
 1

 1 
 2 
 3 
 4 

Assessing spatial and temporal variability of VOCs and PM-components in outdoor air during 5 
the Detroit Exposure and Aerosol Research Study (DEARS) 6 
   7 

Sarah D. Bereznicki*1, Jon R. Sobus1, Alan F. Vette1, Matthew A. Stiegel2, and Ron W. 8 
Williams1 9 

 10 
  11 
 12 
 13 
 14 
1U.S. Environmental Protection Agency, National Exposure Research Laboratory, RTP, NC 15 
27711, USA 16 
 17 
2Department of Environmental Sciences and Engineering, Gillings School of Global Public 18 
Health, University of North Carolina, Chapel Hill, NC 27599, USA 19 

 20 
 21 

 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
*Corresponding author. Tel.: +1-919-541-1088; fax +1-919-541-0905 31 
E-mail address: bereznicki.sarah@epa.gov (S. Bereznicki) 32 
 33 
 34 
Keywords: DEARS, elements, VOCs, spatial variability, temporal variability, mixed models 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 



 2

Abstract 47 
 48 

Exposure models for air pollutants often adjust for effects of the physical environment 49 

(e.g., season, urban vs. rural populations) in order to improve exposure and risk predictions.  Yet 50 

attempts are seldom made to attribute variability in observed outdoor air measurements to 51 

specific environmental variables.  This research presents a statistical strategy to identify and 52 

explain the spatial and temporal components of air pollutant measurement variance using 53 

regional predictors and large-scale (with impacts over multiple kilometers of distance) emission 54 

source effects.  The emission sources considered in this investigation include major highways 55 

and industries, and were chosen based on their proximity to monitoring areas designated in the 56 

Detroit Exposure and Aerosol Research Study (DEARS).  Linear mixed effects models were 57 

used to investigate 24-hr averaged outdoor residential air measurements of several pollutants, 58 

including PM2.5 mass, PM components (elemental carbon, organic carbon, metals, elements), 59 

nitrogen dioxide, and volatile organic compounds (VOCs).  Three hierarchal statistical models 60 

were utilized to calculate and examine variance component estimates for each analyte before and 61 

after adjustment for fixed effects, which included sampling season, day of the week, air 62 

concentrations at an ambient (centralized) monitoring site, and the frequency of time a receptor 63 

was downwind of specific large-emissions sources.  Results indicate that temporal variability 64 

accounted for the majority of total measurement variance (90% on average).  Adjustments for 65 

ambient concentration and sampling season significantly reduced temporal variance estimates for 66 

most VOCs and for about half of the PM components (generally with reductions of 24 to 97%).  67 

Major exceptions to this trend were found with metals (Fe, Mn, and Zn), ethyltoluene, and p-68 

dichlorobenzene, where only 4 to 30% of the temporal variance was explained after the same 69 

adjustments.  Additional reductions in temporal variance (up to 37%) were observed after 70 
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adjusting for the large-emission sources and day of the week effects, with the strongest effects 71 

observed for PM components, including select metals.  Thus, for the Detroit airshed, VOCs 72 

appear to have been largely affected by regional factors, whereas PM components were 73 

explained by both regional factors and localized large-emissions sources.  Examination of the 74 

radial directions associated with suspected emission sources generally supported a priori 75 

expectations of source-analyte associations (e.g., NO2 increases from areas of high vehicle 76 

traffic).  Overall, this investigation presents a statistical multi-pollutant analysis strategy that is 77 

useful for simultaneously (1) estimating spatial and temporal variance components of outdoor air 78 

pollutant measurements, (2) estimating the effects of regional variables on pollutant levels, and 79 

(3) identifying likely emissions sources that may affect outdoor air levels of individual or co-80 

occurring pollutants.   81 

 82 

 1.   Introduction 83 

Measurements of pollutants in outdoor air are affected by numerous natural and 84 

anthropogenic parameters.  Influential parameters may be obvious and direct, such as a local 85 

emission source, or more complex and indirect, such as atmospheric photochemical reactions and 86 

turbulence.  Atmospheric and exposure research strive to identify trends between influential 87 

parameters, air concentrations, and human exposures (Kousa et al., 2002; Violante, et al., 2006), 88 

but attempts are seldom made to attribute observed measurement variance to specific parameters.  89 

