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1. Introduction

Sobol’s method is a global sensitivity analysis (SA) technique
which determines the contribution of each input (or group of
inputs) to the variance of the output. The usual Sobol sensitivity
indices include the main and total effects for each input, but the
method can also provide specific interaction terms, if desired.
Sobol’'s method was originally presented in Russian by Sobol’
(1990); the article was reprinted in English in Sobol’, (1993). The
method is notable because it works well without simplifying
approximations, even for models with very large numbers of
random variables. The method is superior to traditional sensitivity
methods (such as local methods that examine parameters one at
a time) when considering cases where the assumption of linearity
is invalid (Saltelli and Annoni, 2010), and has been shown to be
robust (Yang, 2011). Sobol’s method has been applied successfully
to complex environmental models to identify critical input
parameters and major sources of uncertainty (e.g., Nossent et al.,
2011; Vezzaro and Mikkelsen, 2012; Confalonieri et al., 2010;
Estrada and Diaz, 2010). In addition, the method has been used as
a basis for multiple criteria analyses (Annoni et al., 2011).

In this paper, new formulations of Sobol indices in terms of
Pearson correlation coefficients are presented. These formulations
suggest the inclusion of “correction terms” that remove some
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spurious correlation. Such correction terms are presented, and
multiple estimation methods are compared for precision, accuracy,
and efficiency, using the G function as a test case. The G function has
the advantage that the theoretical values for all the sensitivity
indices are known, so the accuracy of various estimation techniques
can be evaluated.

2. Theory

2.1. Variance decomposition, main effects, total effects, and
interaction terms

Many SA methods are based on an analysis of the variance of the
model output (Chan et al., 2000); the theoretical basis of several of
these methods is variance decomposition. Such techniques include
Fourier Amplitude Sensitivity Test (FAST; Cukier et al., 1973, 1978;
Saltelli et al, 1999), High Dimensional Model Representation
(HDMR; Rabitz and Alis, 1999), random balance designs (Tarantola
et al, 2006a), and traditional ANOVA methods. In variance
decomposition, the model output variance is represented as a sum
of (2) — 1) partial variances. Here, J is the number of random samples
needed per model iteration. While J is often called “the number of
inputs”, this is not necessarily the same as the number of modeling
input variables, because some models (typically ones with either
spatial or temporal variation) may draw multiple samples for the
same modeling variable on each iteration.

The Sobol sensitivity indices are ratios of partial variances to
total variance, and for independent variables satisfy the relationship
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T=2 Si+> > Si+> > > Sik+-- (1)

i j>i i j>i k>j

None of the sensitivity indices in (1) may be negative; therefore
none may exceed one. For any input j, ; is called its first-order or main
effect sensitivity index. S; represents the sensitivity of the output to
changes in input j alone. Indices in (1) with multiple subscripts are
called interaction terms. Subscript order is not relevant for interac-
tion terms, so by convention numerical order is used. Methods for
evaluating specific interaction terms are discussed later.

The total effect index Tj for a given input j is defined as the sum of all
terms in (1) that contain the subscriptj. The total effect places an upper
bound on the importance of a given input by crediting the full effect of
all relevant interactions to the given input. For any input j, Tj > S; since
the interaction terms may not be negative. As shown below, any total
effect may be easily calculated without having to evaluate the inter-
action terms separately, which becomes crucial when J is large. Total
effects may also be defined for multiple inputs: Tj is the sum of all
terms in (1) that contain either j or k (or both) as subscripts.

Total effects were discussed by Homma and Saltelli (1996), who
used the symbol S7;, while Saltelli (2002) used SJ.T. The symbol T;
used here is equivalent but orthographically simpler. The sum of §;
over all inputs j cannot exceed one, and does not equal one unless
all the interaction terms are zero. By contrast, the sum of Tj over all j
is never less than one, and equals one only if all interaction terms
are zero, because this sum includes every main effect once and
every interaction term multiple times.

The number of sensitivity indices quickly becomes unmanage-
able as the number of inputs increases, a phenomenon called the
dimensionality curse. For example, even with | = 50 there are too
many indices (more than 10'®) for practical evaluation. Many models
easily exceed this number, especially if each iteration requires spatial
or temporal vectors of random samples for a given modeling vari-
able. For example, Sobol analysis has been coded into the U.S.
Environmental Protection Agency’s SHEDS-Multimedia stochastic
human exposure model (Isaacs et al., 2010; Glen et al., 2010), here-
after called “SHEDS”. In SHEDS, one iteration produces a time series
of exposure for one simulated person. There are roughly 100
modeling input variables but around 45,000 random samples per
iteration are required, due to the many time series vectors. From
a practical standpoint, use of the variance decomposition requires
either dropping most of the terms, or else grouping them to permit
the collective evaluation of whole groups rather than single inputs.
Dropping terms without evaluating them may be dangerous, as it is
unknown whether they are truly small enough to neglect. Sobol’s
method does not drop terms but can reduce the number of terms to
be evaluated using grouping of inputs (see next section). Grouping
does not modify either the model or the independence of its inputs
in any way, and may be applied to terms of any size.

2.2. Groups of inputs, classes, and collective sensitivity indices

An extremely important result from Sobol’ (1990) is that the
same method applies when the subscripts in (1) represent groups
of inputs. The analyst may arbitrarily partition the inputs into a set
of disjoint groups, and Equation (1) remains valid as long as the
groups are independent. Inputs in the same group do not need to be
independent. Grouping limits the number of model runs that are
necessary by only assessing the combined influence of all inputs in
each group. Groups may contain any number of inputs without
restriction. One group could have a single input while another
has thousands, which is common in SHEDS. From this point on
grouping is assumed, and the symbols S; and T are taken to
represent the main and total effects for a group j.

Sobol’ (1990) also introduced a second level of grouping, in
which each user-specified input group is assigned to one of two
classes in each model run. Each class k has a collective sensitivity
index Ci, equal to the sum of all sensitivity indices in (1) with
subscripts belonging entirely to k. The most useful class division is
to assign one group j to one class (with Cj = §;), and all other input
groups to the —j class. The collective index C_; equals the sum of all
terms in (1) that do not contain j. Since every term in (1) is either in
T; or C_; (but not both), then for any group j,

T+C =1 2)

This leads directly to Theorem 2, below. In the limit of large N, G;
and C_; are simply the Pearson correlation coefficients between the
output vectors from pairs of model runs, as noted previously by Sobol’
(1996), Sobol’ and Levitan (1999). These results are summarized as:

Theorem 1. For any input group j, the main effect S; equals the
expectation value of the correlation coefficient C; of the output vectors
from two model runs in which the realizations of all inputs in j are
common to both runs, while all other inputs use independent samples
in the two runs.

