


Abstract1

This study evaluates interior nudging techniques using the Weather Research and Fore-2

casting (WRF) model for regional climate modeling over the contiguous United States3

(CONUS) using a two-way nested configuration. NCEP-Department of Energy Atmo-4

spheric Model Intercomparison Project (AMIP-II) Reanalysis (R-2) data are downscaled5

to 36-km × 36-km by nudging only at the lateral boundaries, using grid point (i.e. analysis)6

nudging, and using spectral nudging. Seven annual simulations are conducted and evalu-7

ated for 1988 by comparing 2-m temperature, precipitation, 500-hPa geopotential height,8

and 850-hPa meridional wind to the 32-km North American Regional Reanalysis. Using9

interior nudging reduces the mean biases for those fields throughout the CONUS compared10

to the simulation without interior nudging. The predictions of 2-m temperature and fields11

aloft behave similarly when either analysis or spectral nudging is used. For precipitation,12

however, analysis nudging generates monthly precipitation totals, intensity and frequency13

of precipitation that are closer to observed fields than spectral nudging. The spectrum of14

250-hPa zonal winds simulated by WRF is also compared to that of the R-2 and NARR.15

The spatial variability in WRF is reduced by using either form of interior nudging, and16

analysis nudging suppresses that variability more strongly than spectral nudging. Reduc-17

ing the nudging strengths on the inner domain increases the variability but generates larger18

biases. Our results support the use of interior nudging on both domains of a two-way19

nest to reduce error when the inner nest is not otherwise dominated by the lateral bound-20

ary forcing. Nevertheless, additional research is required to optimize the balance between21

accuracy and variability in choosing a nudging strategy.22
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1. Introduction23

Regional climate models (RCMs) are beginning to evolve from atmospheric models into more24

complex regional earth system models that also include increasingly sophisticated representa-25

tions of the ocean, cryosphere, land surface, and atmospheric chemistry (Leung et al., 2006).26

The skill of regional climate change projections should increase because these earth-system27

components modulate the regional-scale climate forcing. In particular, interactions due to28

chemistry-aerosol-cloud-radiation feedbacks is an area of needed research for climate change29

(Kucharski et al., 2010). To address that need, the U.S. Environmental Protection Agency30

(EPA) is developing a capability to downscale global climate modeling results with particu-31

lar interest in understanding those feedbacks on the regional scale using the coupled Weather32

Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) model (Pleim33

et al., 2008). However, techniques that the EPA has applied for retrospective meteorological34

modeling for air quality applications are not suitable for regional climate modeling. Retrospec-35

tive meteorological simulations conducted by the EPA for air quality modeling are typically36

reinitialized every 5.5 days and employ analysis nudging, in which Newtonian relaxation is37

used to adjust the model predictions at individual grid points based on the differences from38

gridded observations to create “dynamic analyses” (Otte, 2008). Moreover, unlike the atmo-39

sphere, which within a few days usually reaches dynamic equilibrium with the driving initial40

and lateral boundary conditions, the soil moisture reaches equilibrium much more slowly, with41

a time scale of up to a few years (Lo et al., 2008; Chen and Dudhia, 2001). The need for42

continuous, long-term simulations coupled with a lack of observations in future periods re-43

quires that the technique used to downscale future global climate change scenarios to study44

regional climate change with WRF differ from the approach used with WRF for retrospective45

meteorological simulations.46

The EPA conducted a study of future air quality using CMAQ driven by downscaled fields47
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from the fifth-generation Pennsylvania State University/National Center for Atmospheric Re-48

search Mesoscale Model (MM5) (Nolte et al., 2008). In that study, MM5 was used as an RCM49

for 10-year integrations that were relaxed toward 6-hourly lateral boundary conditions within50

a 15-grid-point buffer zone (Leung and Gustafson, 2005). MM5 generated persistent biases in51

surface temperature of 1-2 K throughout the year and modeling domain and up to 4 K in sum-52

mer and dry biases of 50-80% in some parts of the modeling domain during summer (Leung53

and Gustafson, 2005). Some studies that focused on downscaling techniques using reanaly-54

sis data (which are generated using a different dynamical model than the RCM) have shown55

that the large-scale circulation in an RCM may deviate from the driving fields (Miguez-Macho56

et al., 2004; Castro et al., 2005). However, in the Big Brother Experiment (BBE) where the57

same dynamical model and physics parameterizations were used for the driving fields and the58

RCM, the large scales were unaffected in the RCM domain (Denis et al., 2002). In practice,59

most regional climate modeling applications will not have the advantages presented in the ide-60

alized BBE. Furthermore, because RCMs use spatially and temporally interpolated driving data61

at the lateral boundaries, it is difficult to distinguish between errors related to resolution and the62

representation of physical processes in the RCM versus those caused by numerical limitations63

at the lateral boundaries (von Storch et al., 2000; Miguez-Macho et al., 2005).64

Laprise et al. (2008) state that there is a need to better understand the fundamental prin-65

ciples of regional climate modeling. One area they propose for further investigation is the66

effect of interior nudging to constrain the RCM simulation toward the driving fields. While67

understanding the influence of interior nudging for regional climate modeling has become an68

active area of research, there has been comparatively limited effort to understand the effects of69

interior nudging using the WRF model. Lo et al. (2008) used a one-year simulation to compare70

lateral boundary nudging, frequent reinitialization, and analysis nudging in the WRF model,71

finding that both analysis nudging and frequent reinitialization are effective to constrain the72

large-scale circulation and improve the accuracy of the downscaled fields. Salathé et al. (2008)73
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applied nudging only to the outermost nest of a triple-nested, one-way-feedback configuration74

of MM5 to prevent large-scale drift from the driving fields and allow mesoscale details to be75

developed by MM5 in the finer domains. Using the Regional Atmospheric Modeling System,76