Such efforts may be of particular interest to modelers, risk assessors, and managers, since highly 90 

varied air concentrations, often used as model inputs, may cause large uncertainties in predicted 91 

output concentrations, population and personal exposures, health outcomes (e.g., respiratory 92 

issues, cardiovascular effects, mortality), and subsequent risk-based decisions (Zeger et al., 2000; 93 
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Calder et al., 2008; Ozkaynak et al., 2009).  If air pollution measurement variance can be 94 

attributed to specific environmental parameters, then model uncertainties may be reduced.  This, 95 

in turn, could promote one’s confidence in model predictions and the subsequent decisions.   96 

 The research described here focuses on the measurement variability observed across 97 

residential outdoor air monitors in Detroit, MI during the Detroit Exposure and Aerosol Research 98 

Study (DEARS) (Williams et al., 2009).  These monitor sites were situated with a maximum 99 

distance of 30km between any two locations.  The DEARS collected a total of approximately 100 

20,000, daily (24-hr integrated), outdoor measurements across participating households and one 101 

ambient monitoring site (Allen Park, MI MI-DEQ AIRS Site) over a three-year collection period 102 

(2004-2007).  Monitored pollutants included particulate matter (PM) mass and components, 103 

volatile organic compounds (VOCs), and criteria pollutant gases.  The ambient site was used as a 104 

centralized community monitor (historically used as a regulatory surrogate) for concentrations 105 

across the study domain and is assumed here to represent concentration trends induced by 106 

parameters affecting the whole DEARS area, herein deemed ‘regional’ effects.  The monitoring 107 

scheme involved multiple seasons (3 summer, 3 winter) and repeated measures (five consecutive 108 

days per season; all samples collected at 09:00 local time ± 2.5 hr) for each sampling location.  109 

These individual locations, up to 44 per season, were designated by participant identifiers, or 110 

PIDs.  The PIDs were contained within six a priori enumeration measurement areas (EMAs), 111 

which had different pollution impacts from regional and localized sources (Williams, 2005; 112 

Duvall et al., 2012).  The specific EMAs were defined by the presence of regional-background 113 

sources (EMA7), heavy vehicle traffic (EMA6), heavy industry (EMAs 1 and 5), mixed heavy 114 

industry and vehicle traffic (EMA3), and mixed light industry and vehicle traffic (EMA4) 115 
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(Phillips et al. (2010)).  EMA7 was not included in the current analysis because data were 116 

purposefully collected at only one PID, thus reducing the ability to conduct intra-EMA testing. 117 

Initial exposure assessments associated with the DEARS, involving various PM size 118 

fractions, (George et al., 2010; Rodes et al., 2010; Thornburg et al., 2009), PM components 119 

(Baxter et al., 2008; Williams et al., 2011a), VOCs (Barzyk et al., 2009; George et al., 2011), and 120 

NO2 (Williams et al., 2011b) have been reported.  Many of these summaries have highlighted the 121 

spatial and temporal relationships between data collected in the various EMAs and at the ambient 122 

monitoring site.  However, attempts have not been made to evaluate measurement variance 123 

components within each EMA before and after adjusting for regional and large-scale emissions 124 

source effects.   125 

Using data from the DEARS, this research demonstrates an application of statistical 126 

methods for quantification and evaluation of the spatial and temporal components of air pollutant 127 

measurement variance.  This work presents a first-step by which data users, modelers, and 128 

managers can begin to account for data variability in their analyses.  This technique is not 129 

intended as an alternative to source apportionment or dispersion/receptor modeling efforts, but 130 

rather as an informative tool for the handling of data used as inputs to such methods.  The 131 

objectives of this unique multi-pollutant analysis are to  132 

• estimate spatial and temporal variance components of daily outdoor air pollutant 133 

measurements from the DEARS using a hierarchal statistical modeling approach. 134 

• evaluate environmental parameters that are suspected to drive outdoor pollutant 135 

concentrations and for which data are widely available and easily accessible. 136 
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• attribute measurement variance to environmental parameters that have been, or may 137 

be considered, in deterministic air pollution or exposure models, and use estimated 138 

model coefficients to inform the direction and magnitude of these parameter effects. 139 

• present “heat maps” to allow rapid comparisons of results between the hierarchical 140 

models and across all pollutants. 141 

 142 

2.0 Methods and Materials 143 

2.1 Sampling scheme and analyte selection 144 

Table 1 provides a summary of outdoor residential data collected during the DEARS, 145 

listing the number of observations and associated PIDs across seasons and EMAs for VOCs 146 

