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Abstract 1 
 2 

    The physical processes involved in air quality modeling are governed by dynamically-3 

generated meteorological model fields.  This research focuses on reducing the 4 

uncertainty in the horizontal transport in the lower troposphere by improving the four 5 

dimensional data assimilation (FDDA) strategy in retrospective meteorological modeling.  6 

In particular, characterization of winds in the nocturnal low-level jet and overlying 7 

residual layer is crucial to accurately treat regional-scale ozone transport in the key 8 

airsheds of the US.  Since model errors in wind speed and direction lead to spatial 9 

displacements of pollution plumes, observations not routinely used in previous 10 

retrospective modeling are introduced into FDDA in an effort to reduce this transport 11 

uncertainty.  Prior to the main modeling sensitivity, an observational uncertainty analysis 12 

was pursued to identify uncertainties in wind speed and direction in the lower 1-km of the 13 

troposphere that are inherent in the observational data sets used for data assimilation.  14 

Comparisons of observations among various platforms (radar wind profilers, radiosonde 15 

soundings and weather radar profiles) in close proximity revealed that an uncertainty of 16 

approximately 1.8 m s-1 for wind speed and about 20° for wind direction was intrinsic to 17 

the observations.  In the modeling sensitivities, some minimal improvement of modeled 18 

winds within the convective daytime planetary boundary layer (PBL) was found when 19 

surface analysis nudging of wind was eliminated. Improvements in the nocturnal jet and 20 

residual layer winds at night are demonstrated as a reaction to the use of new 21 

observations in the data assimilation in layers above the stable PBL. There is also 22 

evidence that the assimilated observations above the convective PBL during the day led 23 

to improvements of winds within the PBL, which may relieve the need of all nudging, 24 

including surface analysis nudging within the PBL.  25 

Key Words: horizontal transport, observational uncertainty, wind speed and direction 26 
errors, nocturnal low level jet, four-dimensional data assimilation (FDDA) 27 
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1. Introduction 29 
 30 

Regional-scale photochemical grid models, such as the Community Multiscale Air 31 

Quality (CMAQ) modeling system (Byun and Schere, 2006), are frequently used for key 32 

regulatory decisions, air quality research, air quality forecasting and climate-related 33 

studies. In models such as CMAQ, it may be possible to refine chemistry, deposition, 34 

diffusion and emissions to a level of near-perfection, but systematic biases in either the 35 

strength or direction of the transport winds (disregarding other meteorological 36 

parameters) could still lead to poor air quality model solutions. Furthermore, air quality 37 

model errors that are driven by meteorology create major difficulties for air quality model 38 

developers because of a tendency to attribute these errors to chemistry, aerosol 39 

dynamics, photolysis or even other inputs like emissions. Thus, it is important to ensure 40 

that main processes, such as lower tropospheric transport, are accurately characterized 41 

so the uncertainty in the air quality modeling system inputs can be reduced. 42 

Ozone is one of the criteria pollutants that is affected by regional transport and 43 

has an adverse impact on human health, vegetation and ecosystem health (EPA 2004). 44 

Processes that lead to the formation and transport of ozone are well understood from the 45 

decades of research, which is summarized succinctly in NARSTO (2000) and EPA 46 

(2004). Ozone is formed from chemical reactions involving volatile organic compounds 47 

and oxides of nitrogen within the well-mixed planetary boundary layer (PBL) during the 48 

day in high concentration over major urban and suburban areas. In the evening as the 49 

surface cools and the stable boundary layer (SBL) forms, the deep mixed layer of ozone 50 

and other pollutants is isolated from the surface in the residual mixed layer. The 51 

decoupling of this layer with the rough surface induces an acceleration of wind a few 52 

hundred meters above the surface that is often referred to as an inertial oscillation or 53 

nocturnal jet (Blackadar, 1957), whose peak magnitude defines the top of the stable 54 
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boundary layer (SBL). Elevated plumes of pollutants are transported as much as 200-55 

