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Abstract

Physiologically-based pharmacokinetic and pharmacodynamic
(PBPK/PD) modeling has emerged as an important computational
approach supporting quantitative risk assessment of agrochemicals.
However, before complete regulatory acceptance of this tool, an
assessment of assets and liabilities is in order. Good modeling
practices (GMP) serve to sort the assets from the liabilities under
the conditions of model structure accuracy, precision,
representativeness, completeness, comparability and
reasonableness. PBPK/PD models may be seen as dynamic
platforms to test these GMP strictures through the parameter
calibration process. Inherent in this process, is the sorting and
vetting of parameters from quantitative structure activity
relationships (QSAR) to the gathering of "in vitro" and "in vivo"
study data. “Good” parameters are assets that anchor the model as
data is gleaned from the literature or experimentally produced.
Faulty or suspect parameters are revealed and excised to strengthen
the model structure to fit the intent, regulatory, exploratory or
heuristic. It is from these considerations, that a symposium was
formed to address parameter requirements for exposure/dose
PBPK/PD modeling of agrochemicals. We offer this introduction
as primer to more in depth discussion advanced within.

Introduction

A group of researchers was assembled to update the scientific
community on pesticide toxicology parameters required for
PBPK/PD model development and application in exposure and risk
assessment (1). PBPK/PD modeling (2) has been demonstrated to
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be an important tool for relating exposure to the disposition of
pesticide active ingredient and metabolites in tissues and predicting
health and risk outcomes (3). Several models have been created
and published that address the risk of exposure to
organophosphorus (4-6), carbamate (7-9) and pyrethroid (10-12)
insecticides. In many cases, these modeling efforts did not lead to
complete and total acceptance of exposure-dose modeling in the
risk assessment process. The reasons for this lack of acceptance are
mainly related to the technical aspects of model development such
as: 1) parameter calibration (i.e., physiological/ biochemical
constants and  pharmacodynamics) and 2)  model
simulation/validation. Many biochemical parameter values
(metabolism, AChE inhibition, etc) have been obtained for
pesticides but in most cases these values have not been used in
PBPK models to describe the chain of events
(pharmacokinetics/pharmacodynamics) occurring after controlled
dosing or exposure. The events are usually described as a series of
observed interactions (decrease in LDsp's, muscle spasms, increase
in AChE inhibition, etc) and not as output from models involving
rates of absorption, metabolism, inhibition, and elimination
(ADME). This treatise offers a look at research to obtain kinetic
parameters important in skin and gastrointestinal absorption,
distribution (tissue/blood partition), metabolism (metabolic
pathways, Vmax, K for CYPs, carboxylesterases, OP-oxonases,
etc), and pharmacodynamics involving target enzymes and
neurotoxicity (electrophysiology: modified ion channels).

Toward PBPK/PD Modeling

The environmental fate and toxicology of agricultural
chemicals has been studied for many years (13-22) and the results
of these studies have been published and used to support federal
pesticide guidelines (23). Traditionally, risk assessment has
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followed a weight-of-evidence paradigm (24). Initially, the
hazard must be identified according to dose response and exposure
assessment criteria to arrive at a risk characterization. Hazard
assessments are made from standard guidelines studies. As
observed by Metzger (25), hazard characterization informs us
about the toxicity of a chemical, and when this information is
combined with information about exposure, a risk assessment can
reliably be articulated. To arrive at an informed and reasonable
risk assessment, substantial and representative data must be
amassed and gleaned.

This “weight-of-evidence” process would also hold for source-
exposure-dose modeling which can be perceived as a detective
story (26). Computational modeling would not offer a short cut to
the risk assessment. Indeed, modeling would simply offer an
alternative with all of the same data requirements. Exposure
modeling combined with PBPK/PD modeling has been
demonstrated (27) to address elements of the risk assessment
paradigm. At issue is the depth and breadth of the assessment
needed to arrive at a risk calculation, such as average daily dose
(ADD), reference dose (RfD) and margin of exposure (MOE), as
shown in Figure 1.