Theorem 2. For any input group j, the total effect Tj equals one minus
the expectation value of the correlation coefficient C_; of the output
from two model runs which use independently sampled values for
inputs in j, but use the same realizations in both runs for all other inputs.

These theorems form the basis for numerically estimating all the
sensitivity indices for the J input groups. Specifically, by systemati-
cally varying the classes so that each input group j is isolated in turn,
arelatively small set of model runs provide all G;and C_j, and thus all
the main and total effects. The details are given in the next section.

2.3. Practical methods for evaluating the sensitivity indices

For simple enough models, the sensitivity indices may be derived
analytically by integrating the output function over selected input
axes. But for most models it is necessary to numerically estimate the
indices, and explicit formulas were refined over a series of papers.
Sobol’ (1990) stopped after presenting the equivalent of Theorem 1.
Saltelli et al. (1993) gave a formula for the main effects only. Homma
and Saltelli (1996) introduced total effects. Saltelli (2002) offered
an approach for obtaining double estimates of all main and total
effect indices, as well as all the second-order indices. Tarantola et al.
(2006b), and Lilburne and Tarantola (2009), presented formulas that
average eight estimates for each S; and four estimates for each T;.
Sobol’ et al. (2007) provided a theoretical justification for using the
cross product Y fof} for the square of the mean when calculating
variances and covariances. Saltelli et al. (2010) concluded that
Jansen’s formula (Jansen, 1999) was best for estimating total effects.

In the following discussion, capitalized symbols represent
properties of the model itself, while numerical estimates of these
quantities are represented by corresponding lower-case letters
(which includes p). Equations relating capitalized quantities are
exact relationships between properties, while equations relating
lower-case letters may be seen as definitions. This paper explicitly
uses correlations to estimate the sensitivity indices, which are
more straightforward than the integral-based formula presented in
the above papers. Without requiring additional model runs, certain
methods include correction terms for spurious correlation, which
improve the estimates.

The numerical estimation methods examined here all use vari-
ations of the following scheme of Sobol’ (1990). First, randomly
generate two sets of N sample values (or realizations) for each input
variable. Here, these are called the unprimed and primed sets (or u;
and u]’.) due to the symbolism used for them, although the names
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sample and resample are more common in the literature. The symbol
u emphasizes that these are random samples from a unit uniform or
U(0,1) distribution. Random samples are used here, although Sobol’
(1994, 2001) has suggested using quasi-random samples that are
more regularly distributed than true random numbers.

All first-order main and total effects can be evaluated using a set
of ] + 2 different model runs. Each run consists of N iterations (with
N selected by the analyst); higher N gives estimates with less error
but take more computational time to produce. One of these runs
uses u; for all groups, while another uses u/ for all groups. For the
remaining J runs, class j uses theu]/. samples while class —j uses the u;

samples, where j loops over the J variable groups. However, double
(and thus more accurate) estimates can be calculated by using 2] + 2
runs (Saltelli, 2002). These require another J runs in which class j
uses the u; samples while the —j class uses the uJ/- samples. This

design is called “radial sampling” in Saltelli et al. (2010), where it is
preferred to the “winding stairs” design. Furthermore, the choice of
just two base sets of random samples (the primed and unprimed),
instead of more, is also recommended by Saltelli et al. (2010).

Let f symbolize the vector of model output (containing one
element per iteration) from a given run. Indicate the samples used
for the —j class by the presence or absence of a prime. Use a subscript
to indicate which group j forms the other class. When classj is empty,
use a subscript zero for clarity. As examples, f; is the output from the
run that used uj/- for input group j and u; for all other variables, and f;

is the output from the run using uj’. for all inputs. A second subscript

may be added to indicate a specific iteration number (as in fj,), if
needed. The set of vectors (fy,fy.f;, fj’), with j running over all J
groups, captures the full output from all 2] + 2 model runs.

The Pearson correlation coefficient between the pair of vectors
j;-’ and f; may be defined as

o1 s ) (- i)
o= () 2 — 3
n-1 Vi v

Here m and v represent the mean and variance of the output
vectors, respectively. Various estimates of the mean and variance
may be used in place of the ones above, and the divisor N is usually
replaced by (N — 1) when the mean and variance are estimated
from the same data. Several of these alternatives are examined in
the Methods and Results sections. By varying the choice of output
vectors, such correlations may be generated for all pairs of model
runs. In this notation, the first superscript and subscript pair on p
apply to one model run, while the second pair apply to the other
run. Correlation does not depend on run order, so for clarity, list the
primed run first (for example, p;(j in preference to p]fk) when both
types are present.

An alternative to using Equation (3) directly is to first define
a set g of standardized model output vectors:

8jin = (fm - mj)/\/”‘f (4)

Use the uncorrected variance, so each g vector has mean zero
and sum of squares equal to N. With this notation the correlation
coefficients take on a simple form. For example:

P = > & 8&k/N (5)

The summation is over the model iterations, from n = 1 to N,
which will usually be suppressed to avoid clutter. In (4), each run is
standardized independently, using just its own results. When using
(3), the results may be pooled across runs to obtain better estimates
of the true mean and variance, variations of which are tested in the
Methods and Results sections, below.

By Theorem 1, both P}o and p()j are estimates of S;. While these
are not fully independent, the mean of the two provides a better
estimate than either one alone. Hence, given the full set of 2J + 2
runs, an improved estimate of S; is

1
S = G=(rjo +ry) /2 = 55> (G20 +88) (6)
Here the symbol “=" means “may be approximated by” and is

used when an exact property of the model is being estimated.
While (6) uses the standardized forms, these may be replaced by
the “raw” forms of Equation (3), as in Saltelli (2002). The total
effects require estimates for C_j, for which there are two such pairs:
go with gj, and g; with g]/

T =1-Cy=1-(po+0y)/2 = 1—%2(&-&) +88))
(7)

Even better performance may be obtained by adding correction
terms to these formulas, as discussed in the next section.

2.4. Spurious correlation and new correction terms

Two vectors of length N of independent random samples have
an expected correlation of zero, but in practice may have some
small spurious correlation. For all inputs, the u;j and u]’. vectors are
sampled from U(0,1) and the distribution of spurious correlation
has mean zero and variance of (N — 1)~\. Two model runs with
spurious correlation in their input vectors will also have some in
their output vectors, producing errors in the estimates of the
sensitivity indices (since these are based on measured output
correlations). This can be reduced to any desired level by making N
sufficiently large, but at a computational burden. Generally, one
wants the best available estimates of the sensitivity indices
obtainable with a given number of model evaluations.