400 km overnight (Blumenthal et al., 1997) by this super-geostrophic nocturnal jet that 56 

can be as much as 25 m s-1 at an average height of 300-800 m in the eastern US (Zhang 57 

et al., 2001; Zhang et al., 2006). As convective mixing resumes the following day, these 58 

ozone plumes trapped in the residual layer aloft are mixed down to the surface and 59 

combined with locally emitted precursors, further enhancing ozone concentrations (Wolff 60 

et al., 1977; Zhang and Rao, 1999; Vukovich and Scarborough, 2005).  61 

Weather, Research and Forecasting (WRF; Skamarock et al. 2008) and CMAQ 62 

models are currently the main tools used at the US Environmental Protection Agency 63 

(EPA), but they are also used by the broader national and international modeling 64 

community. A number of annual meteorological and air quality simulations have been 65 

conducted for a variety of applications over the past few years, including the Air Quality 66 

Model Evaluation International Initiative (AQMEII; Rao et al., 2011). Persistent biases of 67 

wind speed and direction were seen in previous WRF simulations including the annual 68 

AQMEII simulation for 2006. These biases and uncertainties in transport need to be 69 

minimized with the idea of observation uncertainty in mind. One idea to reduce biases in 70 

the wind field is to eliminate Four Dimensional Data Assimilation (FDDA) near the 71 

surface or within the PBL as suggested in the past by Zhang et al. (2001), which allows 72 

the PBL model to simulate the lower levels of the atmosphere that are influenced by 73 

surface fluxes free of any artificial grid FDDA influence. Godowitch et al. (2011), Shafran 74 

et al. (2000) and Zhang et al. (2001) found that eliminating FDDA below 2.0 km, 1.5 km, 75 

and 1.3 km, respectively, results in a better representation of the nocturnal jet 76 

magnitude. However, Godowitch et al. (2011) demonstrated that although the maximum 77 

nocturnal jet speed had improved, the wind speed in the residual layer above the jet 78 

from approximately 500 to 1000 m or more, where much if not most of the ozone 79 

transport occurs at night, was not improved. Godowitch et al. (2011) followed by showing 80 
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that one technique to improve transport winds in the residual layer was to utilize upper-81 

level observational data from hourly wind profiler sites. Michelson and Seaman (2000) 82 

and Nielsen-Gammon et al. (2007) demonstrated that similar wind profiles from different 83 

networks could dramatically reduce transport error using limited model domains and time 84 

periods.  85 

This study tests a number of FDDA or grid nudging techniques in WRF using 86 

more current model analyses and observational datasets in order to identify which 87 

methodology has the greatest potential to reduce error and bias in transport aloft. Before 88 

this is explored, we thought it would be prudent to examine upper-air observations that 89 

are collocated or in close proximity to understand the inherent uncertainty of the 90 

observations that are used in the FDDA to better judge meteorological model 91 

performance. Zhang et al. (2001), for one, cited the need to understand the uncertainties 92 

of different measurements used for evaluation and data assimilation. Then, an 93 

examination of a number of model sensitivities that used different FDDA configuration is 94 

conducted on a full Continental United States (CONUS) domain for shorter test period. 95 

The configuration that demonstrates the most improvement in error and bias is then 96 

applied to a full summer model run and is directly compared to the original AQMEII 97 

simulations for improvement of the lower-tropospheric transport fields.  98 

 99 

2.  Methodology 100 

     101 

2.1 Models and General Configuration 102 

WRF-ARW version 3.3 was used for all simulations performed here. Gilliam and Pleim 103 

(2010) outlined many of the physics options and run procedures for retrospective 104 

modeling performed at the US EPA. Here, two simulation periods are examined. The 105 

first is a short duration case (August 11-14, 2002) that was examined by Godowitch et 106 

al. (2011) who noted that the observed mean daily 8-hr maximum daily ozone 107 
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concentration in the eastern US over the episode was around 80 ppb, which represents 108 

the highest of that summer. This case study is used to determine the most robust FDDA 109 

strategy because of its short duration and the weather pattern is nearly identical as the 110 

high ozone case discussed in NARSTO (2000). The second simulation covers June 111 

through August of 2006. It is a re-run of AQMEII simulation that adopts the most 112 

accurate FDDA strategy based on the previous sensitivity tests. The seasonal aspect of 113 

this simulation lends more credence to the model evaluation since it covers multiple 114 

weather and air quality scenarios. 115 

The modeling domain for all of these simulations was the same and covered the 116 