[Figure 1. Exposure-dose Paradigm]

Contributions along the source to exposure process can be shallow
single point estimates or broader distributions. The key to the
process is predicting responses from different pathways/routes or
levels of exposure to the disposition of active forms of a substance
in tissues and excreta in relation with time. The “depth” of
understanding of the PK process within the test system essentially
defines hazard characterization. Rapid single acute exposures
related to the occupational use of a pesticide might be captured by
single compartment models where the model structure and
parameter requirements might be limited. It might be argued that a
reasonably simple and direct acute exposure scenario would
require fewer parameters and a less elaborate structure than an
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aggregate exposure involving single or multiple chemicals. The
complexity of the PK or PBPK model structure and the need for
greater parameter representation would depend on whether these
models have the same level of rigor and transparency as the weight
of evidence approach.

Identifying the Parameters

We take the view that the exposure paradigm and all the
connecting elements and underlying parameters and data are “a
mile long and an inch deep”. More is known about certain
elements and the connections or “cusps” between these elements
than others. We view the exposure-absorption cusp as the sine qua
non between external and internal dose. In the case of dermal
exposure, the depth of understanding must bridge/link exposure
parameters in time and space (temporally and spatially) with the
disposition, rate of loading (mass/time), dermal penetration and
percutaneous absorption (flux) of a pesticide active ingredient with
per time. As described by Ngo et al., (CHAPTER), the process of
percutaneous disposition could involve as many as 15 potential
steps. These steps may be arranged sequentially according to a
perceived exposure, occupational or incidental (non-occupational),
in an exposure-dose modeling framework, as depicted in Table I.
Each element of this modeling framework would be a parameter
requiring data. The depth of understanding attributed to each
parameter would contribute to model veracity.

[Table I. Determinants of Percutaneous Disposition]

Both Ngo (CHAPTER) and Reifenrath (CHAPTER) explore
factors that determine percutaneous absorption. Many of these
factors (nature of the residue, formulation, volatility, and partition
coefficient) would also have an impact on inhalation and ingestion
(dietary and non-dietary) exposures. The nature of the residue
(neat technical grade active ingredient, emulsifiable concentrate
formulation, aqueous end-use product, dust, adhered to soil, as
particles, aerosol, gas fumigant, solid bait, aged residues, and
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residues in food, feed and filth and extraneous matter) in and on
various media, e.g., hard surfaces, carpet and air and water, is
expected to have a pivotal impact on mass transfer and subsequent
dermal, tissue, and cellular absorption. Consequently, these
exposure-absorption factors further influence other elements,
distribution/metabolism, elimination and toxicity in the ADMET
paradigm.

The ADMET process may be viewed schematically from the
structure of a PBPK/PD model as provided by Hughes
(CHAPTER) for an oral dosing and depicted herein for aggregate
exposure, to include, dermal, oral and inhalation. These structures
offer a glimpse of the tissue compartments considered important to
the modeling purpose, regulatory, exploratory or heuristic. We
find a workflow diagram (Figure 2) useful for identifying
parameters for inclusion and deletion/rejection in our PBPK/PD
models. This approach progresses in a step-wise fashion with the
gleaning of information/data to support the selection of parameters.
A quality assurance modeling plan (QAMP) is established a priori
to set acceptance and rejection criteria for model structure,
parameters and data (28-31).

[Figure 2. The Iterative Model Development Process]

For “canned” or generalized PBPK modeling platforms such as
the exposure-related dose estimating model (ERDEM), parameter
values can be entered using a graphic user interface (GUI) to
populate the model structure. For practical purposes and since our
research in the past has been with ERDEM development we briefly
digress into the intricacies of our own model, though these features
can be generalized to almost any GUI-enabled PBPK modeling
platform or package available commercially or opensource.
ERDEM is a PC-based modeling framework that allows for using
existing models and for building new PBPK and PBPK/PD models
(32). For the user, ERDEM requires no special software other than
the basic Windows environment commonly used on PCs. ERDEM
is comprised of the ERDEM Front End, the ERDEM Model and
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the ACSL Viewer. The ERDEM Front End is a Windows based
application which allows the user to enter exposure parameters and
store them in a database for later use and export into ERDEM. The
ERDEM pharmacokinetic modeling engine contains differential
equations that use the physiological, biological, and
pharmacodynamic modeling data that are entered via the ERDEM
Front End. Computer screens are provided to instruct the user in
the intricacies of the process. ERDEM consists of the following
compartments: Arterial Blood, Brain, Carcass, Closed Chamber,
Derma, Fat, Intestine, Kidney, Liver, Rapidly Perfused Tissue,
Slowly Perfused Tissue, Spleen, Static Lung, Stomach, and
Venous Blood, as shown in Figure 3. ERDEM allows for multiple
circulating compounds with multiple metabolites entering and
leaving each compartment to afford pharmacokinetics and
dosimetry simulations. Finally, the analysis and graphical
representation of such data, in tabular, chart or animation form can
be reported by ERDEM or other packages intended to handle
physiologically annotated data, such as PAVA (43).