Miguez-Macho et al. (2004) and Castro et al. (2005) showed that interior nudging reduces the77

influence of domain size on the model results, and Miguez-Macho et al. (2004) found that78

spectral nudging reduces the influence of the domain placement and orientation on the model79

results. Using the Canadian RCM, de Elı́a et al. (2008) and Alexandru et al. (2009) found that80

spectral nudging decreases spurious precipitation at outflow boundaries, reduces extreme pre-81

cipitation frequency and intensity, and reduces surface temperature error compared to nudging82

only at the boundaries. Overall, however, little is known about the impacts of large-scale inte-83

rior nudging for regional climate modeling, so the choice of whether or not to use nudging is84

left to the researcher’s judgment (de Elı́a et al., 2008).85

This study provides additional insights into the advantages and limitations of using interior86

nudging for continuous integrations in the WRF model for regional climate modeling applica-87

tions. Understanding the advantages and limitations of the nudging strategies within WRF is88

critical because WRF is increasingly being used as a regional climate model for various im-89

portant applications including both seasonal forecasting and climate change projections. This90

paper does not comprehensively address all aspects of using nudging in WRF for regional91

climate modeling; rather we focus on available techniques in WRF and make changes to the92

default settings. One specific challenge in regional climate modeling not addressed is the issue93

of horizontal domain size dependence. We chose not to focus on the horizontal domain size94

issue because the spectral nudging technique implemented in WRF follows that of Miguez-95

Macho et al. (2004) which demonstrated that spectral nudging can be used to eliminate the96

effects of horizontal domain size dependence.97

In this paper, the 2.5º × 2.5º NCEP-Department of Energy Atmospheric Model Intercom-98

parison Project (AMIP-II) Reanalysis data (Kanamitsu et al., 2002) (hereafter, R-2) are down-99
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scaled using WRF with three nudging techniques: nudging only at the lateral boundaries using100

a five-grid-point buffer zone (Davies, 1976) (i.e., no interior nudging), grid point (analysis)101

nudging, and spectral nudging. While Lo et al. (2008) investigated a similar topic by also102

using a one-year period, we use two-way interactive nesting rather than a single domain, and103

we compare the analysis and spectral nudging techniques in WRF for downscaling. We also104

conduct additional simulations to better understand how the nudging techniques should be ap-105

plied for two-way nesting in WRF. Using reanalysis data satisfies a prerequisite for estimating106

climate change projections by assessing the ability of the model to simulate current climate and107

its physical processes (Laprise et al., 2008). The R-2 is selected because it is comparable to the108

resolution of the NASA Goddard Institute for Space Studies (GISS) ModelE, which is being109

used in a parallel effort to understand how techniques developed here can be applied to fields110

from a general circulation model (GCM). The ultimate goal is to apply downscaling method-111

ologies developed using verifiable R-2 fields and WRF to downscale the GISS ModelE fields112

for regional climate change assessments. Section 2 of this paper describes the WRF model113

configuration and the nudging strategies. In section 3, we examine annual biases near the sur-114

face and aloft for six regions of the contiguous United States (CONUS) for seven 14-month115

simulations. We also present frequency distributions, and we use spectral decomposition to ex-116

amine the variability in WRF compared to R-2. Lastly, concluding remarks are given in section117

4, with recommendations for areas of future research.118

2. Model and experimental design119

The WRF model (Skamarock et al., 2008) is a fully compressible, non-hydrostatic model that120

uses a terrain-following vertical coordinate. A two-way interactive nest is used with horizontal121

grid spacings of 108 km (81 x 51 grid points) and 36 km (187 x 85 grid points) (Fig. 1), and 34122

vertical layers extending to 50 hPa. Although WRF has been used with increasing confidence123
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for regional climate modeling studies (Leung and Qian, 2009; Bukovsky and Karoly, 2009), no124

suite of model options has been universally recommended for all regional climate studies. For125

this study, WRF version 3.2 is used, and the physics options are the Kain-Fritsch convective126

parameterization, WRF single-moment 6-class microphysics scheme, Yonsei University plane-127

tary boundary layer (PBL) scheme, Noah land-surface model, and the Rapid Radiative Transfer128

Model for GCMs for longwave and shortwave radiation. The simulations use time-varying sea-129

surface temperatures, sea ice, vegetation fraction, and albedo. We recognize that other WRF130

model configurations may lead to a better representation of the climate (both regionally and131

seasonally) than the configuration selected here. This study does not alter the model physics,132

domain size, or resolution because we emphasize evaluating the nudging strategy. We do not133

consider horizontal domain size dependencies because the spectral nudging technique imple-134

mented in WRF follows that of Miguez-Macho et al. (2004) which demonstrated that spectral135

nudging eliminates the effects of the horizontal domain size dependence. Because the physical136

processes that govern regional climate vary spatially, we created six regions for model verifi-137

cation (Fig. 1) that are similar to those used in Nolte et al. (2008). When interior nudging is138

applied in this study, only information from R-2 is used, and no additional observational data139

are used to enhance R-2 for initial and lateral boundary conditions or the analyses used for in-140

terior nudging. The goal is to understand the potential of interior nudging for regional climate141

change applications where only GCM data exist. Retrospective regional climate applications142

that require higher spatial resolution, particularly in regions of the world that are data rich, may143

employ a different nudging strategy than the methods examined here.144

WRF is used to downscale R-2 for 1988 when most of the CONUS experienced drought145

conditions (Namias, 1991). Tens of billions of dollars and thousands of lives were lost in the146

1988 drought, in which a strong La Niña shifted the large-scale circulation in mid-latitudes, dis-147

placing the jet stream and associated storm tracks northward of their climatological positions148

(Trenberth and Guillemot, 1996). This study focuses on 1988 because the transient eddies149
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were located farther north and were much weaker over the CONUS than normal. How nudging150

affects transient wave activity has important implications for future climate downscaling ap-151

plications in the mid-latitudes, with a predicted poleward shift in storm tracks (Yin, 2005), as152

well as for regional climate modeling in the equatorial tropics, where there are fewer transient153

eddies.154

Three nudging techniques are investigated for regional climate modeling to determine the155

impacts on the mean error and variability using WRF. Seven simulations are conducted us-156

ing various interior nudging strategies (Table 1). Each simulation is initialized at 00 UTC 1157