Consider the sample correlation py = pg, between the outputs
from the “all primed” run and the “all unprimed” run. This corre-
lation is entirely spurious, but these runs use almost the same input
realizations as those used to determine 9}05 only the samples for
input j are different in one run, and there are no differences in the
other run. Unless input j dominates the model, most of the spurious
correlation pp, will be shared with pjo. Another all-spurious
correlation with similar properties is pj’.j. Define a vector p; as

B = (o +e)) /2 = (om0 + g9) ®

The expectation value of p; is zero, but any realization will
generally be non-zero. Another possible estimate of the index S; is

1
Si=¢—pj = 550 (88 + 88— & —gg) (9)

As shown below, formula (9) is better than formula (6) when
tj < 1/2 (or equivalently, c_j > 1/2), whereas formula (6) is better
otherwise. The corresponding formula for the total effects is

1
Ti=1-cj+pj =1 —mz<gjg0 +808 — &80 —gjgj)
(10)

This formula improves on Equation (7) whenever ¢; > 1/2. While
it is possible to switch from one form to the other abruptly at
one-half, another option is a smooth transition, as examined in the
Methods section below.

A measured output correlation such as 1/N )" gig; can be seen
as a sum of three parts: a true correlation that arises from repeating
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the inputs in group j, a spurious correlation arising from the inputs
in —j, and a spurious correlation due to the interaction of j with —j.
The expression 1/N }_ ;8o is also a sum of three parts: the spurious
correlation in —j, spurious correlation in j, and finally an interaction
between j and —j. The expected variance in 1/N )" g(go is the sum
of these three, which are proportional to their relative contribu-
tions to the overall model variance; namely, S;, S_; and Sj_;.
The expected amount of spurious correlation in 1/N Y gug; is
proportional to S_; + Sj _;.

The spurious correlation from —j is exactly the same in both
1/N3 gpg and 1/N Y gygo since the input realizations are the
same, so subtraction of the two expressions removes this term. The
expected amount of spurious correlation in 1/N >7(g,&; — £,80) is
proportional to Sj + 2S; ;. The factor 2 appears because both gg;
and gpgo contribute separate realizations of the interaction term.
The latter expression is expected to be smaller when Sj + S _j < S_j,
or equivalently, Tj < 1/2.

A similar calculation for the total effects shows that the expected
amount of spurious correlation in 1/N Y~ g,g; is proportional to
Sj + Sj—j while that in 1/N>7(g.8 —&y&) is proportional to
S_j+ 2S5
The latter is smaller provided S_; + S;_j < Sj, or Sj > 1/2. The same
results are obtained if gjfgj is substituted for g{,go, or if primed and
unprimed superscripts are swapped on gogj or g,g;.

2.5. Evaluation of higher-order sensitivity indices

Saltelli (2002) pointed out that the same 2] + 2 model runs
which provide double estimates for the first-order effects may be
used to obtain double estimates of all the second-order effects.
These are based on the sample correlations

1
G = (P +0ig) /2 = 55> (g8 + &i&) (11)
1
Cjk = (ij +P;<'j> /2 = _NZ(gjgk +g,’<g]f) (12)
Then
Sik = Gk —Sj — Sk (13)
T =1-Cj (14)

Define the estimates sj, and tj as sj = Cjx — Sj — Sk, and
tix = 1 — c_jk, respectively. The former may involve subtraction of
near-equal quantities and may lead to substantial error, especially
when sj is much smaller than the main effects. For this reason
correction factors are important, especially for the first-order
indices. Sensitivity indices beyond second-order would require
more than the standard 2/ + 2 model runs, but if they were
calculated the problem of near-total cancellation might become
even more acute. To correct cj, note that the spurious correlation

pjk = (Pl/, +Pf<k>/2 = %Z(g]{gj +g]/<gk> (15)

shares all its input realizations with cj., except for inputs j and k.
Provided that c_j, > 1/2, it is expected that (cjx — pjk) will provide
a better estimate of Cj, than does cj alone.

3. Methods

Computing the Sobol indices numerically requires evaluating the Pearson
correlation coefficients between the output vectors from pairs of model runs. There
are multiple variations on either Equation (3) which uses the “raw” model output, or
on Equation (5) which uses standardized output. We present equations for a total of
12 previously published and new methods in this section. These equations are
evaluated using the “G function” (Davis and Rabinowitz, 1984).

3.1. Definition of the various formulas for the Sobol indices

The twelve methods, labeled A;—A3 through D;—D3, are summarized in Table 1.
As noted below, some have been previously recommended by other authors, and
some are new. The equations are formulated in terms of different estimates for the
means, variances, covariances, and correlations of the output vectors of the model
runs.

The mean of the model output and the square of the mean can be calculated
using any of the following equations. The subscript j may range from 0 to J. Also, the
variable on the left side of each equation may be primed, in which case each
unprimed f on the right becomes primed, and vice versa.

1
m =52k (16)
m = A (17)
m§ = %(m%erjz) (18)

Note that the primed and unprimed versions of mf are identical. While other
estimates of the mean may be created, they have not been found to improve the
estimates of the sensitivity indices. The equations for the covariance factors (u) and
variance (v) of the model output vectors are:

uj = %Zféﬁ (19)
wy =y ohs (20)
. @
S @)
v = 5 (vho + 1) (23)
vj = %(Vo +1j) (24)

Finally, various estimates of the correlation between standardized model
outputs (go, gy, &j» Or gjf) can be formulated, where c; indicates an estimate based on
single paired runs, c¢q4 indicates a double estimate, p indicates the spurious correla-
tion between runs, and ¢, indicates correlation estimates partly adjusted for
spurious correlation:

6 = N8 (25)
Y (26)
o = o 3 (208 + 20) 27)
caj = oS (208 + 5 8) (28)
po = %Zgogé (29)
P = oy (202 +58) (30)
Caj = Cdjl_ipgzd ! (31)
Caj = Cdaj:[IJ)ﬁCdj (32)

The equations in Table 1 also include two special functions. H(x) is the Heavyside
or unit step function

H(x) = 0, forx <0, and H(x) = 1, for x>0 (33)
and R(x) is the following ramp function:

R(x) = Oforx < %, R(x) =1 forx>g (34)
where R(x) varies linearly between (1/6,0) and (5/6,1).
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Table 1

The twelve methods used to estimate the sensitivity indices. Definitions of the m (mean), v

the H and R functions are given in Equations 16—34.
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(variance), u (covariance factor), ¢ (correlation), p (spurious correlation) terms and