CONUS, most of Canada and Mexico with a horizontal grid spacing of 12 km, 34 vertical 117 

layers extending from the surface to the 50 mb pressure level (13 layers below 1 km). 118 

This is the exact same domain and WRF configuration used by Godowitch et al. (2011) 119 

and Vautard et al. (2011). Among the physics options used for all simulations were the 120 

Rapid Radiation Transfer Model Global (RRTMG) long and shortwave radiation (Iacono 121 

et al., 2008), Morrison microphysics (Morrison et al., 2008), and the Kain-Fritsch 2 122 

cumulus parameterization (Kain, 2004). For the LSM and PBL models, the Pleim-Xiu 123 

land surface model (PX LSM; Xiu and Pleim, 2001; Pleim and Xiu, 2003; Pleim and 124 

Gilliam, 2009) and Asymmetric Convective Model version 2 (ACM2) (Pleim, 2007a; 125 

Pleim, 2007b) were used.  126 

Nudging/FDDA of full-physics models has a long history dating back to the 127 

1980’s (Stauffer and Seaman, 1987) and, in particular, the early 1990’s when Stauffer 128 

and Seaman (1990), Stauffer et al. (1991) and Stauffer and Seaman (1994) developed 129 

the technique to incrementally nudge the state variables of wind, temperature and 130 

moisture towards model analyses that are typically generated as initial conditions of US 131 

weather forecast models. This has been the US EPA protocol for both the MM5 (Otte, 132 

2008a, Otte, 2008b) and WRF (Pleim and Gilliam, 2009; Gilliam and Pleim, 2010) 133 
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models with the surface analysis nudging (Stauffer et al.,1991) of wind being applied 134 

within the PBL. Otte (2008a) and Otte (2008b) and many other studies (Stauffer et al., 135 

1993; Seaman et al.,1995; Seaman and Michelson, 2000) have argued that FDDA helps 136 

improve retrospective meteorological simulations. The studies by Otte (2008a and b) 137 

and Barna and Lamb (2000) clearly explain that FDDA improves air quality simulations. 138 

This provides some motivation that any improvements in transport or other 139 

meteorological fields from these experiments have potential to measurably reduce the 140 

uncertainty in air quality models.  141 

 142 

2.2 Data Assimilation 143 

An initial evaluation of the annual WRF simulations for AQMEII indicated the 144 

meteorological model has a large and persistent bias in 10 m wind speed across the 145 

model domain. When this bias was identified, sensitivity tests were performed, which 146 

revealed that if surface analysis nudging was eliminated, this 10 m wind speed bias was 147 

reduced. Figure 1 presents the domain-wide bias and RMSE of 10 m wind speed for the 148 

summer of 2006 AQMEII simulations. Also provided is the sensitivity where the surface 149 

analysis nudging was eliminated. While the overall RMSE of wind speed increases 150 

around 0.10 m s-1 during the day when surface analysis nudging is not used, the model 151 

bias decreases from around -0.50 m s-1 to near zero for a large part of the diurnal cycle. 152 

The impact of surface nudging on model level winds in the lower troposphere, 153 

particularly within the convective PBL, will be examined in more detail to determine if its 154 

use provides any clear benefit. 155 

In recent years, the sources of routine upper-air observations have increased 156 

spatially and temporally. These improvements in data availability present an opportunity 157 

to provide high-quality nudging fields that may provide some reduction in model error 158 

and bias in the wind fields. The first observation platform is the twice-daily radiosonde 159 
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soundings (referred to as RAOB from here forward) at locations shown in Figure 2. 160 

These are typically used in US EPA FDDA simulations and were employed in the annual 161 

AQMEII simulation. RAOB soundings have the benefit of being equally spaced across 162 

the CONUS, but the weakness is the limited routine sampling at 00 and 12 UTC, which 163 

are the times in the US that do not capture the nocturnal jet or diurnal PBL transitions. 164 