(Table 1a) and PM-related analytes and NO2 (Table 1b).  Specific species for which data was 147 

available are also given.  For ease in reporting, NO2 is grouped with the PM components 148 

throughout this report.  The number of observations differ across the tables owing to differences 149 

in sampling methodologies between VOCs (passive diffusion monitors; Mukerjee et al., 2004; 150 

McClenny et al., 2005), PM components (personal environmental monitors; Rodes et al., 2010), 151 

and NO2 (Ogawa diffusion badges; Mukerjee et al., 2009; Varns et al., 2001).  Additional 152 

information on the Detroit metropolitan area and potential source impacts can be reviewed in the 153 

DEARS project design (US. EPA, 2012a).      154 

Measurement distributions for each pollutant were evaluated using the UNIVARIATE 155 

procedure of SAS statistical software version 9.2 (SAS Institute, Cary, NC).  Normal probability 156 

plots and histograms showed the data were generally right-skewed and, therefore, measurements 157 

were log-transformed prior to further statistical analyses.  Analytes were included in the 158 

statistical models when at least 75% of the total records were above an individual pollutant’s 159 
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sample-specific method detection limit (ss-MDL).  These ss-MDLs were calculated as three-160 

times the standard deviation of a set of laboratory blanks, with multiple sets of blanks over the 161 

study period resulting in several MDLs for each pollutant.  Measurements falling below a ss-162 

MDL were given an imputed value of ss-MDL / (√2) (Hornung and Reed, 1990).  Specific 163 

analytes were omitted from analysis if measurements were collected in fewer than four seasons, 164 

which secured a balanced assessment of season effects in the models.  These selection criteria 165 

resulted in an evaluation dataset of 20,090 outdoor residential measurements across 21 analytes. 166 

 167 

2.2 Data analysis and statistical model structure  168 

The data analysis was performed in three parts: (1) investigation of the concentration 169 

distributions across the entire study domain, (2) interpretation of statistically significant (p ≤ 170 

0.05) predictors of analyte levels for each EMA, and (3) evaluation of the spatial and temporal 171 

components of concentration measurement variance for each EMA.  Part 1 of the data analysis 172 

included determination of the pollutant concentration percentile estimates (via Proc 173 

UNIVARIATE), geometric means (GM) and geometric standard deviations (GSD) of the ss-174 

MDLs (via Proc MEANS), and percentage of imputed data records for individual analytes (via 175 

Proc FREQ).   176 

Parts 2 and 3 of the data analysis were performed using linear mixed-effects models, 177 

available through Proc MIXED in SAS.  First, null models containing a fixed global mean for 178 

each EMA, a random-PID effect, and a random-error effect were created for individual 179 

pollutants.  Reduced and full models were then built upon the null models, with adjustments for 180 

additional fixed effects.  Assumptions of the mixed models (e.g., normally-distributed random-181 

effect estimates and residual errors) were evaluated using standard regression diagnostic 182 
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procedures, namely residuals analysis and review of the Shapiro-Wilks test statistic.  Scaled 183 

residuals and Bayesian Information Criteria (BIC) output were also reviewed to ensure a proper 184 

covariance structure for the models.  A compound symmetry structure was used for each model, 185 

which assumes that all random PID effects are independent and all random errors for a given PID 186 

are correlated by a constant amount.  This structure was selected in part to retain model-structure 187 

homogeneity across all pollutants and simplify model output interpretation.  Finally, Studentized 188 

and Pearson residuals, restricted likelihood distance, and Cook’s D and Covariance Ratio outputs 189 

were evaluated to identify influential outliers.  These points were compared with surrounding 190 

measurements (both in time and space) to verify that they were indeed true outliers and not the 191 

result of localized trends.  From these procedures, 200 out of the total of 20,090 outdoor 192 

residential measurements (1.0%) were identified as outliers and removed from the analysis.   193 

For all linear mixed models, let hijX represent the outdoor air measurement on the j th day 194 

from the i th PID in the hth EMA, and hijY represent the natural logarithm of hijX .  From Rappaport 195 

and Kupper (2004), the null model for each analyte is given in equation 1. 196 

        hijhiYhijhij bXY
h

εµ ++== )ln(                                             (1) 197 

for h = EMA 1, 3, 4, 5 or 6; 198 

          i = 1, 2, …, nh PIDs in the hth EMA; 199 

          j  = 1, 2, …, nhi measurements of a particular analyte from the i th PID in the hth EMA. 200 