Method Main effect, s; Total effect, ¢; Notes
u; — m2 u_; — m2 . . . . PR
A ] v, 0 1- % These are the most basic equations for estimating the indices.
() 0
2 2
uj —m u_j—m .
Az ] x0 1-—= 20 The m2, term for s; was recommended by Saltelli (2002)
Vx0 vy and by Sobol’ et al. (2007).
u — mzO u_j— 111[2]- X
As J - X 1-—— The t; formula is from Jansen (1999), and recommended
Vs Vg by Saltelli et al. (2010).
By ¢sj — poH (cs,j - 2) 1-c +p0H(c5j — %) For s; the spurious correlation is subtracted only when ¢;_; > 1/2.
For t; the roles of ¢;; and c_; are reversed.
B, Csj —PoR (cs,j - 2) 1—c¢s_j+poR <c5j - %) These ramp function formulas are new in this paper.
Csj — PoCs_j Cs_i — PoCsj .
Bs s — PoCs-j 1 G —Poy These formulas are presented here for the first time.
1-pp 1-p}
—m2 u—m} u_j—m2 u_—mg
G J 5 0 4 3 0 1- ]270 - }270 These are averages of two estimates each, formed by interchanging
Y Yo Yo o the primed and unprimed quantities in the A; formulas.
2 ! m2 . _m2 o m2
u —m u,—m u_ ms U —mgs
G, J_Tx0 X0 [ e B These formulas average the primed and unprimed versions of As.
2vg 21/;]. 2 2110»
2 ! m2 ! m2 2 2 ! m2
uj—m u; —m u; —m uj —m u_j—m u;—m .
C3 18 X0 181/ x0 JS x0 181/ x0 1- 47’(0 _ 14 X0 These formulas are from Lilburne and Tarantola (2009), and are found
Vx0 . X0 , on2 on szo ) ;}"0 to be the best of the methods using the raw data.
Ujp—my W=y U — Ty 4 Uj — My Uj—my U~y
8uyj 81/Xj 8uyj 81/;(1. 4y 41/;(].
1 1 . . .
D cgi — piH (cd,j - j) 1—cqj+pH (cdj - 5) SHEDS-Multimedia version 4 has used these formulas
since 2008 (Glen et al., 2010).
D, cqj — DR (cd,j - %) 1-c¢4j+DpR <cdj - %) The ramp function provides a small improvement over method D;.
Ca_i c )
D3 a-J 1—cqj +p}-$ These new formulas provide the best results found so far as measured

Cpi—pi—d
4 pjl — CqjCa—j

ajCa—j

by mean absolute deviation.

Method A; is the most basic of all, and is essentially the method suggested in
Sobol’ (1990) (although that paper did not discuss total effects). For method A, the
choices for the mean were restricted to mg or m, and the variance to vo or ;. It was
found empirically that the primed versions provide the best estimates for the main
effects, while the unprimed versions are best for the total effects. This is reasonable,
since the estimate u; uses the primed run fj, while u_; uses the unprimed run fo.

Method A; uses m}(0 in estimating the main effect, which was justified theoretically
by Sobol’ et al. (2007) as being superior to A;. The total effects use an average of two
variances (empirically, those of the runs used to calculate u_; perform best). Method Az
extends variance averaging to the main effect, and uses the Jansen estimator for the
total effect, as recommended by Saltelli et al. (2010). This estimator (Jansen, 1999) may
be more recognizable as t; = 1/2Nv3_(fo — fj)z. This is rewritten in the form common

to Table 1 by expanding the square to obtain ; = 1/2v(v0 +md +vj+ m]z) —u_j/v.
Takingv = v = 1/2(vg +vj), thent; = 1— (u,j - mtzj)/vtj.

Methods B1—B3 produce single estimates for each index using J + 2 runs and
standardized output. The first two differ only in the spurious correlation adjustment.
Method B3 attempts to account for the spurious correlation that p; shares with ¢; or
c_j, which effectively produces a pj2 term.

Methods C;—Cs use 2] + 2 model runs to produce double estimates, using the
raw output data. Method C; is analogous to A;, Method C; corresponds to Az (not Ay).
Method Cs uses the Lilburne and Tarantola (2009) formulas which extend the
concept of “double estimates” further by using more combinations of the mean and
variance estimates.

Methods D1—Dj3 are the double-estimate analogs of B;—Bs. Formula Dy has been
used in SHEDS (Glen et al., 2010) since 2008. Formulas D, and Ds are presented here
for the first time.

3.2. Comparison of numerical estimation methods using the G function

The G function (Davis and Rabinowitz, 1984) has been used previously to test
both the accuracy and precision of various numerical estimation methods (Sobol’,
1990; Saltelli and Sobol’, 1995, Archer et al., 1997). The G function is the product
of J inputs, each transformed from a unit uniform u;. The general G function is

Lo (|4u -2]+ )
€= HW

j=1

(35)

We follow the choice of Saltelli (2002) with ] = 6 and a; = (0, .5, 3, 9, 99, 99). Factors
with smaller g; have greater range and contribute more variance. The sensitivity indices
can be derived directly by integration, which allows comparison with numerical
estimates. The mean value of G is one, as is the mean value of each of the J factors.

The model was run 2] + 2 = 14 times with N = 200,000, and the same output was
processed using the 12 method variations in Table 1. The single-estimate methods
required just 8 of the 14 model runs. This entire process was repeated 50,000 times
with different random numbers, to determine (1) the reproducibility or precision of
each estimate, and (2) whether there was any bias in the estimates. Repeating the
entire analysis to obtain the scatter in the estimates is a well-known technique called
bootstrapping; this has been used previously with Sobol’s method (Archer et al., 1997;
Mokhtari et al., 2006). The terminology suggested here is that this analysis consists of
50,000 bootstrap sets of N = 200,000 iterations each. These numbers are quite large,
but the model is extremely simple to evaluate and the stochastic variation in the
results is thereby reduced to a level where small differences between the methods
can be discerned. As a more practical example, method D3 from this analysis was
re-run on the same G function using just 10 sets of N = 1000 each. These smaller
numbers still provided reasonable estimates of the indices, although in general with
small N there is a risk of leaving significant portions of the input hypercube
unsampled. The minimum N needed to properly characterize the model output
surface will depend on the regularity and smoothness of that surface, and general
guidelines cannot be given.

4. Results

Summary statistics from all the test runs are presented in
Table 2. The prefix ‘avg’ indicates that the reported statistics are
averaged across the 12 first-order indices (6 main and 6 total
effects). Emaq is the mean absolute deviation of the 50,000 esti-
mates from the theoretical value, Esq is the standard deviation of
the estimates, Serr is the standard error in the mean, and Ag,; is the
absolute deviation of the overall mean from the theoretical value.

