)		<u> </u>		U	٩	<u> </u>	_	_	_
5,5-Diphenylhydantoin	5															+												
5-Fluorouracil	26																											
5HPP-33	110													\dashv													_	
Acrylamide	12			1																							_	
Aspirin	16													_		+											_	\dashv
Boric acid	6			2										\dashv														4
Busulfan	10			_						<u>_</u>				+													$\overline{}$	
Caffeine	6													寸													_	
Cladribine	53									1				$\overline{}$													_	
Cyclopamine	30																											
Cytarabine hydrochloride	32																											
Dimethyl phthalate	4			1										T														\neg
Diphenhydramine hydrochloride	57			1																								
Ethylene glycol	2													T														
Folic acid	10																											
Hydroxyurea	6			3																								
Indomethacin	19																										П	
Isoniazid	7									İ				Ť														
Lovastatin	105																											
Methotrexate	23			3																								
Phenobarbital sodium salt	5																											\neg
PK 11195	62																											
Pravastatin sodium	8																											
Retinol	81																											
Sodium L-ascorbate	6																											
Sodium saccharin hydrate	5			1																								
Thalidomide	4																											
trans-Retinoic acid	102			3																								
Valproic acid	3			2																								

Conclusions

- Species predictive models of developmental toxicity give >70% BA
 - Species-specific assay targets may be contributing to differential pathways of developmental toxicity
- It is feasible to use predictive models in conjunction with animal data
 - Prioritize chemicals for testing in one species
 - Rat in vivo followed by rabbit predictive model
- Early findings indicate we can bring additional assays into predictive models for a broader range of developmental toxicants in Phase II

Thank you!

http://www.epa.gov/ncct/