[Figure 3. ERDEM Structure]

In the case of individual purpose PBPK models, compartments
are proposed and parameters are dedicated to the task. Hughes
(CHAPTER) offers a “menu” of data needs to construct a
dedicated PBPK model to follow the disposition of deltamethrin in
male Long-Evans rats. Physiological parameters such as cardiac
output and tissue/blood volumes were drawn from a previous
PBPK model (10) with additional parameters, e.g., tissue to blood
partition coefficients, adapted from Godin (33). Here "initial" in
silico (QSAR) parameters or in vitro values (in units extrapolated
to in vivo value equivalents) are required to initiate the modeling
process. The output from the model (using these initial values) is
then compared to in vive experimental values (tissue
concentrations, enzyme inhibition, urinary biomarkers, etc...). If
the model output does not agree with in vivo experimental values,
then the initial parameter values must be adjusted or new equations
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(pathways, etc...) and parameters need to be considered and added
to the model and the process repeated (fitting model output to in
vivo experimental values).

In CHAPTER ( X), Davis and colleagues examine the model
fitting process through the use of Baysian statistics. They advocate
establishing informative prior distributions (priors) of PBPK/PD
parameter values from "initial" in silico (QSAR) predictions or in
vitro assays. The model output from these priors would take the
form of posterior distributions to be tested against newly acquired
in vivo experimental values in an iterative process of renewal and
augmentation.

The “depth” of this process is dependent on several factors:
model intent (regulatory, exploratory or heuristic interests),
available data, and exposure or toxicity end points/metrics.
Ultimately, the model complexity is a product of how
representative and complete the model needs to be to satisfy, for an
example, a regulatory intent. The Journal of Biophysical Chemistry
(jbpc@scrip.org) lists areas (parameter development) to be
considered: pharmacology and physiology, structure-activity
relationships, patch clamping, stochastic processes, computational
chemistry, molecular docking, biomolecular modeling and
structure. These study areas may be used to expand the modeling
process by developing the parameters listed under physiological,
biophysical, biochemical, pharmacodynamic as represented in
Figure 2.

Physiology is captured in the model structures for laboratory
animal species with intentions of extrapolation to human models.
Generally, the animal (rodent) model is calibrated toward the
“jump” to the human model and verified and validated against sets
of animal data using sensitivity and uncertainty analyses.
However, this process toward optimum animal models may be
deviated from when more representative human data (mostly or
entirely in vitro data) can be added. Several authors (Davis,
Ellison, Furlong, Hodgson, Hughes) (CHAPTERS) have adopted
this “style”/ approach which is most keenly identified with
biochemical metabolism (Chambers, Kaneko, Ross)
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(CHAPTERS). Greater depth of understanding about the efficiency
and completeness of metabolism involving certain enzymatic
processes (e.g., PON1) are essential for accounting for mass
balance of active ingredient used in controlled dosing studies
versus what is likely to occur through occupational or incidental
human exposure. Extrapolations from High (laboratory animal
study) to low dose human exposure conditions are as vexing as
species to species extrapolations.

In this regard, we must bear in mind that rats and other
laboratory species extensively metabolize OPs, carbamates and
pyrethroids. For example, fewer metabolites of carbaryl are
eliminated by humans than rats (7). Animal studies are
intentionally set to test limits (high dose) to produce a wider
variety of end products. Humans produce fewer metabolites. This
may be due to variation in PON1 plasma protein content and
activity among human individuals (action on the "oxon") as
suggested by Furlong (CHAPTER). Experimental dosages in
human volunteer studies are justifiably set at the low end of the
dose-response curve. Therefore, we are unable to determine
whether high dosages produce a wider variety of end products in
humans. Models assist us in exploring the human situation in the
absence of human in vivo volunteer study data. We expect these
data gaps to be filled from well designed in vitro studies that
consider enzyme activity and content in tissues with emphasis on
genetics and gene expression among individuals (34, 35).