 201 

Here, the coefficient Yhµ represents the true (logged) mean outdoor residential air level in the hth 202 

EMA, hib represents the random effect of the i th PID in the hth EMA, and hijε represents the 203 

random-error effect of the j th measurement from the i th PID in the hth EMA.  It is assumed that 204 
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hib and hijε are independent random variables, and that hib and hijε are normally distributed with 205 

means of 0 and variances of 2
hbYσ and 2

hwYσ , representing the spatial (between-PID) and temporal 206 

(within-PID) components of total variance, respectively, for each EMA, h. 207 

 Reduced mixed models were created to evaluate regional and seasonal effects on outdoor 208 

air concentrations.  Equation 2 shows the reduced models for the individual pollutants. 209 

hijhihijhijhijhij bXY
h

εβββ ++++== SEASONAMBIENT)ln( 210                       
(2) 210 

Expanding from the null model (Eqn. 1), the coefficient 
h0β  represents the intercept for the hth 211 

EMA, and 1β and 2β  are coefficients for the fixed effects of AMBIENThij  and SEASONhij. 212 

These represent the ambient, central-site measurement corresponding with the j th outdoor 213 

residential air measurement from the i th PID in the hth EMA, and the climatic season during the 214 

j th measurement from the i th PID in the hth EMA (where winter = 0 and summer = 1), 215 

respectively.  An interaction between the AMBIENThij and SEASONhij terms was considered, 216 

but the effect generally did not improve the model performance.  Hence, the interaction was not 217 

adopted into the reduced model structure.   218 

The reduced mixed models were expanded upon to construct the full models, which 219 

considered up to four additional source-related fixed effects, as shown in equation 3. 220 

 221 

         (3) 222 

 223 

Here, 3β and k+3β  are regression coefficients associated with the fixed effects of DAYhij and 224 

ZONEkhj, respectively.  DAYhij is an indicator variable (where weekend = 0 and weekday = 1) 225 

representing the part of the week during which the j th sample was collected from the i th PID in 226 

hijhikhjk

K

k
hij

hijhijhijhij

b

XY
h

εββ

βββ

++++

++==

+
=
∑ )ZONE(DAY

SEASONAMBIENT)ln(

3
1

3

210



 10

the hth EMA.  The ZONEkhj term represents up to three continuous variables reflecting the 227 

percentage of time during the j th 24-hour sample period that winds traversed from a zone of 228 

large-scale emission source influence (with each individual zone identified by k, where k = 1, 2, 229 

…, K) toward the center of EMA h.  Since source influences were considered with respect to the 230 

center point of each EMA, only one ZONEkhj value was applied to all PIDs within an EMA.  A 231 

further description of the ZONE variable calculations is given in section 2.3.  It is recognized 232 

that the full model presented above does not attempt to incorporate all possible model inputs, but 233 

is a compilation of variables with the highest data-completion across participants during the 234 

DEARS.  Furthermore, these parameters are anticipated to be responsible for a majority of the 235 

observed measurement variability.   236 

For the investigation of measurement variance (analysis part 3), restricted maximum 237 

likelihood (REML) estimates of 2

hbYσ  and 2

hwYσ , the spatial and temporal variance, were 238 

determined for each of the null, reduced, and full models.  In accordance with Rappaport and 239 

Kupper (2008), the 95th-percentile spatial and temporal fold range estimates were calculated, 240 

where hbY

h
eRbY

σ̂92.3
95.0

ˆ = and hwY

h
eRwY

σ̂92.3
95.0

ˆ =
.  

Here, 95.0R̂
hbY  is the estimated fold-range 241 

containing the middle 95% of the mean pollutant levels across all PIDs within EMA h, and 242 

95.0R̂
hwY is the estimated fold-range containing the middle 95% of the pollutant levels for any 243 

given PID in EMA h.  Fold-range estimates were compared across the three models using heat 244 

maps (available through MATLAB software version 7.8, R2009a, MathWorks, Natick, MA) to 245 

rapidly interpret (1) the amount of observed measurement variance for each pollutant (null 246 

models) and (2) the extent to which measurement variance was reduced after adjustment for 247 

regional predictors (reduced models) and localized large-emissions source effects (full models) 248 