While the RAOB impact on the quality of the simulated transport fields will be briefly 165 

explored, their main use is to judge the uncertainty of the other two observation 166 

platforms.  RAOB data are considered one of the most reliable measurements as wind 167 

speed uncertainty is about 0.2-0.5 m s-1 (Velden and Bedka,2009). 168 

In the early 2000’s, 915 MHz UHF Doppler radar profilers were made operational 169 

in many areas of the US. In addition, about thirty-five 404 MHz UHF Doppler radar 170 

profilers have been operating in the central US since the early to mid 1990’s. Figure 2 171 

displays the locations of the operational wind profilers during the August 2002 sensitivity 172 

study first presented by Godowitch et al. (2011), referred to as UHF profilers from here 173 

on. The advantage of these data in assimilation is the high vertical (~55 m) and temporal 174 

sampling (1 hour and less) in the lower part of the atmosphere; the layer where pollution 175 

transport is most important. The wind data has an instrument uncertainty range of ± 1 m 176 

s-1 and 10 degrees with no minimum wind speed threshold. Certain parts of the US have 177 

a high density of these measurements, but the main drawback is that many parts of the 178 

US are not well represented and the spacing is highly irregular. However, the areas of 179 

the country that have major pollution issues, namely the Mid-Atlantic, northeast US, 180 

California and southeast Texas, do have relatively good coverage by these UHF 181 

profilers. As an example, Nielsen-Gammon et al. (2007) demonstrated that the high 182 

concentration of UHF profilers in Texas dramatically improved MM5 simulations that 183 

employed direct hourly observational nudging. 184 
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The third observation platform is the Weather Surveillance Radar-1988 Doppler 185 

(WSR-88D) radars that use a velocity azimuth display (VAD) algorithm (Lhermitte and 186 

Atlas, 1961; Browning and Wexler, 1968; Klazura and Imy, 1993) to derive a vertical 187 

profile of the horizontal wind. These Doppler-derived radar observations (referred to as 188 

VAD profiler from here forward) are a volume scan at sub-hourly intervals that provide 189 

radial wind velocity as a function of distance/range, azimuth, and elevation, which the 190 

VAD algorithm uses for the horizontal wind speed and direction estimates (Holleman et 191 

al., 2008). These VAD data as well as radar reflectivity have been used in recent years 192 

in three-dimensional variation data assimilation (3D-VAR) techniques, which are 193 

commonly employed in weather forecasting (e.g., Barker et al., 2003; Alpert and Kumar, 194 

2007; Xiao et al., 2008; Benjamin et al., 2010). Michelson and Seaman (2000) were 195 

among the first to use these data in retrospective four dimensional data assimilation 196 

(FDDA), and found that errors in simulated wind speed and direction, especially below 197 

2000 m, were reduced as a result. As discussed in Michelson and Seaman (2000) and 198 

Stauffer and Seaman (1994), VAD observations are comparable to nearby observation 199 

platforms that have less measurement uncertainty like in situ RAOB soundings, but there 200 

are instances where VAD data are not as reliable. One of the most frequent sources of 201 

uncertainty are migrating birds (Gauthreaux et al., 1998), but since this is not as much of 202 

a concern in the summer it should not present an issue for this case study, but could be 203 

a problem if the data were used for annual simulations. Studies like Gauthreaux et al. 204 

(1998), Michelson and Seaman (2000) and Illingworth and Rennie (2009) suggest the 205 

uncertainty in VAD wind measurements as compared to nearby RAOB data is around 206 

2.0-3.0 m s-1 for wind speed and 20 degrees for wind direction, but these differences 207 

were much lower below 1000-2000 m. Holleman (2005) presented a more 208 

comprehensive comparison that contained nine months of collocated RAOB and VAD 209 

data and found a positive wind speed bias of 0.5 m s-1, standard deviation of VAD-210 
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radiosonde difference of 1.5 m s-1 and 15 degrees in the layer below 1000 m. Because 211 

VAD uncertainty has been proven to increase with height above the surface, in this 212 

study, we only assimilate VAD observations below 2000 m. 213 

One key benefit of VAD data unlike the UHF profiler data is the VAD sites have 214 

continuous spatial coverage of the US (Klazura and Imy, 1993) because the network 215 

was designed to provide comprehensive tracking of severe weather. The site spacing of 216 