The standardized methods B;—Bs score better than methods
A1—As. Methods B, and Bs have the smallest mean absolute
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Table 2

Various average error measurements are provided for the sensitivity indices for the G function, using 50,000 bootstrap sets, each of N = 200,000 iterations. Epag is the mean
absolute deviation of the 50,000 estimates from the theoretical value. Eqq is the standard deviation of the estimates, S, is the standard error in the mean, and A, is the
absolute deviation of the mean from the theoretical value. The prefix ‘avg’ indicates that the reported statistics are averaged across the 12 first-order indices (6 main and 6 total
effects). Each statistic has a multiplier at the top of the column; for example, avg Emaq for method A; is 2600 x 107, or .0026.

Method Output type Required # of runs avg Emaq x 1078 avg Egq x 1076 avg Serr x 1078 avg Aerr x 1078
Aq Raw 8 2600 3250 1450 1520
Ay Raw 8 1090 1370 613 653
As Raw 8 677 848 379 502
B Standardized 8 549 688 308 250
B, Standardized 8 520 652 292 351
B3 Standardized 8 522 654 292 368
Cy Raw 14 1300 1630 730 1260
C Raw 14 400 501 224 346
Cs Raw 14 340 426 190 402
D4 Standardized 14 354 444 198 121
D, Standardized 14 339 425 190 316
D3 Standardized 14 335 419 187 314

deviations among the single-estimate methods. This statistic is
preferred by Saltelli et al. (2010), and is a combination of both
accuracy and precision. These methods also have the greatest
precision (that is, the smallest standard deviation and smallest
standard error), but have somewhat less accuracy than method B;
(as seen in avg Aery).

Among the raw data methods using 14 runs, method Cs
performs best. The standardized methods D1—Dj3 all score similarly
and are as good as C3. Methods D, and D3 have slightly greater
precision but less accuracy than method Di. By a small margin,
method D3 had the smallest mean absolute deviation among all
methods tested.

Table 3 shows all 42 first and second-order indices using
method D3 with N = 200,000. Also included in Table 3 are the
spurious correlations p; through pg. The theoretical values and the
mean estimates are presented to either six significant digits or eight
decimal places, whichever is fewer. Four additional statistics are
presented. The first two (the error in the mean estimate and its
standard error) would be expected to improve if more sets were
run. By contrast, the standard deviation and the mean absolute
difference would not improve with more sets; these depend only
on the number of iterations N per run.

The standard deviation measures the scatter in the 50,000
estimates for each index. The largest standard deviations were for
the largest indices. It is shown in the Appendix that the theoretical

standard deviation of p; is /(1 —S;+S;Tj)/N. Note that all 42

sensitivity indices have smaller standard deviations than do these
spurious correlations. Without the correction terms, the scatter in
each index would be closer to that of the p; which measure the
random noise in the system.

All of the first and second-order sensitivity indices are estimated
quite well, with the largest error being just .0000122 (in S1). Even
the very smallest indices are remarkably accurate, being estimated
correctly to nine decimal places in some cases. The smallest index
Ss6 has a very small but negative estimated mean, which is not
significantly different from zero. The largest index Ty, is correctly
estimated to within one part per million. In general, indices close to
V5 are the least reliably estimated.

Table 4 presents the same information as Table 3, except the
sample size N was reduced to 1000, and the number of bootstrap sets
reduced to just 10. These are more practical values for complicated
models that take significant time to run. Nevertheless, the indices
are estimated fairly well. The largest errors were .011 for Ty, Ty5, and
Tq6. The small first-order indices are estimated quite well, as are all
the second-order total effects. The second-order main effects are less
reliable, because of the subtractions of comparably-sized terms in

Equation (13). This is due to stochastic noise, which can easily be
reduced by using larger N (or more sets), as was seen in Table 3.

5. Discussion
5.1. Bootstrapping

For Table 3, the full analysis of 2] + 2 model runs was performed
M = 50,000 with different random samples, with each of these sets
producing N = 200,000 samples of model output. For all practical
purposes, the mean of M sets (each producing N estimates) provides
the same precision as one set producing (M*N) estimates. However,
the former approach has two advantages: first, one can calculate not
only the mean value for each index, but also the standard error of
the mean. Second, breaking the problem into a series of smaller
problems requires smaller vectors and less computer memory. For
example, the above tests were run on a standard personal computer,
but producing one set of ten billion estimates was not feasible.
Even when possible, very long vectors are less efficient since the
processing speed does not scale linearly beyond a certain size, due to
the need to utilize virtual memory.

5.2. Number of model iterations N

In most practical cases the sensitivity indices will only need
to be evaluated correctly to two decimal places or so, allowing
relatively small M and N to be used. Table 4 gives estimates of the
G-function indices obtained when cutting back the total number of
iterations (M*N) from ten billion to ten thousand. These estimates
would be sufficient for most purposes. Models with more compli-
cated output surfaces might require larger N, but even for relatively
complicated Monte Carlo models, it should be possible to achieve
several thousand iterations.

The 2J + 2 run scheme of Saltelli (2002) requires less than half
the N to obtain the precision of the J + 2 run approach, using either
the raw or standardized output. Hence, the double estimate
methods should be preferred when using random inputs. However,
Saltelli et al. (2010) point out that the second set of estimates are
less precise than the first when quasi-random inputs are used, so
they prefer single-estimate methods in that case.

5.3. Use of quasi-random inputs

Several papers, including Sobol’ (1994, 2001) and Saltelli et al.
(2010), state that the use of quasi-random inputs produces faster
convergence to the correct indices than does the use of true random
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Table 3

Sensitivity indices estimated using method D3, with 50,000 sets of model runs with N = 200,000 each. The notation “E-n” stands for “x10~™".