(Pleil et, al., 2011).  To identify statistically significant decreases in variance estimates between 249 
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models (null vs. reduced model estimates, and reduced vs. full model estimates), one-sided Wald 250 

tests were used:  251 

             ( ) ( ) ( )2
,

2
,

2
,

2
,

2
,

2
,

,
ˆ,ˆcov2ˆˆ

ˆˆ

ModelBCModelACModelBCModelAC

ModelBCModelAC
ModelBModelAC

SESE
Ζ

σσσσ

σσ

−+

−
=−              (4) 252 

where  Z = the standard normal distribution z-value; 253 

C = designation of the variance component (either spatial [ 2ˆbσ ] or temporal [ 2ˆwσ ]); 254 

ModelA,B = designation of compared models (‘Null’ & ‘Reduced’ or ‘Reduced’ & ‘Full’); 255 

2σ̂ = the variance estimate; 256 

    SE  = the standard error of the variance estimate; 257 

cov = the covariance between variance estimates (set to zero for a conservative test) 258 

 259 

2.3 ‘ZONE’  variable calculations 260 

As part of the full models, this research tested the presence of large-emissions sources as 261 

a significant contributor to the observed variance of outdoor pollutant measurements.  The 262 

‘ZONE’ variable was created as a surrogate for the influence of such sources, and included 263 

facilities identified as large emitters under the US EPA National Emissions Inventory (NEI, eds. 264 

2002 and 2005; US. EPA 2012b).  To represent the wide range of analytes from the DEARS, an 265 

array of pollutants on either the NEI criteria air pollutants (CAPs) and hazardous air pollutants 266 

(HAPs) lists were assessed, specifically: carbon monoxide, ammonia, sulfur dioxide, nitrogen 267 

oxides, PM2.5, PM10, toluene, xylenes (combined m-, p-, and o-), benzene, ethylbenzene, styrene, 268 

butadiene, manganese, lead, and nickel.  It was found that, for any given pollutant, upwards of 269 

90% of total annual emissions were attributed to 10-15 emission points across the study domain 270 

and that many pollutants shared major sources.  These NEI-identified sources were then 271 
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combined with additional suspected sources not monitored by the NEI but identified in the 272 

DEARS study plan (e.g. major freeways).  Together these data established the locations of likely 273 

large-emissions sources and an evaluation dataset was established for sources within an 8-km 274 

proximity to each EMA’s centroid.  Next, the 360-degree geographic space around each EMA 275 

was divided into zones of source influence, identified by the physical angle-of-exposure for each 276 

suspected source or grouping of sources (Fig. 1; Lim, 2001).  A 10-degree buffer distance was 277 

applied to each source zone to account for effects of low-wind-speed plume meandering.  278 

Finally, hourly wind data from the ambient monitor were used to calculate the frequency of time 279 

an EMA spent under influence from each of the different source zones; namely the individual 280 

ZONE effect parameters.  To confirm that multi-collinearity was minimized in the full models, 281 

correlation analyses (Proc CORR; spearman correlations) were performed for the ZONE 282 

parameters in each EMA, and resulting r-values were less than 0.55.  Similarly, correlation 283 

analyses were made between several meteorological data sites across the Detroit, MI airshed to 284 

confirm that the ambient monitor location represented wind conditions across the study domain 285 

(with correlation coefficients > 0.6). 286 

   287 

3.0 Results and discussion 288 

3.1 Descriptive statistics 289 

 Basic summary statistics for all VOCs and PM components measured in the DEARS are 290 

presented in Table 2 for the evaluated EMAs and the ambient site.  Concentrations across the 291 

VOCs spanned no more than 1-order of magnitude at either the 50th or 95th percentile, indicating 292 

the compounds generally occurred at similar levels.  Additionally, individual VOC species 293 

ranged no more than 1-order of magnitude from the lowest detected value to the 95th percentile 294 
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estimate, suggesting relatively uniform concentrations across the study domain.  Fairly similar 295 

results on a per-analyte basis were observed for the PM components where, with the exception of 296 

Zn, analytes generally ranged no more than 1-order of magnitude across the lowest detected 297 

value and 95th percentile estimate.  However, when examined across analytes, PM components 298 

spanned 3-orders of magnitude at both the 50th and 95th percentiles.  This suggests the impact of 299 

localized emissions sources for certain PM components throughout the study area.   300 