VAD is equally spaced like the RAOB network as illustrated in Figure 2, but about twice 217 

as dense. As a result, Obsgrid was configured with a smaller radius of influence (240 218 

km) than the default that is based of the RAOB site spacing. Another positive 219 

characteristic of VAD data as identified in Michelson and Seaman (2000) and is that 220 

VAD is not a point measurement like wind profilers and RAOB observations, but more of 221 

a volume average around the radar site, which lends itself to grid-based modeling and 222 

data assimilation. Regarding the vertical resolution, VAD does not have the vertical 223 

sampling density of the UHF profilers or RAOB, but does provide about 3 samples below 224 

1 km, which can resolve features of the nocturnal jet, residual layer and a bulk of the 225 

convective PBL. VAD does mark reported wind speeds of less than 1 m s-1 as bad, and 226 

those were eliminated from the data assimilation and evaluation. 227 

Given the above considerations and our objective of improving the modeled 228 

transport in the lower troposphere, a series of sensitivity experiments was designed to 229 

determine a new data assimilation strategy. The four-day control or base simulation 230 

(BASE) essentially used the existing US EPA modeling protocol (Gilliam and Pleim, 231 

2010) where FDDA/grid nudging is applied above the PBL for all state variables and 232 

surface analysis nudging of the 10 m wind is performed within the PBL with stronger 233 

influence near the surface that diminishes to zero at the top of the PBL. FDDA fields 234 

came from the 42 km Eta Data Assimilation System (EDAS) analyses at 00, 06, 12, and 235 

18 UTC, and a three-hour forecast for the 03, 09, 15, and 21 UTC times. The base 236 
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AQMEII simulations for the summer of 2006 has an almost identical configuration, but a 237 

more recent 12 km North American Model (NAM) analysis and three-hour NAM forecast 238 

was used instead of EDAS. Another minor difference is RAOB observations were 239 

blended with the 12 km NAM at 00 and 12 UTC for the three-dimensional grid nudging 240 

using the Obsgrid objective analysis tool 241 

(http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap7.htm). 242 

Obsgrid was used to blend 10 m wind observations with the analyses and three-hour 243 

forecast fields for the surface analysis nudging of wind. The 10 m wind observations 244 

were directly extracted from the ds464.0 global surface observation database archived 245 

at National Center for Atmospheric Research (NCAR; 246 

http://dss.ucar.edu/datasets/ds464.0). 247 

Sensitivity 1 (SENS1) is the same configuration above, but surface analysis 248 

nudging is completely disabled so as to eliminate all nudging within the PBL. Sensitivity 249 

2 (SENS2) will illustrate the impact of eliminating all nudging close to the surface. In the 250 

SENS2 simulation, there is no surface analysis nudging or three-dimensional analysis 251 

nudging of any state variable below approximately 2000 m. Sensitivity 3 (SENS3) utilizes 252 

UHF profiler data to improve the three-dimensional wind analyses using the Cressman 253 

objective analysis scheme (Cressman, 1959) in Obsgrid. SENS3 nudging is configured 254 

like SENS1 where nudging is completely eliminated within the PBL, but above the PBL, 255 

WRF is nudged towards the UHF profiler-influenced Obsgrid re-analysis. While the 256 

profiler data will be used to evaluate the error and bias associated with this simulation as 257 

a check of the data assimilation veracity, VAD will provide an independent verification at 258 

locations away from the profiler sites. It should be noted again that the assimilation uses 259 

three hourly re-analyses because of the first-guess analysis interval, but the evaluation 260 

considers all hourly samples, so two of three observations are withheld from the 261 

assimilation.  262 

http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap7.htm
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Sensitivity 4 (SENS4) utilized VAD wind profiler data only in the assimilation. As 263 

with SENS3, the VAD data is blended with the analysis and short-term forecasted wind 264 

field on the WRF grid, and no nudging is done in the PBL. This simulation is evaluated 265 

against the independent UHF profiler data. Sensitivity 5 (SENS5) employs nudging fields 266 

that are a blend of both the VAD and UHF profiler data with the first guess analysis fields 267 

and the surface nudging is not performed within the PBL. Sensitivity 6 (SENS6) utilizes 268 