Index Theoretical value Mean estimate Error in mean estimate Std. error of mean Standard deviation Mean absolute difference
Sq .586781 .586769 -1.22E-5 5.34 E-6 1.20 E-3 9.55 E-4
Sz .260792 260797 5.15E-6 4.68 E-6 1.05 E-3 836 E-4
S3 .0366738 .0366748 9.55 E-7 8.46 E-7 1.89 E-4 1.51 E-4
Sq4 .00586781 .00586795 134 E-7 139 E-7 3.11E-5 248 E-5
Ss .00005868 .00005868 2.01 E-9 1.40 E-9 3.13 E-7 2.49 E-7
Se .00005868 .00005868 —2.21 E-10 1.40 E-9 3.12 E-7 2.49 E-7
T; .690086 690076 —1.03 E-5 529 E-6 1.18 E-3 945 E-4
T, 356173 356181 736 E-6 5.00 E-6 1.12 E-3 892 E-4
Ts .0563335 .0563350 1.45 E-6 1.02 E-6 227 E-4 1.81 E-4
Ty .00917058 .00917077 1.92 E-7 1.71 E-7 3.82E-5 3.05E-5
Ts .00009201 .00009201 3.04 E-9 1.72 E-9 3.85 E-7 3.06 E-8
Te .00009201 .00009201 —1.43 E-10 1.72 E-9 3.84 E-7 3.06 E-8
S12 .0869305 .0869354 4.84 E-6 2.85E-6 6.36 E-4 5.07 E-4
S13 .0122246 .0122281 3.53 E-6 2.25E-6 5.03 E-4 4.02 E-4
S1a .00195594 .00195640 4.66 E-7 9.91 E-7 222 E-4 1.77 E-4
Sis .00001956 .00001969 132 E-7 1.01 E-7 225E-5 1.80 E-5
Si6 .00001956 .00001954 -2.17 E-8 1.01 E-7 2.25 E-5 1.80 E-5
Sa3 .00543316 .00543023 -2.93 E-6 2.09 E-6 4,68 E-4 3.74 E-4
Soa .00086931 .00086936 524 E-8 8.82 E-7 1.97 E-4 157 E-4
Sas .00000869 .00000857 -1.23 E-7 8.91 E-8 1.99 E-5 1.59 E-5
Sa6 .00000869 .00000871 1.62 E-8 8.93 E-8 2.00 E-5 1.59 E-5
S3a .00012225 .00012194 -3.05 E-7 434 E-7 9.70 E-5 7.75 E-5
S35 .00000122 .00000125 227 E-8 4.38 E-8 9.79 E-6 7.82 E-6
S36 .00000122 .00000125 2.59 E-8 439 E-8 9.82 E-6 7.83 E-6
S4s .00000020 .00000019 —6.81 E-9 1.82 E-8 4.08 E-6 3.25E-6
Sa6 .00000020 .00000017 -2.97 E-8 1.83 E-8 4.10 E-6 3.28 E-6
Sse 2.0E-9 —3.09 E-10 —2.26 E-9 1.84 E-9 412 E-7 3.29 E-7
T2 957216 957215 —8.64 E-7 1.01 E-6 225E-4 1.80 E-4
Tis 732336 732331 —5.22 E-6 4.75 E-6 1.06 E-3 8.49 E-4
Tia .696964 696954 -9.35E-6 520 E-6 1.16 E-3 929 E-4
Tis .690155 690145 -1.01 E-5 529 E-6 1.18 E-3 9.45 E-4
Tie .690155 690145 —1.03 E-5 529 E-6 1.18 E-3 9.45 E-4
Tos 405238 1405244 5.97 E-6 529 E-6 1.18 E-3 947 E-4
Tog .364161 364168 7.47 E-6 5.06 E-6 1.13 E-3 9.02 E-4
Tos 356254 356261 722 E-6 5.00 E-6 1.12 E-3 892 E-4
Tae 356254 356261 7.36 E-6 5.00 E-6 1.12 E-3 892 E-4
Tss .0653170 .0653180 1.00 E-6 1.20 E-6 2.69 E-4 2.14E-4
Tss .0564237 .0564251 1.46 E-6 1.02 E-6 2.28 E-4 1.82 E-4
Tse .0564237 .0564252 149 E-6 1.02 E-6 228 E-4 1.82 E-4
Tas .00926228 00926248 1.96 E-7 1.73 E-7 3.87 E-5 3.09 E-5
Tae .00926228 .00926243 1.50 E-7 1.73 E-7 3.86 E-5 3.08 E-5
Tse .00018401 .00018401 —1.34 E-10 3.72 E-9 8.32 E-7 6.63 E-8
Py 0 .0000156 1.56 E-5 9.02 E-6 2.02 E-3 1.61 E-3
P, 0 .0000177 1.77 E-5 9.10 E-6 2.03 E-3 1.62 E-3
P3 0 .0000219 219 E-5 9.78 E-6 2.18 E-3 1.74 E-3
Py 0 .0000187 1.87 E-5 9.93 E-6 222E-3 1.77 E-3
Ps 0 .0000195 1.95E-5 9.96 E-6 223E-3 1.77 E-3
Pg 0 .0000194 1.94 E-5 9.96 E-6 223 E-3 1.77 E-3

numbers. For the methods comparison in Table 2, the use of quasi-
random numbers would benefit the single-estimate methods more
than the double estimate methods, because the performance
degrades when the primed and unprimed inputs are interchanged
(Saltelli et al., 2010). The single-estimate standardized methods
B1-Bs performed better than any of the raw data single-estimate
methods, and might therefore be preferred when using quasi-
random numbers.

The use of quasi-random numbers in models like SHEDS (Isaacs
et al., 2010; Glen et al., 2010) is problematic when the number of
required inputs is large (SHEDS requires about 45,000 per itera-
tion). Each input occupies one column of the quasi-random matrix
(each row is a model iteration), and the columns further to the right
are less well uniformly distributed (Saltelli et al., 2010). In addition,
SHEDS analysis typically involves various subgroupings of the
model output into specific population cohorts. With quasi-random
numbers these subgroups would technically no longer be repre-
sentative samples because the inputs used by them would not
exactly be equidistributed in the allowed space. With larger N this
problem would diminish, but SHEDS runs are fairly slow (about

N = 5 to 10 per minute, depending on model settings), so runs of
more than several thousand are impractical.

5.4. Limits as the indices approach zero or one

It can be disconcerting to obtain estimates that are negative or
above one, which are not possible values for the true indices. This is
relatively infrequent when using method Ds. Method D3 works well
even for first-order indices close to zero. Even with just N = 1000
iterations, every estimate of S5 and Sg was between .0000531 and
.0000673, not far from the theoretical value of .0000587. Using
standardized output, the estimates s; = ¢; — pjand tj = 1 — c_; both
approach zero when the true indices approach zero. Conversely, the
estimates s; = ¢jand tj = 1 — ¢_j + p; both approach one when the
true indices approach one.

5.5. Use of raw versus standardized output

Methods B1—B3 and D;—D3 use standardized model output
and were initially included because modelers sometimes use this
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Table 4

Sensitivity indices estimated using method D3, with 10 sets of model runs with N = 1000 each. The notation “E-n” stands for “x10~"".