November 1987, allowed to spin up for two months, run through 00 UTC 1 January 1989,158

and analyzed for 1988. The simulation that nudges only at the lateral boundaries contains no159

interior nudging (“NN”). The other simulations use grid-based four-dimensional data assimi-160

lation techniques in WRF: analysis nudging (“AN”) and spectral nudging (“SN”). The analysis161

nudging technique is typically used when input fields are not significantly coarser than the162

target resolution, as in retrospective meteorological simulations used for air quality. Analysis163

nudging uses an artificial tendency term in the prognostic equations to relax each grid point164

towards the difference from a value that is interpolated in time from the analyses (Stauffer and165

Seaman, 1994). In the WRF model, analysis nudging is applied to the u and v wind compo-166

nents, potential temperature, and water vapor mixing ratio. The nudging term for each of those167

fields is scaled by a relaxation coefficient (i.e., nudging strength) that is inversely proportional168

to the e-folding time that would be required to adjust the model to the observed state in the ab-169

sence of other (physical) forcing. In WRF, analysis nudging can be restricted to certain model170

layers and/or above the PBL. This feature is advantageous because RCMs should be allowed171

to respond to mesoscale forcing in the PBL while being constrained by large-scale features in172

the coarser input data. Three variations of analysis nudging are tested by altering the nudging173

strengths in the inner and outer domains (Table 1).174

By contrast, spectral nudging is attractive when input fields are coarser than the target175
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resolution. Spectral nudging adds new terms to the prognostic equations to relax the RCM176

toward selected wavelengths in the input data (Miguez-Macho et al., 2005). As implemented177

in WRF and similar to analysis nudging, nudging coefficients for spectral nudging are specified178

for u and v wind components and potential temperature. Unlike analysis nudging, there is no179

spectral nudging of moisture, but total geopotential can be nudged. Spectral nudging can also180

be restricted to above the PBL or a prognostic model level. The minimum wavelength for181

spectral nudging corresponds to the minimum wavelength resolved in the input fields, and the182

minimum wavelength resolved should be at least 4∆x (Pielke, 2002), which is ˜1100 km for183

R-2 in mid-latitudes. All spectral nudging simulations in this study nudge wavelengths larger184

than 1200 km in the 108-km and inner 36-km domains. As with analysis nudging, we use three185

variations on spectral nudging where the strengths are adjusted on the inner and outer domains186

(Table 1). There is no interior nudging in the PBL in any simulations conducted here.187

3. Results and discussion188

The 36-km WRF simulations are evaluated against the 32-km North American Regional Re-189

analysis (NARR) (Mesinger et al., 2006), which is bilinearly interpolated to the 36-km WRF190

domain. The NARR data have been found to compare well independently with observations191

over land within the CONUS (Mesinger et al., 2006). For instance, precipitation in NARR is192

found to be well represented over the CONUS including the ability to represent extreme events193

and organized convection (Bukovsky and Karoly, 2007). Evaluation using the NARR data is194

generally for large regional averages and entire seasons. At these spatial and time scales NARR195

performance for the variables used in this study is robust, especially over the CONUS.196

Biases in the simulated large-scale circulation in the upper and lower troposphere are ana-197

lyzed by examining the 500-hPa geopotential height and the 850-hPa meridional wind fields.198

Mean biases in the 2-m temperature and precipitation fields are calculated for regions of the199
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CONUS (Fig. 1) for daily, monthly, seasonal, and annual averaging periods. We supplement200

the mean biases with biases in the 5th and 95th percentile for daily mean temperature and201

the 95th percentile daily precipitation, providing additional insights into the seasonality of the202

temperature bias and intensity of the extreme precipitation events. Distributions of daily tem-203

perature and precipitation from the WRF model are compared against NARR to gauge WRF’s204

ability to simulate the frequency of the extremes. Our seasonal definitions are atypical because205

we evaluate only the twelve-month period in 1988. So, for this study, winter, spring, summer,206

and fall are January-February-March (JFM), April-May-June (AMJ), July-August-September207

(JAS), and October-November-December (OND), respectively. However, we examine the low-208

level circulation in the summer (JJA) because the strength of the Great Plains low-level jet is209

greatest during this season.210

a. Thermodynamic and dynamic fields211

To begin, we examine fields that reflect the large-scale circulation and could be modulated by212

interior nudging. Without interior nudging, the 500-hPa geopotential height field is generally213

overestimated throughout the CONUS in NN for most seasons compared to NARR (Fig. 2).214

During the spring, NN underestimates the average strength of coastal low pressure troughs215

compared to the NARR by more than 40 m. Systematically underestimating the average inten-216

sity of these 500-hPa troughs results in weaker and less accurate depictions of these weather217

systems, which are important for regional climate. Interestingly, during periods of less active218

weather, such as zonal flow during the summer, the modeled heights in NN remain positively219

biased. As shown in Fig. 3, the seasonal 500-hPa geopotential height fields in AN and SN220

are very similar, with biases reduced to 15 m or less for large areas of the CONUS. Overall,221

the bias in 500-hPa geopotential height is small, though consistenly positive for all regions and222

seasons, which is also consistent with the warm biases in 2-m temperature (Table 2).223
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Looking toward the surface, the 850-hPa meridional wind field includes some mesoscale224

features that are not in the coarse R-2 but could be developed by WRF as an RCM. The merid-225

ional wind field (derived from the grid-relative u- and v-component winds in WRF) is directly226

affected by interior nudging at some locations and times, depending on the surface pressure227

and the height of the PBL. Figure 4 shows the 850-hPa JJA meridional wind bias relative to228

NARR for the NN, AN, and SN simulations. The climate in different regions of the CONUS229

is controlled by different physical mechanisms, e.g., the strength, placement, and timing of the230

low-level jet over the Plains. Without interior nudging (NN), the southerly 850-hPa meridional231

wind is underestimated over the Plains, which adversely affects moisture transport from the232

Gulf of Mexico. Both interior nudging techniques reduce this underestimation of the 850-hPa233

meridional jet, and AN and SN reduce the error in the 850-hPa meridional wind to less than 1234

m s-1 for most areas of the CONUS. The meridional wind responsible for moisture flux into the235