UHF, VAD and RAOB observations in the data assimilation. The main test here is to 269 

ensure that by adding twice daily RAOB, the model performance relative to VAD and 270 

UHF observations is not diminished. 271 

 272 

3.  Results and Discussion 273 

 274 

3.1 Inherent Uncertainty in the Observations 275 

Since RAOB, UHF and VAD profiles, are used in these experiments for data 276 

assimilation, it is prudent to inter-compare the various observations in order to quantify 277 

the level of observational uncertainty that can be expected. This not only provides a 278 

quality control check of the model inputs, but also helps understand the limits of 279 

predictability for a model that uses uncertain inputs. The original UHF, VAD and RAOB 280 

observations were interpolated from their native height structure to the model levels 281 

using a model evaluation tool. This interpolation to the model grid does inject some 282 

uncertainty, but the Obsgrid tool also interpolates to model levels for the data 283 

assimilation, so these comparisons provide a total uncertainly level that can be expected 284 

from this model input. All observational data were then extracted for the summer of 2006 285 

(JJA) at the approximate model levels of 400, 700 and 1000 m. For each observation 286 

platform (VAD, RAOB and UHF profiler), sites of the other two platforms were probed for 287 

those that fell within a physical site separation distance of 75 km. For each site pair and 288 
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at each height level, the observations were matched temporally and the average root-289 

mean-square error (RMSE), bias or mean error, and the index of agreement (IOA) 290 

among all site pairs were computed for wind speed (Wilks, 1995). The mean absolute 291 

error (MAE) and bias were computed for wind direction. For wind direction the MAE was 292 

chosen over RMSE because of the greater sensitivity to large difference between the 293 

model and observations (Wilks, 1995), which often occurs with wind direction, especially 294 

during light wind conditions. These statistics in Table 1 indicate that the UHF and VAD 295 

profiler data in close proximity have an approximate error of around 2.1 m s-1; a high 296 

wind speed bias nearing 1 m s-1 and IOA of around 0.65. The apparent stronger winds in 297 

VAD relative to UHF is most likely relate to the minimum VAD wind of 1 m s-1 while UHF 298 

observations have no minimum wind speed threshold. Table 1 indicates the paired sites 299 

within 75 km of each other have an average MAE of about 25 degrees with a minimal 300 

bias.  301 

The next two platform inter-comparisons utilize the twice-daily RAOB 302 

observations, so the sampling size is much smaller than that in the previous comparison 303 

that use hourly VAD and UHF. That said, there are a total of about 100 RAOB sites of 304 

twice daily observations over 3 months, so the sample is adequate in a statistical sense. 305 

For the RAOB versus UHF comparison (Table 1), 17 site pairs have spacing less than 306 

75 km. The RMSE of wind speed is around 1.6-1.9 m s-1 for these sites, which is lower 307 

than in the inter-comparison of the UHF profiler and VAD. The overall bias between 308 

these sites is smaller (around +/-0.1 m s-1 or less) and the IOA is larger (0.7-0.8) than 309 

those in the UHF versus VAD comparison. The wind direction (Table 1) for the same 310 

paired RAOB-UHF data indicate the average wind direction error is around 20 degrees, 311 

which is about 5 degrees lower than the UHF-VAD comparison. The wind direction bias 312 

is minimal as well.  313 
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The final platform comparison is the RAOB observations with the nearby VAD 314 

data. This comparison is more unique than the other two in that many of the RAOB 315 

balloon launches are performed at National Weather Service (NWS) offices where the 316 

VAD is derived from the weather radars. According to the paired site separation 317 

distance, 38 of the 59 site pairs that have a separation distance of 75 km or less are 318 

actually collocated or have a spacing of less than one model grid cell. Since there is less 319 

uncertainty in the in situ RAOB observations, this comparison provides a strong measure 320 

of the representativeness of the VAD data.  321 

Table 1 indicates that the RAOB-VAD pairs have an average RMSE of around 322 

1.9 m s-1. A more specific analysis was done for the 38 collocated sites only and the 323 