Index Theoretical value Mean estimate Error in mean estimate Std. error of mean Standard deviation Mean absolute difference
St 587 .593 6.4 E-3 3.3E-3 1.0 E-2 9.8 E-3
Sz 261 257 -3.8E-3 4.8 E-3 1.5E-2 1.3E-2
S3 .0367 .0368 1.3 E-4 84 E-4 2.7E-3 22 E-3
S4 .00587 .00589 1.8 E-5 1.3 E-4 4.2 E-4 32E-4
Ss .0000587 .0000593 6.1 E-7 1.5 E-6 4.6 E-6 3.9E-6
Se .0000587 .0000604 1.7 E-6 9.7 E-7 3.1E-6 2.7 E-6
T; .690 701 1.0 E-2 3.2E-3 1.0 E-2 1.3 E-2
T, 356 354 —-2.1E-3 44 E-3 14 E-2 1.2 E-2
Ts .0563 .0566 25E-4 1.0 E-3 3.2E-3 2.6 E-3
Ty .00917 .00932 1.5E-4 1.7 E-4 5.5E-4 4.8 E-4
Ts .0000920 .0000926 59E-7 2.0E-6 6.5 E-6 5.4 E-6
Te .0000920 .0000950 3.0E-6 1.3 E-6 4.1 E-6 3.7E-6
S12 .0869 .0850 -19E-3 3.8 E-3 1.2 E-2 1.1 E-2
Si3 .0122 .0076 —4.6 E-3 3.0E-3 9.5 E-3 8.2 E-3
S14 .00196 .00066 -1.3E-3 8.1E-4 2.6 E-3 24 E-3
Sis .0000196 —2.6E-5 —4.6 E-5 8.8 E-5 2.8 E-4 24 E-4
Si6 .0000196 —2.9E-5 —49 E-5 9.1 E-5 29E-4 24E-4
Sa3 .00543 .00928 39E-3 24 E-3 7.7 E-3 6.3 E-3
Saa .000869 .001987 1.1E-3 1.0 E-3 3.2 E-3 2.8 E-3
Sas .0000087 .0000189 1.0 E-5 7.7 E-5 24E-4 1.8 E-4
Sa6 .0000087 .0001468 14E-4 5.1 E-5 1.6 E-4 1.8E-4
S34 .000122 .000066 —5.7 E-5 35E-4 1.1E-3 89E-4
S35 .0000012 .0000039 2.7 E-6 5.4 E-5 1.7 E-4 1.3E-4
S36 .0000012 —6.7E-5 —6.8 E-5 4.8 E-5 1.8 E-4 1.3 E-4
S4s .0000002 —1.3E-5 -13E-5 1.7 E-5 5.5 E-5 4.8 E-5
Sas .0000002 —2.4E-6 -2.6 E-6 1.2 E-5 3.8 E-5 3.1E-5
Sse 2 E-9 2.1 E-7 2.1E-7 2.6 E-6 8.3 E-6 72 E-6
T2 957 .958 48 E-4 8.0E-4 2.5 E-3 1.6 E-3
Tis 732 738 53 E-3 52 E-3 1.7 E-2 1.5E-2
T14 697 .706 9.1 E-3 33E-3 1.0 E-2 1.2E-2
Tis .690 701 1.0 E-2 3.2 E-3 1.0 E-2 1.3 E-2
Tie .690 701 1.0 E-2 3.2E-3 1.0E-2 1.3E-2
Tos 405 407 2.1E-3 59 E-3 1.9E-2 1.6 E-2
Ty 364 363 -7.1E-4 4.7 E-3 1.5 E-2 1.3 E-2
Tas .356 354 -2.0E-3 44 E-3 14E-2 1.2 E-2
Tae 356 354 -19E-3 44 E-3 14 E-2 1.2E-2
Tsa .0653 .0659 5.4 E-4 1.2 E-3 3.7E-3 2.8 E-3
Tss .0564 .0567 23E-4 9.9 E-4 3.1E-3 2.6 E-3
Tse .0564 .0566 1.8 E-4 1.0E-3 3.2 E-3 2.7 E-3
Tas .00926 .00940 14E-4 1.8 E-4 5.6 E-4 49 E-4
Tye .00926 .00941 14 E-4 1.8 E-4 5.8 E-4 49 E-4
Tse .000184 .000187 3.0E-6 49 E-6 1.5E-5 1.1E-5
Py 0 —.0026 -2.6 E-3 8.8 E-3 2.8 E-2 23E-2
P, 0 —.0046 —4.6 E-3 9.2 E-3 29E-2 25E-2
P3 0 .0003 2.6 E-4 8.9E-3 2.8 E-2 2.1E-2
P4 0 .0023 23 E-3 1.1 E-2 33 E-2 2.6 E-2
Ps 0 .0026 2.6 E-3 1.1 E-2 34E-2 2.6 E-2
Ps 0 .0025 2.5E-3 1.1E-2 33 E-2 2.6 E-2

practice. The standardization process destroys some information,
and any formula utilizing standardized output can also be written in
terms of raw output, by replacing each g with Equation (4). Hence,
formulas using the raw output can always be created that equal or
exceed the performance of formulas that use standardized output.

The use of standardized output may result in simpler-appearing
formulas, and has the benefit of focusing on the direct evaluation of
correlations. The raw data methods tend to focus on separately
evaluating covariances and variance, and then taking ratios. These
estimates are not independent, being derived from the same model
runs. The standardization process simplifies the determination of
the spurious correlation term. However, p; only approximates the
actual spurious correlation in each index, so methods D1—D3; might
still be improved. Ultimately, a raw data method may be found that
outperforms all the standardized methods.

5.6. Higher-order indices

When evaluating second-order (and higher) indices, the methods
using standardized output provide clear guidance. For example, to

obtain s and ty using method D, first calculate ¢, = 1/2N
>2(8185 + &87) and c_1; = 1/2N (8182 + &1&5). Then s13 = ¢z
—p12H(c12 = 1/2) = sy —spand t12 =1 — c_12 + p12H(c12 — 1/2). By
contrast, the optimal formulas for raw data methods may not always
be clear. For example, the proper combinations of means and vari-
ances for method C3 may not be obvious for second order indices. For
total effects, the generalization of Jansen’s formula given by Equation
(20)in Saltelli et al. (2010) seems reasonable, but comparison testing
of estimates of second-order indices is beyond the scope of this
paper.

The 2] + 2 model run scheme allows evaluation of all possible
sensitivity indices for models with | = 5 or fewer groups of inputs.
For ] > 5 the evaluation of specific higher-order interaction terms
will generally require additional model runs. For example, to find
Sabe, Place inputs a, b, and c into a separate class by assigning
them their primed sample vectors, while assigning the unprimed
vectors to all other inputs. The collective index for this class is
Cabc = Sq + Sp + Sc + Sap + Sac + Spbc + Sape. This equals the
correlation between the output vectors from the run with the
above class assignments and the run with all inputs in the primed
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class. Subtracting the appropriate first and second-order indices
leaves Sgpc.