Southeast is much weaker in NN than in NARR, and it is more realistic in AN and SN than in236

NN. However, AN and SN have greater error than NN in the Pacific (off the coasts of southern237

California and the Baja California peninsula of Mexico) and south Texas, where the strength of238

the 850-hPa meridional wind is overestimated by more than 2 m s-1. Figures 3 and 4, together239

with the meridional wind bias in other seasons (not shown), demonstrate that AN and SN ad-240

just the atmospheric circulation throughout the year for both the upper and lower atmosphere241

in very similar ways. In overcoming some of the model deficiencies that contribute to larger242

biases in NN, both interior nudging techniques improve the large-scale circulation simulated243

by WRF.244

To determine the effects of nudging on a field that is not directly adjusted by interior nudg-245

ing, biases in the mean and 5th and 95th percentile daily averaged 2-m temperature are examined246

over the annual cycle. When interior nudging is not used (NN), there is a systematic warm bias247

for the mean temperature in all six regions of the CONUS compared to the NARR (Table 2),248

which is consistent with the overestimation of 500-hPa geopotential height shown in Fig. 2.249
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The mean bias is at least 1.8 K in all regions. The largest temperature bias in NN, 4.3 K, is in250

the Plains region, which is in the center of the 36-km domain and the farthest from the lateral251

boundaries. A temperature bias of several degrees is undesirable because it may be as large252

as the climate change signal (Giorgi, 2006). Using interior nudging techniques in AN and SN253

reduces the mean bias in annual-averaged daily 2-m temperature by at least 1 K in all regions254

and by as much as 2.7 K. As in NN, the largest mean biases in AN and SN are in the Plains255

region. SN has a consistently cooler bias than AN, but the sign of the bias can be regionally256

different.257

We use bias in the 5thand 95th percentile daily temperature for the annual cycle to examine258

the seasonality in the bias, with the 5th percentile representing the colder temperatures in the259

winter and the 95th percentile representing the warmer temperatures in the summer. For the260

NN simulation, the bias in the 5thpercentile temperatures is greater than the bias in the mean261

throughout the CONUS. This larger wintertime bias is consistent with Fig. 2, which shows the262

representation of the large-scale circulation is worse in OND than in the other seasons, perhaps263

because the synoptic systems, which are poorly captured in NN, tend to be strong during the fall264

and winter. The reduced bias of the 5th and 95thpercentile daily 2-m temperature for both AN265

and SN demonstrates that interior grid nudging improves the representation of both extremes,266

cold and warm temperatures. The reduction of error in both AN and SN compared to NN267

shows that using interior nudging to constrain WRF above the PBL can also have a positive268

impact on fields that are not directly nudged.269

Figure 5 shows the annual cycle of monthly mean 2-m temperature for NN, AN, and SN270

compared to NARR for each of the six regions. The NN configuration has a warm bias com-271

pared to NARR in four of the six regions throughout the year. Interior nudging reduces the272

positive bias, as both AN and SN generate regional 2-m temperatures that are more consistent273

with NARR than NN. In particular, interior nudging reduces the winter and summer biases274

in the Northwest, Southwest, Plains, and Southeast regions. In addition, interior nudging in275
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both AN and SN reduces the summertime cold bias of NN in the Northeast region, demonstrat-276

ing that interior nudging does not simply systematically cool the near-surface temperatures in277

WRF. Nudging toward the R-2 fields above the PBL effectively constrains the model so that278

simulated 2-m temperatures on the 36-km domain are more consistent with the 32-km NARR.279

Both forms of interior nudging produce simulations of 2-m temperature that are closer to280

observations (represented by NARR) than limiting nudging to the lateral boundaries. However,281

neither form of interior nudging completely corrects all of the seasonal and regional errors in282

2-m temperature. East of the Rockies, interior nudging reduces the mean 2-m temperature283

bias compared to NN more effectively in the summer than in the winter (Fig. 5, Plains region).284

This suggests that interior nudging cannot overcome the mismatch in describing the underlying285

terrain between WRF and R-2 and its influence on the resulting terrain-induced atmospheric286

wave structures because the atmospheric waves are stronger in winter than summer. Both AN287

and SN reduce the bias in the daily mean 2-m temperature in NN relative to NARR (Fig. 6),288

but both simulations with interior nudging have pronounced winter warm biases of 3-5 K in289

the Plains region. Fig. 6 compares the daily 2-m temperature bias with the daily geopoten-290

tial height bias in the Plains. There is a strong correlation between the height bias and 2-m291

temperature bias in the NN case that is not apparent in either AN or SN. The NN simulation292

often captures large temperature swings associated with synoptic systems in the Plains (not293

shown), but the intensity of the systems, as reflected in the biases in geopotential height and294

temperature, is often misrepresented. Interior nudging helps to correct WRF’s representation295

of the intensity of those weather systems and daily weather features, as AN and SN both have296

consistently smaller errors in daily mean 2-m temperature and geopotential height than NN.297

The distribution of daily-averaged 2-m temperature over the annual cycle for all land points298

in the 36-km domain is shown in Fig. 7. The tails of the temperature distribution represent the299

colder and warmer locations in the domain rather than the temperature extremes at a given grid300

point. In NN, the distribution is shifted towards a warmer climatology than NARR for all 2-m301

12



temperature bins, which is consistent with the warm bias shown in Figs. 5 and 6. For both302

AN and SN, the frequency of daily mean 2-m temperatures >300 K, generally representing303

places with warmer climatology, is well simulated. The frequency of cooler temperatures (i.e.,304

265-280 K) is improved but remains underestimated. SN has a distribution of daily mean 2-m305

temperature that is slightly closer to NARR than AN is at the tails of the distribution (i.e., <265306

K and >300 K). All three WRF simulations overestimate the distribution of daily mean 2-m307

temperatures between 280 and 300 K, which suggests that there are some areas in the WRF308

physics that could be targeted for improvement for regional climate modeling.309

b. Precipitation310

Accurate repesentation of precipitation and the water cycle is critical for regional climate mod-311

eling applications. As shown in Table 3, NN is wetter than observed in all six regions of the312