   301 

3.2 Mixed Model Results 302 

3.2.1  Analysis Part 1 – Global intercept estimates (null models) 303 

 The fixed global intercepts associated with the null models (not shown) were evaluated to 304 

compare the estimated mean levels of individual pollutants across the five EMAs.  The largest 305 

intercept estimates were observed in EMA 5 for 15 of the 21 analyzed species (benzene, 1,3,5-306 

trimethylbenzene, carbon tetrachloride, ethylbenzene, m-p-xylene, o-xylene, toluene, organic 307 

carbon, PM2.5 mass, calcium, iron, potassium, manganese, sulfur, and zinc).  Of these 15 308 

pollutants, the second-highest estimates were observed in EMA1 for 9 species (ethylbenzene, m-309 

p-xylene, o-xylene, toluene, calcium, iron, potassium, manganese, and zinc) and in EMA3 for 310 

another 3 species (carbon tetrachloride, organic carbon, and PM2.5 mass).  For both nitrogen 311 

dioxide and elemental carbon, the two highest intercept estimates were observed in EMA3 and 312 

EMA1, respectively.  Intercept estimates were largest for only four analytes in the remaining 313 

EMAs (EMA4 and EMA6), namely p-dichlorobenzene, tetrachloroethene (PERC), ethyltoluene, 314 

and 1,3-butadiene.  Collectively, these findings highlight that the EMAs with anticipated 315 

influences from heavy industry generally presented higher concentration levels across the 316 
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majority of analytes, which is in agreement with work by Rodes et al. (2010) and Duvall et al. 317 

(2012). 318 

 319 

3.2.2.  Analysis Part 2 – AMBIENT, SEASON, DAY, and ZONE parameter effects (full models) 320 

 Results for fixed-effects parameters in the full models are presented in Table 3.  Analytes 321 

are categorized as significantly affected (p < 0.05; either positively or negatively impacted) or as 322 

not affected by the fixed effects AMBIENT, SEASON, and DAY.  A detailed review of the 323 

ZONE effect is presented in the supplemental section.   324 

 A positive AMBIENT effect indicates that as measurements at the ambient site 325 

increased/decreased, so did the corresponding measurements within an EMA.  In contrast, a 326 

negative AMBIENT effect indicates a negative linear association between the two measurement 327 

sites.  From Table 3, it is evident that all pollutants across the five EMAs experienced a positive 328 

AMBIENT effect except for manganese in EMA5.   329 

 A positive SEASON effect identifies an increase in summertime EMA concentrations 330 

after accounting for regional concentration trends.  Conversely, a negative SEASON effect is 331 

associated with higher winter concentrations.  In general, the VOCs had elevated levels across all 332 

EMAs during the summer (a trend also observed in Stocco et al., 2008), while many of the PM 333 

components did not vary seasonally.  Higher summer concentrations of iron, manganese, and 334 

zinc were observed in EMA1 and may reflect a summertime increase in industrial operations 335 

around that sampling area.  However, these concentration trends were not shared across the other 336 

nearby industrial areas, EMAs 3 and 5.  This may reflect a reduced impact distance of the local 337 

industrial sources, thought to be the result of increased atmospheric turbulence in summertime 338 

(George et al., 2010). 339 
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 During the DEARS, many factories in the study domain were suspected to be idle over 340 

weekends and to resume normal operations patterns starting on Sunday nights.  Hence, the DAY 341 

term was defined as ‘weekday’ for Tuesday – Thursday samples and ‘weekend’ for Friday – 342 

Saturday samples.  A positive DAY effect, therefore, indicates an increase in EMA 343 

concentrations for weekday measurements after accounting for regional and seasonal effects, and 344 

a negative effect indicates higher weekend concentrations.  From Table 3, it is evident that the 345 

VOCs generally experienced no change between ‘weekday’ and ‘weekend’ scenarios.  An 346 

exception to this was observed in EMA 3, where strong weekday effects were observed on 347 

several VOCs.  This may be explained by changing traffic patterns along the Ambassador Bridge 348 

(see supplemental section).  Similarly, nitrogen dioxide concentrations in EMA6 were found to 349 

be higher on the weekend, suggesting that nearby roadways have different traffic patterns for 350 

weekends and weekdays.  Positive DAY effects were observed on iron, manganese, and zinc 351 

across EMAs 1 and 5, supporting a potential decrease in operations of the surrounding industry 352 

on weekends (US. EPA, 2012a).  Additionally, a positive DAY effect was observed on PERC in 353 

EMAs 1, 3, and 5.  However, when compared with the ZONE parameter effects (see 354 

supplemental section), the DAY effect could not be attributed to any large-emissions sources 355 

around these EMAs.   356 

 A positive ZONE effect indicates increased pollutant concentrations when winds came 357 

from a specific source-impact zone.  A negative ZONE effect, in turn, suggests increased 358 

concentrations when winds traveled from an alternative direction.  A review of the ZONE effects 359 

across the multi-pollutant suite identified suspected sources around and between the individual 360 