Even without additional runs the size of higher-order indices
can be bounded. Clearly, any interaction term involving j cannot
be larger than the difference (Tj — S;). Even stricter bounds
are possible. For example, S135 cannot be larger than the minimum
of (T1 — S1 — S13 — S15), (T3 — S3 — S13 — S35), and (T5 — S5 — S15 — S35),
all of which may be estimated using the standard set of 2] + 2
model runs.

5.7. Use of available information

Given 2/ + 2 model runs, there are (J + 1)(2/ + 1) distinct
pairs of output vectors, and each pair has a sample correlation.
Of these, | + 1 measure spurious correlations, leaving 2(J* + J)
others. For both main and total effects, there are J first-order and
JUJ — 1)/2 second-order indices, or J* + J together. With two pairs
of outputs used to estimate each index, all the non-spurious
correlations are utilized. Methods D;—D3 use the J + 1
spurious correlations to improve the other estimates. Since all
possible pairs of output are utilized, it is unlikely that another
evaluation system using the standardized output would be much
more efficient for evaluating all the first and second-order
indices.

5.8. Extension to more complicated models

While these methods have been tested on other simple functions,
it would be useful to compare the various numerical evaluation
formulas from Table 2 on more irregular functions than the
G-function. This would require functions that can still have their
sensitivity indices computed by direct integration, to allow the
accuracy of the methods to be determined. However, the concept of
subtracting an estimate of the spurious correlation from the estimate
of the sensitivity index appears to be general and should not depend
on the choice of model.

6. Conclusion

Sobol’s method of sensitivity analysis is well suited to high-
dimensional stochastic computer models, and has been
successfully implemented in SHEDS. The methods presented
herein provide a simple correlation-based numerical approach to
calculating the estimates and reducing errors associated with
spurious correlation. The use of 2] + 2 model runs to obtain
double estimates provides good estimates of all the first and
second-order main and total effect indices. The method is easy
to implement, and provides a framework for iterative examina-
tion of groups of inputs in complicated stochastic models.
Sobol’'s method can aid in the identification of key input
distributions in SHEDS and other EPA human exposure models,
and thus inform data analysis or data collection prioritization
decisions.
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Appendix. Variance in the double estimate of spurious
correlation

The double estimate of the spurious correlation p; is ( 4 poo) [ 2.
While the variance of pﬂ and pg, are both 1/N, the varlance of the
average differs because the two are not independent. In general,
Var(x) = E(x*) — E(x)%. For pj» the expectation value E(p;) = 0 and the

. . 1 1 1
variance is Var(p;) = ZE(pjf + 2000 + P30) = 55+ 5E(Pfjfoo)

1 1 1
N2_&8& and poy = 5D 208, then pjphy = 1
>3 g8y &ok- Explicit summation indices have been added for
ik

Since p]’.j =

clarity. When k = i the two summations may be separated and
both have expected values of zero. The remaining case for k =i is

E(p Jl'j Poo) E [ Z g;igjigéigOi]
1

While this formula applies to any model, the last expression is
difficult to evaluate in general. However, the G-function has
a special property that each partial variance equals the product of
the first-order partial variances with the same set of indices. This
property extends to the h functions in the decomposition of the
output as described in Sobol’ (1990):

= h0+Zh(u +> Zhu u;, uj) +ZZ

i j>i i j>i

3 g (g, 5, ) + -
k>j

wE (8i88080)

The arguments are all random numbers sampled uniformly
between zero and one. These are suppressed from here on, as
the subscripts on each h indicate the relevant arguments. For the
G-function, hj, = hj hy, hyjx = hihjhg, Vie = ViVi, Vi = Vi V; Vi, and so
on. It is easily demonstrated that this property is unaffected by
grouping, for both the h functions and the partial variances. For any
G-function, divide the inputs into two groups: one contains only
input j, and the other group —j contains all other inputs. The output
is decomposed as

f = h0+hj+h,j+hj7,j = h0+hj+h,j+hjh,j

Let V be the variance of this particular choice of G-function.
The output standardized to mean zero and variance one is
g = (hj + h_j + hjh_j)/V. There are four possible model runs using
given realizations in the Sobol method: groups j and —j may be
either primed or unprimed, independently. Indicate the choice by
appending a prime (or not) to each h. The four specific realization
vectors are

(h +h]+hh])/\/_

8o

20

(h’+h’ +ih ']>/\/_
= (B+hj+lh ) [V

= (h+n+mh ) [V

The expectation values of various combinations of h terms are
found by integrating over the appropriate inputs from zero to one.
Each h function has mean zero and the integral of h? is the corre-
sponding partial variance. Expand the product of the four g terms
listed above and keep only terms containing no first powers of any
h (since those integrate to zero). Thus,
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VE(gigighso) — [ Wh? o+ [ WEnEH2 [ HEnPR
22 [p2p2 e [ p2p2 g0
e ey
212102 K2
+/hj h2h2 2,

The above integral signs represent the entire input space, both
primed and unprimed. The four cases jj,—j, and —j use indepen-
dent random samples, so the integrals may be separated. Note
that fhjzdj = j'h]/,zdj’ = Vs, and .['h/_zjd(—j) = fh’_Zjd(—j’) = Vs
Hence,

V2E(glgigog) = V2S? + VASES 4 VASES_j 4 V282, + V3S;S?
+ V35,82 4 VAs?S?,
For the two-group model as a whole,
1=5+5;+S_;

The interaction termisS; ; = [h?h?; = V2S;S_;. Hence,1=S;+
S_j+ V55, and

1-5;

ST 1% VS

Substituting this into the above equation for E(gggégo)
produces (after some algebra)

1-5;
— . L - S .
The total effect index for j is Tj = Sj + Sj_j = 1-5_;. Hence,

E(ggigogo) = 1-25(1-T) = 1-25;+ 28T,
Therefore, the variance of pj is

Var(pj> = % + %E (g}gjgégo> L e U SJ)\]—F 5]

Neither S; nor Tj is affected by regrouping the inputs in —j, so this
formula applies to input j in the ungrouped G-function as well. This
derivation may be applied to any choice of j. The contribution
(—S;j + SjTj) is never positive and results in less overall variance than
for either pj; or pp, alone, unless Sj= 0 or Ty = 1. This result applies to
any model for which the partial variance relation (Vj, = V;V) holds
for all combinations of indices, which includes the entire family of
G-functions.
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