CONUS, and the mean precipitation bias for NN is generally larger than both of the nudged313

runs. Recall that 1988 was a drought year. In the absence of interior nudging, WRF in RCM314

mode uniformly overpredicts precipitation. SN reduces the mean precipitation biases in NN315

compared to NARR for five of the six regions of the CONUS. However, AN uniformly reduces316

the mean precipitation bias in all six regions, and it has a stronger impact to minimize the bias317

than SN. As shown by the positive bias in the 95th percentile, the heavy precipitation events318

in NN are much stronger than observed for most of the CONUS. Both AN and SN generally319

improve the representation of the extreme precipitation events, but the 95th percentile remains320

higher than observed. Some previous examinations of spectral nudging have focused on pe-321

riods characterized by frequent wave activity resulting in intense convection and heavy pre-322

cipitation (e.g., Midwestern United States floods in spring 1993; Miguez-Macho et al. (2004);323

Castro et al. (2005)), where spectral nudging improved the simulation of precipitation. How-324

ever, under the drought conditions in 1988 and using WRF, we find that spectral nudging only325
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slightly improves the mean precipitation biases, and actually worsens the bias in the Plains.326

Because AN has a greater impact on the annual mean precipitation bias than SN, we specu-327

late that the spectral nudging techniques used in WRF could be better optimized for regional328

climate modeling.329

As shown in Table 3 for precipitation, unlike 2-m temperature, the mean precipitation bi-330

ases using AN and SN are very different from each other (Fig. 8). The strong seasonal cycle331

in the Northwest with more precipitation in the winter than in the summer is captured in all332

three simulations, most likely because this region is strongly influenced by the inflow imposed333

at the western lateral boundaries. The precipitation in the Northwest is closest to NARR in334

AN, as both SN and NN overestimate the regionally averaged monthly accumulated precipita-335

tion by ˜15-60 mm during the rainy months. In the Southwest, which is also influenced by the336

inflow boundaries, monthly accumulated precipitation is generally overestimated, with many337

months having a positive precipitation bias exceeding 20 mm for NN and SN. The monthly338

accumulations improve with AN for the Southwest region. The prediction of precipitation in339

the Plains, which is farther from the lateral boundaries, is similar to the Southwest, as AN340

improves monthly totals with respect to NN, and the monthly variability is better represented341

in AN. The Midwest accumulated precipitation in SN and NN have wet biases while AN is342

too dry. However, AN significantly improves the representation of the monthly variability over343

the Midwest. In the Northeast SN captures the monthly variability, but the monthly region-344

ally averaged accumulations are biased high by 30 mm on average. AN better represents the345

monthly totals and captures the monthly variability in the Northeast. The Southeast is the only346

region where AN does not consistently outperform NN and SN for the monthly accumulated347

precipitation. In that region, AN overestimates monthly accumulated summer precipitation by348

>60 mm and underestimates the monthly accumulated winter precipitation by 20-30 mm. In349

the absence of interior nudging, NN captures the interseasonal variability only for regions with350

a robust annual cycle such as the Northwest. Both interior nudging techniques improve the351
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intraseasonal and interseasonal variability of precipitation, particularly for regions that are less352

strongly controlled by the lateral boundaries. AN generally improves the monthly precipitation353

amount for most regions and seasons.354

To determine the influence of individual weather events on the monthly totals in Fig. 8, the355

distribution of daily averaged precipitation for all land points in the 36-km domain is shown in356

Fig. 9. Without interior nudging, NN overestimates the frequency of light precipitation events357

(i.e., <5 mm day-1) and underestimates the frequency of heavy precipitation events (i.e., >20358

mm day-1). In conjunction with the previous results, there are fewer heavy precipitation days,359

but the precipitation events tend to be more intense in WRF than in NARR. It is important to360

note that the calculation of the frequency of the precipitation events (Fig. 9) uses grid cells,361

while the intensity (Table 3) is determined using area averages. Qualitatively, SN behaves362

similarly to NN for the binned daily precipitation totals, but SN verifies closer to the analyses363

in NARR than NN does. Consistent with Fig. 8, AN improves the precipitation distribution364

relative to NN and SN, most notably by decreasing the number of lighter rainfall events and365

increasing the frequency of heavy rainfall events so that the distribution better matches NARR.366

The moisture field can be adjusted with analysis nudging but not by spectral nudging in WRF.367

This adjustment may improve the representation of the mean precipitation and frequency and368

may explain why AN agrees better with observations of total precipitation than SN does. The369

differing responses of the precipitation in WRF to the two interior nudging techniques also370

suggest that there are mechanistic differences in the model that result from altering the physical371

equations for nudging, so additional exploration of the influences of nudging on the model372

physics should be considered.373
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c. Spectral analysis374

To examine the effects of interior nudging on regional-scale variability, the one-dimensional375

power spectrum of the domain-wide 250-hPa zonal winds is computed. The winds aloft were376

chosen because of the large-scale energy associated with the jet stream. The added variabil-377

ity from the RCM (which does not necessarily represent added value) is inferred using spec-378

tral analysis. The power spectra in this study are calculated using a discrete one-dimensional379

Fourier transform after removing a linear trend from the atmospheric field in the RCM domain380

(Skamarock, 2004). The spectral energy in each wavenumber at 6-hour intervals is computed381

for the R-2, NARR, and WRF model simulations, then averaged for the domain and over all382

times. Spectra from the WRF and regridded R-2 are compared to provide information about383

the large-scale variability generated by WRF. The small-scale variability in the WRF simu-384

lations (i.e. wavelengths smaller than R-2) are compared against NARR. As in Castro et al.385

(2005) and Rockel et al. (2008), the minimum resolvable wavelength of a discrete model is386

4∆x, which corresponds to a wave number of 5.65 x 10-6 m-1 for R-2 (i.e., a wavelength of387

˜1100km in mid-latitudes). Using these criteria, the minimum resolved wavelength for the388