As viewed by Hodgson et al (CHAPTER), circulating
concentrations of parent compound are rapidly distributed to
tissues and organs with portions of the absorbed mass being
metabolized (activated) to more toxic structures or degraded to less
toxic structures with both activated and degraded species being
redistributed to sites of action or to be further metabolized and
eliminated. Toxicity is generally seen as the end-point of the
ADMET process although once a mass of pesticide active
ingredient is absorbed, “random walk” of toxicant to the site of
action (36, 37) is altered by competing processes of distribution
and metabolism (degradation and activation). This “mass-balance”
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relationship is best exemplified by the disposition of the
organophosphorus (OP) insecticides, as described comparatively
with the n-methyl carbamates by Moser (CHAPTER) and also by
Timchalk and others (CHAPTER) in the context of a PBPK model.

The complexity of the ADMET process and thus the PBPK/PD
model is largely dependent on chemical structure. Most PBPK/PD
models are initially developed to address two-dimensional (2-D)
structures. Quantitative structure activity relationships (QSAR)
can provide "initial" in silico PBPK/PD parameter predictions that
can be used to test PK and PD mechanisms. Ruark and colleagues
(CHAPTER ) examine (2-D) QSAR model development of
enzyme (trypsin, chymotrypsin and acytylcholinesterase) inhibition
bi-molecular rate constants for OP insecticides with the aim of
filling pharmacodynamic data gaps in PBPK/PD models. Chang
et al. (CHAPTER) have developed a mechanistic 3-D QSAR
model to predict hydrolysis rates of pyrethroids via rat serum
carboxylesterase by looking at specific stereoselective molecular
descriptors based on a ligand-based pharmacophore query.
Okamoto (CHAPTER) looked to chiral (3-D) chemistry to address
toxicity of pyrethroid insecticides. As explained by Suderlund
(CHAPTER), neurotoxicity of pyrethroids is highly stereospecific.
Current PBPK models (10, 33) do not address the dynamic
neurophysiology of pyrethroid mode of action (MOA). The
toxicity metric is confined to predictions of mass in brain.
Suderlund (CHAPTER) argues that quantitative descriptors of
pyrethroid effects on sodium channel currents are not useful
indices of toxicity to be used in PBPK/PD models which returns us
to the issue of “breadth” and “depth” of understanding in exposure-
dose modeling.

We view this “breadth” and “depth” issue as a balance between
the amount of effort and cost to develop shallow but
effective/useful  exposure-dose (PBPK/PD) models versus
development of models that explore the single elements, e.g.,
percutaneous absorption, MOA, genomics, metabolomics and
proteomics. Most PBPK/PD modelers agree that the model must
be representative of the test system. The next question is how
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complete the model has to be to address the issue of intent, e.g.,
regulatory.

Several stochastically applied exposure-dose models (38, 39)
consider the dose metric to end in the vascular compartment with
the aim of satisfying urinary biomarker concentrations. These
models abridge the ADMET process by “leaping” from the
exposure-absorption cusp to elimination. The circulating
concentration of parent active ingredient becomes the dose
(toxicity) metric without regard to drug distribution/metabolism or
“random-walk” to target tissues. This situation is particularly
vexing when the parent active ingredient is “activated” to a more
toxic structure as is the case for most thiophosphate and di-
thiophosphate (OP) active metabolism to toxic oxons (4, 34)
(moser(CHAPTER); Ruark(CHAPTER); Ellison(CHAPTER);
Hodgson(CHAPTER)(40); chambers(CHAPTER)).