EMAs (results presented as supplemental material), including power generation processes, 361 

iron/steel production, automotive manufacturing, and motor vehicle operations.  These results 362 
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agree with the source apportionment findings of Duvall et al. (2012), with effects noted from 363 

steel or mixed industry sources in EMAs 1, 4, and 5, and substantial evidence of motor vehicle 364 

sources around EMA3.  365 

 366 

3.3 Analysis Part 3 – Variance component evaluation and model review 367 

 Heat maps presenting the fold-range estimates of the variance components from the null, 368 

reduced, and full models are given for VOCs (Fig. 2) and for PM components (Fig. 3).  The heat 369 

maps follow a top-to-bottom layout according to increasing model complexity, with the null, 370 

reduced, and full model results in the top, middle, and bottom tier, respectfully.  These plots 371 

show the temporal variance on the left half of the figure and the spatial variance on the right half.  372 

Each model section was divided into 5 distinct rows representing the unique EMAs.  A white dot 373 

within an individual cell indicates a statistically significant (p < 0.05) decrease in the variance 374 

estimate from the previous-level model, as given by the one-sided Wald tests defined in Eqn. 4. 375 

 376 

3.3.1 VOC Analysis 377 

 The results in Figure 2 indicate that temporal variance was predominant in the null 378 

models for nearly all VOCs.  The spatial fold ranges were generally less than 4, while temporal 379 

fold ranges varied between 5 and 17.  This suggests similar average concentrations across PIDs 380 

in a specific EMA, but differences for any given PID over time.  An exception to the temporally-381 

dominated fold range trend was p-dichlorobenzene (PDCL) in EMA4, which had a spatial fold 382 

range of 50 and a temporal fold range of 15.  Generally, the spatial fold ranges were comparable 383 

between EMAs for any VOC, illustrating that spatial variance across the study domain was 384 

relatively uniform. 385 
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 After adjusting for concentrations at the ambient monitoring site and season (reduced 386 

model), spatial fold ranges remained nearly unchanged.  This result was expected, given the 387 

relatively small spatial estimates in the null models (< 4 fold).  Significant reductions in temporal 388 

fold range (Fig. 2) were seen across VOCs, with many values dropping to ≤ 5.  This indicates 389 

that regional concentrations and seasonal effects explained a notable amount of the observed 390 

measurement variance.  However, the introduction of these parameters did not account for the 391 

large spatial variance observed for PDCL in EMA4. 392 

 Application of the full model, adjusting for the ZONE and DAY effects, resulted in slight 393 

reductions of the variance estimates.  Only the temporal fold range for toluene in EMA4 was 394 

significantly decreased from reduced model estimates.  This implies that large-emissions sources 395 

and day of the week effects did not account for substantial amounts of measurement variance for 396 

VOCs across the different EMAs.  The large spatial fold range observed for PDCL across EMA4 397 

persisted through the full model results.  This suggests that neither regional concentrations, 398 

seasonal effects, large-emissions sources, nor the day-of-week effects were responsible for the 399 

concentration differences among PIDs in that EMA.  However, significant random-intercepts 400 

were identified for 3 of the 20 PIDs, and these locations were located within 300m of one 401 

another.  This implies that PDCL levels are driven by a highly spatially-isolated event or source, 402 

such as the use of substances for tree-boring insect, moth, and mold control or wood preservation 403 

activities (US. EPA, 2000; Unger, Schniewind, and Unger, 2001). 404 

 405 

3.3.2 PM Component Analysis 406 

 Figure 3 presents the heat map for the PM components.  This figure shares features of 407 

Figure 2, with temporal fold ranges larger than spatial fold ranges (5–40 times larger).  In 408 
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general, spatial fold ranges for the PM components were between 1 and 3, indicating similar 409 

average concentrations across individual PIDs within a specific EMA.  Temporal fold ranges, in 410 

contrast, were often above 5–10, suggesting that day-to-day concentrations for any given PID 411 

varied considerably.  The largest temporal fold ranges were associated with sulfur and the metals 412 