WRF 36-km domain is 144 km, or a wave number of 4.36 x 10-5 m−1. Between those two389

values are the wavelengths where the RCM should be able to add variability and possibly value390

by downscaling the R-2.391

Figure 10 shows the power spectrum of 250-hPa zonal winds averaged for January and July392

comparing NN, AN, and SN WRF simulations to R-2 and NARR. At wavelengths longer than393

4Dx of R-2 during January, all simulations have a tendency to follow the R-2, but in July there394

is more divergence in the spectra at the longer wavelengths. The differences in the spectra may395

be partially explained by the weaker zonal winds during the summer as the jet stream retreats396

further north. At the smaller wavelengths, for both January and July, we find that the AN sim-397

ulation variance is smaller than NN, SN and NARR. We also note that the spectrum variance398
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in WRF when compared to NARR has some unrealistic decay with decreasing wavelengths,399

which is illustrated by the change in the slope of the spectra. Overall, Fig. 10 indicates that400

analysis nudging can consistently dampen the RCM variability compared to both NN and SN401

for January and July. However, this configuration of analysis nudging that was used in AN im-402

proves the mean precipitation, precipitation distribution and intensity of heavy rainfall events,403

which highlights one of the trade-offs of using interior nudging techniques.404

d. Interior nudging with reduced coefficients405

The initial WRF simulations for 1988 using interior nudging (AN and SN) improved the over-406

all simulation in comparison with limiting nudging to the lateral boundaries (NN). However,407

SN was not able to improve the simulated precipitation as well as AN (Tables 2 and 3 and408

Figs. 8 and 9), and AN suppressed variability in the 250-hPa zonal wind spectra compared409

to SN and NN (Fig. 10). Four additional simulations, Table 1, are performed to examine the410

sensitivity of simulated mean errors and variability to the interior nudging strength. In the first411

two simulations (ANlow and SNlow), weaker nudging (and, thus, a weaker constraint toward412

the R-2) is used on both the 108-km and 36-km domains by reducing the nudging coefficients413

by one order of magnitude. In the final two simulations (ANouter and SNouter), the nudging414

coefficients remain unchanged from AN and SN in the 108-km domain, but they are reduced415

to zero (i.e., no nudging) on the 36-km domain.416

Figure 11 shows the mean bias in the 500-hPa geopotential height during the fall season417

(OND) for ANlow, ANouter, SNlow, and SNouter; the results are qualitatively similar for the418

other seasons (not shown). When nudging is used on the 36-km (inner) domain, the bias in the419

large-scale circulation is reduced by ˜25 m over most of the domain (compare Figs. 3 and 11 to420

Fig. 2). Reducing the nudging coefficients on both domains increases the height bias by <5 m421

for the weakly nudged simulations (ANlow and SNlow) compared to AN and SN. By contrast,422
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eliminating the interior nudging on the 36-km domain (ANouter and SNouter) increases the423

mean error in 500-hPa geopotential height to >35 m in the Plains and Southwest. The magitude424

of the bias in 500-hPa geopotential height tends to increase farther from the lateral boundaries425

when either spectral or analysis nudging is applied only to the 108-km (outer) domain. Even426

with two-way interaction in the interior of the 36-km domain and lateral boundary forcing427

from the nudged 108-km domain, the error in the 500-hPa geopotential height in the 36-km428

domain is noticeably larger when interior nudging is not directly applied to the 36-km domain.429

Our results show that using interior nudging with a non-zero strength on the innermost domain430

of a two-way-nested configuration (here, on the 36-km domain) is necessary to constrain the431

large-scale circulation in the interior of the domain if it is not otherwise dominated by lateral432

boundary forcing.433

The 850-hPa meridional wind during JJA for the sensitivity simulations is shown in Fig.434

12. The ANlow and SNlow bias is similar to the AN and SN bias in Fig. 4. Figures 4435

and 12 indicate an overestimation in the meridional wind for the Great Plains low-level jet436

over portions of Texas, overestimation of the meridional winds off the coast of California and437

an underestimation over the Baja California peninsula. Removing nudging on the interior438

domain increases errors in simulated meridional winds throughout the entire domain. The439

positive bias becomes larger over Texas and portions of the Pacific Ocean, and there is also440

an underestimation in the meridional wind for northern portions of the Plains region into the441

Midwest. Interestingly, there are significant differences between ANouter and SNouter in the442

meridional wind bias for the eastern half of the US. The SNouter simulation results in positive443

bias along the east coast of the US, while the bias is slightly negative to near zero in the ANouter444

simulation. Despite these differences, both SNouter and ANouter show there is a general445

degradation in the low-level circulation when nudging on the inner domain is not applied.446

Table 2 shows the biases in mean and 5th and 95th percentile 2-m temperature for the various447

nudging sensitivity tests. Reducing the nudging strengths by one order of magnitude in ANlow448
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and SNlow results in little difference (<0.5 K for most regions) when compared to AN and449

SN. When nudging is not used in the 36-km domain (ANouter and SNouter), the mean 2-m450

temperature bias increases by 1-2 K for most regions compared to AN and SN, consistent with451

the degradation in the 500-hPa fields (Fig. 11). The biases of 5th and 95th percentile daily452

averaged 2-m temperature for all sensitivity simulations indicates that the temperature bias is453

larger in the winter than in the summer. Overall, the sensitivity simulations show that reducing454

the strength of interior nudging above the PBL domain does not strongly degrade the 2-m455

temperature. These results also support the use of non-zero nudging coefficients on the inner456

nest regardless of the interior nudging technique. Without the interior constraint from either457

analysis or spectral nudging on the inner nest, the large-scale flow over the Rocky Mountains458

is less consistent with the driving fields, which contributes to increased errors in mean 2-m459

temperature bias for the Plains and Midwest regions.460

Unlike for 500-hPa geopotential height and 2-m temperature, the changes in precipitation461

bias do not increase toward the center of the 36-km domain when the interior nudging strengths462

are reduced (Table 3). For most of the regions, the mean precipitation bias generally increases463

across the 36-km domain as the nudging strengths are decreased in (ANlow and SNlow) and464

removed from (ANouter and SNouter) that domain. Both analysis and spectral nudging have465

qualitatively similar responses to the changes in nudging strength on the 36-km domain. The466

mean precipiation bias is largest in the Northeast. The 95th percentile of precipitation reveals467

that the intensity of precipitation events generally increases as the nudging strength on the inner468

domain is reduced. These results demonstrate that the choice of nudging strategy may affect469

the statistics of extreme events, with important implications for regional climate modeling470

applications. On the other hand, the Southwest region has similar biases regardless of the471

nudging technique, which demonstrates that nudging may mitigate but cannot always overcome472

deficiencies in the physics of the RCM.473

In Fig. 13, the spectra of 250-hPa zonal wind are used to gauge changes in variability due to474
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interior nudging as the nudging strength on the 36-km domain is progressively reduced. When475

the nudging coefficients are reduced by one order of magnitude on both domains (ANlow and476