As illustrated by Hodgson (CHAPTER), the stoichiometry of
OP distribution and metabolism impacts body burden, toxicity, and
recovery/quantitation of biomarkers. = When biomarkers are
considered to be the “gold-standard” for accounting for exposure
and calculating risk (41), the stoichiometry of distribution and
metabolism of OPs (Moser(CHAPTER); Timchalk(CHAPTER);
Ruark(CHAPTER); Ellison(CHAPTER); Furlong(34);
Hodgson(CHAPTER); chambers(CHAPTER); Ross(CHAPTER)),
carbamates (33) Moser) and pyrethroids (Hughes (CHAPTER);
Kaneko(CHAPTER) ; Ross(CHAPTER), Davis(CHAPTER);
Okamoto(CHAPTER)), or most any pesticide, must be considered
to account for mass balance. Reliance on a single, readily/reliable
(easily detectable) biomarker to address risk characterization in the
absence of a clear view and understanding of stoichiometry is
hazardous and may be misleading.

Metabolic pathways (42) afford the best initial view of
stoichiometric accountability. In the absence of historic metabolic
information, "initial" in silico QSAR PBPK/PD parameter
predictions (Chang, CHAPTER) may serve as rational “priors” to
populate the start-up model (Davis, CHAPTER). Referring back to
the idea of model development being a detective story (26), we
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conclude with a scheme/plan of discovery from "initial" in silico
QSAR to PBPK/PD development, as depicted in Figure 4.

[Figure 4. In-silico Discovery Scheme]

This cyclical process sequentially informs both computational
chemistry (QSAR) and PBPK/PD modeling (43). It is a “two-
way” street. Physicochemical systems impact biological systems
in a tortuous manner (44) and the nature of this interaction can be
gleaned from iterative testing of the PBPK/PD model in a recursive
or variational/perturbational “pulley” construct but working toward
the same goal, a unified Physicochemical Structure Activity
Pharmacokinetic/Pharmacodynamic model (PSA/PPM). We
expect in silico ADME visualization tool (43) to substantially
assist this process. We see ADMET parameters in layers under the
exposure-dose paradigm based on phase distribution of a
congeneric series of chemicals between the ectobiophase/
parabiophase/ endobiophase (37, 44). We recognize that this
vision requires QSAR databases and corresponding biological
response data to support PSA/PPM modeling. We anticipate that
this volume will indeed stimulate interest in this union.
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Figure 1: The “source-to-outcome continuum” diagram that represents the variety of macroscopic
(breadth) and microscopic (depth) variables, parameters, and modeling considerations of systems
complexity inherent in decision support systems required for risk assessment of environmental
chemicals.




Table 1: Examples of factors and process/system considerations, both qualitative and
quantitative in nature, that showcase determinants of percutaneous disposition.

Factors/steps involved in Percutaneous Disposition

Transfer skin, clothing + inanimate surface**

Substantivity to skin**

Volatility**

Release from vehicle** Varies with solubility in vehicle, concentration, and pH, et al.
Wash effects® Wash resistance; Wash enhancement

Rub effects** Rub resistance; Rub enhancement

Influenced by anatomical site, degree of occlusion, intrinsic skin condition, animal age,
Kinetics of skin penetration®* concentration of dosing solution, surface area dosed, frequency of dosing, post
absorption, etc.

«Tissue disposition

#Binding — all layers**

sAnatomic pathways

elateral spread™*

sVascular perfusion®*

eCutaneous metabolism**

eExcretion kinetics**




Figure 2: A grand-scheme workflow that delineates the iterative ADME/PK modeling
(retrospective) and simulation (prospective) components, from model purpose, structure,
Representation and needs to the tightly coupled parametrization process and parameter
“fruits” that result of in silico, in vitro, in vivo inquiry, tightly coupled to calibration, validation
and uncertainty/variability bounding.
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Figure 3: Generalized model constructs, simulation platforms and analysis / visualization
platforms comprising the suite of needed components for quantitative ADME modeling in silico.
For demonstration purposes, we have provided an overview structure of ERDEM, ACSL
graphical ODE representation of ERDEM as coded, and a simulation output that contains
physiologically annotated data rendered using PAVA as examples.



Figure 4: Circular workflow of required parameter components and needs (Orange “genomic”
pots) means of acquiring information assets (hexagons) that satisfy the knowledge gaps between
needed components (in silico / in vitro / in vivo inquiry and modeling) and inherent chemical
properties (inner circle) that give rise to some of the underlying microscopic processes and
extrapolations for determining and resolving parameters.