(iron, manganese, and zinc), implying temporally-driven associations for those species.  As with 413 

the VOCs, spatial fold ranges were generally comparable between EMAs and, hence, spatial 414 

variance was relatively uniform across the study domain. 415 

 Reduced model results showed relatively no change in the spatial fold ranges; which is, 416 

again, anticipated given the small variance estimates of the null models.  Significant reductions 417 

in temporal fold ranges were observed for calcium, PM2.5 mass, potassium, elemental carbon, 418 

organic carbon, nitrogen dioxide, and sulfur.  This suggests regional concentration or seasonal 419 

drivers for these species in agreement with Thornburg et al. (2009) and Williams et al. (2009).  It 420 

is noted that the organic carbon and sulfur PM components in this analysis are heavily influenced 421 

by secondary PM formations.  Therefore, regional-scale, seasonal-dependant effects are expected 422 

to produce most of the trends and variability observed for these pollutants.  In contrast with these 423 

analytes, zinc, manganese, and iron had temporal fold ranges of between 7 and 30, indicating 424 

little difference from the null model results.  This finding coordinates well with results from 425 

Duvall et al. (2012), wherein the ambient monitor was found to not adequately represent EMAs 426 

with a close proximity to large-emissions industrial sources. 427 

 After accounting for the ZONE and DAY effects, the full models yielded several notable 428 

changes.  First, the temporal fold ranges associated with manganese were reduced to under 10 429 

across all five EMAs.  This suggests either a common emission source type or similar day-to-day 430 
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emission patterns across the EMAs.  Reductions in temporal fold range for iron and zinc across 431 

most EMAs reinforce the impact of the surrounding large-emissions sources.     432 

 433 

3.3.3 Multipollutant Comparison and Evaluation 434 

 Comparison of the VOC and PM component results indicate that outdoor residential 435 

measurement variance was temporally-driven (agreeing with findings from Lau et al., 2009).  436 

Reduced model results demonstrate the significance of regional concentration trends and 437 

seasonal effects for nearly all pollutants, with temporal fold range estimates reduced by 24 to 438 

97% (except for iron, manganese, zinc, ethyltoluene, and p-dichlorobenzene).  Full model results 439 

suggest substantial impacts from large-emissions sources and weekday effects for a handful of 440 

PM components and for virtually none of the VOCs.  This implies that VOCs are more 441 

homogenously distributed across the Detroit airshed, while primary PM components may be 442 

influenced by localized sources.   443 

 Despite reductions in the fold range estimates, some temporal variance remained in the 444 

full model for most pollutants, with the middle 95% of observations for any PID generally 445 

occurring within an approximate 8-fold range.  Exclusions to this were p-dichlorobenzene, zinc, 446 

and iron, which had temporal fold ranges of 10–20 across several EMAs.  This implies that the 447 

full-model parameters explained a majority of the observed measurement variance, but did not 448 

account for all of the variance across all of the analytes.  An examination of the ZONE parameter 449 

(see supplemental section) suggests impacts from additional sources not considered in this 450 

analysis. 451 

 452 

 453 
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4.0 Summary and Conclusion 454 

 The focus of this analysis was to present a statistical method by which air pollutant 455 

measurement variance could be calculated and evaluated, important predictors of pollutant 456 

concentrations could be identified, and measurement variance could be attributed to specific 457 

environmental parameters.  Residential, outdoor air measurements from the DEARS were 458 

evaluated for a 21-pollutant suite including VOCs, PM components, and nitrogen dioxide.  As 459 

observed with previous analyses, measurement variability was predominantly characterized by 460 

temporal variability across nearly all the analytes.  Large-emissions sources and their associated 461 

operational patterns were significant in explaining the measurement variance for PM components 462 

in the Detroit urban environment.  Variances in VOC data, on the other hand, were explained 463 

reasonably well by accounting for regional concentrations and season.  464 

 The presented method, utilizing mixed effect models and heat maps, has proven to be 465 

sufficient for capturing spatial and temporal data trends in agreement with other analyses.  466 

Hence, this technique is should be considered as a viable tool for the investigation of variability 467 

in outdoor air concentration measurements across complex, multi-scale, multipollutant datasets.  468 

The analysis highlights the need for more spatially-resolved, neighborhood-level monitoring to 469 

overcome the measurement variances not explained by concentration trends at an ambient, 470 

central-site monitor.  By starting with more spatially and temporally refined measurement data, 471 

the parameters affecting measurement variance may be more readily identified, accounted for, 472 

and, in turn, used to reduce uncertainty in modeled outputs and subsequent decisions. 473 

 474 

 475 

 476 
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