SNlow) compared to AN and SN, the SNlow variability is qualitatively similar to SN (refer477

to Fig. 10) for both January and July. In SN and SNlow, the variability approaches but is478

consistently lower than that in NN (where no interior nudging was used on either domain) for479

all wavelengths. Thus, reducing the nudging coefficient on the 36-km domain by one order480

of magnitude has little impact on the variability of the 250-hPa zonal wind generated by the481

spectral nudging technique. By contrast, reducing the nudging coefficient for analysis nudging482

(comparing ANlow in Fig. 13 to AN in Fig. 10) shows that there is a marked increase in483

variability by lowering the nudging coefficient. When non-zero nudging coefficients are used484

for analysis nudging on the 36-km domain, the analysis nudging simulations have consistently485

lower variability than NN, SN, and SNlow, but the variability in the ANlow case is more similar486

to NARR than AN is. Nudging only on the outer (108-km) domain (ANouter and SNouter487

in Fig. 13) results in more variability for the nested (36-km) domain in both January and488

July, particularly for SNouter. During July, ANouter and SNouter both generate consistently489

greater variability than NN at all wavelengths. Despite adding variability at the length scales490

resolvable in the RCM but not in the coarse input reanalysis, there are still large errors in491

the large-scale circulation and near-surface features that adversely affect the quality of the492

RCM simulation when interior nudging is not used on the 36-km domain (Figs. 11 and 12).493

Balancing the consistency of the RCM simulation with the input data set (by using interior494

nudging techniques more strongly) against the freedom of the RCM to generate variability at495

finer scales than the input data (by nudging more weakly) remains a challenge for downscaling.496
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4. Conclusions and future research497

This study compared the three nudging techniques in the WRF model using two-way nesting to498

determine the influence of interior nudging on mean error and added variability over an annual499

cycle for regional climate modeling applications. The WRF model was used to downscale the500

2.5º x 2.5º R-2 using a 108- and 36-km two-way nested configuration over the CONUS. WRF501

was run using nudging only at the lateral boundaries (i.e., no interior nudging), using inte-502

rior nudging toward differences between WRF and R-2 at individual grid points (i.e., analysis503

nudging), and using interior nudging toward differences in large-scale waves between WRF504

and R-2 (i.e., spectral nudging). Sensitivity simulations were conducted where the strength of505

the nudging was broadly reduced either for both domains or for the 36-km domain only. In506

each simulation, the interior nudging was restricted to the layers above the PBL. Evaluation507

of mean regional biases using the 32-km NARR data for daily, monthly, seasonal, and annual508

scales was performed along with the bias for the 5th and 95th percentile for temperature and509

95th percentile for precipitation.510

Without interior nudging, the WRF 36-km simulation was wetter and warmer than was ob-511

served in each season. Additionally, large positive biases in the seasonally averaged 500-hPa512

geopotential height occurred when no interior nudging was used, which indicates errors in the513

large-scale circulation. Both the analysis nudging and spectral nudging techniques were effec-514

tive at reducing the mean biases in the 500-hPa geopotential height, 850-hPa meridional wind,515

and 2-m temperature. The precipitation intensity and frequency generated using the analysis516

nudging technique was overall closer to observations than using spectral nudging or no inte-517

rior nudging. Additionally, the precipitation amounts and annual cycle were better represented518

with analysis nudging. The moisture field is not directly adjusted when using spectral nudging519

in WRF. The better simulation of precipitation achieved by AN than SN suggests that directly520

nudging moisture may be needed to improve the simulation of precipitation.521
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The spectra calculation of 250-hPa zonal winds for the WRF simulations, the R-2, and522

NARR fields showed that the variability was greater with spectral nudging than analysis nudg-523

ing. Even with reduced (and non-zero) nudging coefficients, analysis nudging dampened the524

spectral energy compared to both spectral nudging and no interior nudging. Reducing the525

nudging coefficients for analysis nudging increased the variability compared to the stronger526

coefficients for analysis nudging and was found to be closer to NARR. When spectral nudging527

or analysis nudging was applied to the 108-km domain only and there was no interior nudging528

on the 36-km domain, the variability in the zonal winds aloft increased at all wavelengths com-529

pared with not using interior nudging on either domain; however, restricting the nudging to the530

108-km domain worsened the representation of the large-scale circulation and 2-m temperature531

in the 36-km domain. How each nudging technique is applied can greatly impact the results.532

Our results indicate that interior nudging can reduce mean errors, and nudging more strongly533

reduces error at the expense of also reducing variability.534

Our study demonstrates that both types of interior nudging can be used effectively in WRF535

in a two-way-interactive nested model to broadly capture large-scale features from the driving536

model for regional climate modeling. Analysis nudging and spectral nudging each achieve a537

reduction of bias in 2-m temperature, precipitation, 850-hPa meridional wind, and 500-hPa538

geopotential height compared to restricting the influence of the input fields only to the lateral539

boundaries. In addition, we showed that interior nudging should be used on both domains of540

a two-way nest (and not limited to the outer domain) to improve the near-surface and large-541

scale fields on the inner domain. As in Lo et al. (2008), we found that analysis nudging was542

preferable to not using interior nudging at all to achieve consistency with the input fields and543

to increase accuracy. For some aspects of the evaluation, analysis nudging outperformed spec-544

tral nudging, and vice versa, so a case could be made to use either interior nudging technique.545

However, neither interior nudging technique yielded perfect results or completely overcame the546

physical and dynamical deficiences and inconsistencies in WRF. We suggest that the default547
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settings for both analysis nudging and spectral nudging in WRF be revisited for regional cli-548

mate modeling applications, and further work is needed to optimize those settings. Continuous,549

multi-year integrations driven by reanalysis data are required to verify extreme climatic events550

and show not only added variability but also added value. Multi-year integrations are also nec-551

essary to diagnose the influence of interior nudging on interannual variability. Our results also552

suggest that the strengths of the nudging coefficients should be minimized for analysis nudging553

to increase the variability at wavelengths that should be resolvable in the RCM. Further studies554

are needed to optimize the nudging strategy to simultaneously increase the variability, improve555

the representation of the large-scale circulation, and reduce errors near the surface. Sensitivity556

studies are also warranted to understand the influence of nudging throughout the atmospheric557

column, particularly near the PBL, where nudging too strongly toward coarse input fields could558

dampen the RCM’s ability to generate important mesoscale features near the surface.559
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Figure 10: Spectra computed for R-2 (dashed black), NARR (solid black), and WRF (690

NN-blue, AN-red, SN-green) simulations averaged for (a) January and (b) July . Vertical lines691

indicate 4Dx bounds of wave numbers between which added value can be expected by using a692

RCM.693

Figure 11: 500-hPa geopotential height bias (m) compared to NARR for the fall (OND)694

season for (a) ANlow, (b) SNlow, (c) ANouter, and (d) SNouter.695

Figure 12: 850-hPa meridional wind (m s-1) bias for summer (JJA) in (a) ANlow (b) SNlow696

(c) ANouter and (d) SNouter.697

Figure 13: Spectra computed for R-2 (dashed black), NARR (solid black), and WRF for (a)698

January ANlow (red) and SNlow (green), (b) July ANlow (red) and SNlow (green), (c) January699

ANouter (red) and SNouter (green), and (d) July ANouter (red) and SNouter (green).The WRF700

NN simulation (blue) is plotted for relative comparison. Vertical lines indicate 4Dx bounds of701

wavenumbers between which added value can be expected by using an RCM.702
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Table 1: WRF simulations and corresponding nudging coefficients (s-1) for nudging above the
PBL. The same nudging strength is applied to both inner and outer domains, except in ANouter
and SNouter where nudging is applied to the outer domain only. Here, U and V refer to the
grid-relative wind components, T is the potential temperature, Q is the water vapor mixing
ratio, and F is the geopotential.

Nudging Coefficient (s-1)
Simulation U / V T Q F

NN - - - -
AN 3*10-4 3*10-4 1*10-4 -

ANlow 3*10-5 3*10-5 1*10-5 -
ANouter 3*10-4 3*10-4 1*10-4 -

SN 3*10-4 3*10-4 - 3*10-4

SNlow 3*10-5 3*10-5 - 3*10-5

SNouter 3*10-4 3*10-4 - 3*10-4
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Figure 1: WRF outer (108-km) and inner (36-km) domains. Box regions used for model
evaluation: Northwest (NW), Southwest (SW), Plains (PL), Midwest (MW), Southeast (SE),
and Northeast (NE).
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Figure 2: 500-hPa seasonal geopotential height (m) for NARR (a) JFM, (c) AMJ, (e) JAS, (g)
OND and model seasonal bias of 500-hPa geopotenial height (m) for the NN configuration (b)
JFM, (d) AMJ, (f) JAS, (h) OND.
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Figure 3: 500-hPa geopotential height bias (m) for AN (a) JFM, (c) AMJ, (e) JAS, (g) OND
and SN (b) JFM, (d) AMJ, (f) JAS, (h) OND.
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Figure 4: 850-hPa meridional wind (m s-1) for summer (JJA) in (a) NARR and meridional wind
bias for (b) NN, (c) AN, and (d) SN.
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Figure 5: Mean monthly 2-m temperature (K) for each of the six verification regions shown in
Fig. 1 for NARR (black), NN (blue), AN (red), and SN (green).
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Figure 7: Daily 2-m temperature distribution for land points in the 36-km domain for 1988
comparing NN (blue), AN (red), and SN (green) to NARR (black). The first bin is 220-240 K;
subsequent bins are at 1 K intervals to 310 K.
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Figure 8: Accumulated monthly precipitation (mm) for each of the six verification regions
shown in Fig.1 NARR (black), NN (blue), AN (red), and SN (green).
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Figure 9: Daily precipitation distribution for land points in the 36-km domain from the annual
WRF simulations comparing the NN (blue), AN (red), and SN (green) to NARR observations
(black). The x-axis represents the precipitation bins (mm day-1) omitting the 0-1 mm day-1

bin with 1 mm day-1 bins up to 20 mm day-1 with larger bins of 21-50 mm day-1, 51-100 mm
day-1, 101-200 mm day-1 and greater than 200 mm day-1 at the right tail of the distribution.
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Figure 10: Spectra computed for R-2 (dashed black), NARR (solid black), and WRF ( NN-
blue, AN-red, SN-green) simulations averaged for (a) January and (b) July . Vertical lines
indicate 4Dx bounds of wave numbers between which added value can be expected by using a
RCM.
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Figure 11: 500-hPa geopotential height bias (m) compared to NARR for the fall (OND) season
for (a) ANlow, (b) SNlow, (c) ANouter, and (d) SNouter.

44



Figure 12: 850-hPa meridional wind (m s-1) bias for summer (JJA) in (a) ANlow (b) SNlow
(c) ANouter and (d) SNouter.
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Figure 13: Spectra computed for R-2 (dashed black), NARR (solid black), and WRF for (a)
January ANlow (red) and SNlow (green), (b) July ANlow (red) and SNlow (green), (c) January
ANouter (red) and SNouter (green), and (d) July ANouter (red) and SNouter (green). The WRF
NN simulation (blue) is plotted for relative comparison. Vertical lines indicate 4Dx bounds of
wavenumbers between which added value can be expected by using an RCM.46
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