RMSE for wind speed at 750 m drops slightly from 1.81 to 1.76 m s-1. Like the UHF 324 

profiler and VAD comparison, the VAD data has a positive wind speed bias of around 325 

+0.5 m s-1 when compared to the RAOB. Since the RAOB versus UHF profiler had a 326 

smaller bias and error, this may indicate that VAD has systematically higher wind speed 327 

and may contain more uncertainty than the other two platforms. Figure 3 provides a 328 

more detailed look at the comparison by providing the RMSE of each site pair spatially. 329 

The size of the identification dot is inversely proportional to the site separation distance 330 

(i.e., largest dot signifies sites are collocated) and the color identifies the RMSE level. 331 

The closely-spaced or collocated sites have wind speed RMSE’s of 1.50 to 2.25 m s-1 332 

while most of the sites with larger separation distances have RMSE’s greater than 2.5 -333 

3.0 m s-1. 334 

The wind direction error in this case is also reduced as the RAOB-VAD pairing 335 

distance decreases. The mean absolute error was around 17-20 degrees for closely 336 

spaced sites. No large wind direction bias is found. The spatial plot of these errors in 337 

Figure 3 indicates very small difference between RAOB and VAD in the central US with 338 

many paired data having MAE of 10 degrees or less. These small differences likely 339 
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result from the climatologically steady southerly flow (Great Plains low-level jet) over 340 

relatively flat land results in less wind flow variability on spatial scales of 100 km. The 341 

differences are larger in the eastern US (20-25 degrees) and western US (many sites 342 

pairs greater than 30 degrees). It is likely that the complex geography is the main cause 343 

for difference between closely spaced sites in the western US, and in the eastern US, 344 

summers are dominated by the Bermuda High that results in lighter and more variable 345 

wind on average, which can result in large wind differences over a small distance.  346 

Others have examined observations in a similar manner. Gauthreaux et al. 347 

(1998) compared co-located RAOB and VAD observations at a few sites in Louisiana 348 

and found that VAD data that was uncontaminated by bird migration was on average 349 

about 2.25 m s-1 different (mean absolute error) than the RAOB wind speed. This study 350 

was somewhat limited because only a few sites along the Gulf coast were considered 351 

and the total number of samples was only nine. Michelson and Seaman (2000) 352 

examined 5 collocated sites in the northeast US, which included a total of 90 paired 353 

sounding samples and found the RMSE of wind speed to be 3.6 m s-1 over the whole 354 

300-3300 m sounding, but much of this error was because of poor agreement above 355 

2000 m. While they did not supply the RMSE of wind speed specifically for levels below 356 

1000m, the mean error or bias was supplied and it was around 0.5 m s-1, which is similar 357 

to what has been found here. They also found the RMSE of wind direction was 32 358 

degrees, which is slightly larger than the results seen here. Holleman (2005) showed an 359 

almost identical bias and error as found here using a similar comparison, but at only one 360 

collocated VAD-RAOB observations. Holleman (2005) included 9 months of data and 361 

found the standard deviation of the VAD-RAOB wind speed difference around 1.5 m s-1 362 

with a bias of 0.5 m s-1 and a standard deviation of wind direction difference of 15 363 

degrees.  364 

 365 
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3.2 Model Sensitivity Tests 366 

Key questions of these model sensitivities include whether or not the limitation of 367 

nudging to the free troposphere only, or a certain height above ground level, will improve 368 

transport in the lower 1000 m of the troposphere. Also, can observation platforms such 369 

as UHF and VAD, if incorporated into the FDDA analyses, provide some benefit in 370 

reducing errors in the lower troposphere wind? To address these questions, the errors of 371 

the sensitivities were computed over the 300-1000 m layer at all UHF and VAD sites. 372 

This layer was chosen because it covers much of the nocturnal jet and residual layer at 373 

night and is representative of the convective PBL during the day, but also because the 374 

lowest height of VAD is around 300 m. The layer-averaged change in model error 375 

between the sensitivities and the control simulations is the main metric examined here. 376 

This metric is plotted spatially, but the domain-wide average values are also provided. 377 

To provide an extra layer of information, the layer-average RMSE differences for each 378 

sensitivity comparison is plotted in histogram form by day/night and for the two 379 

observations platforms (VAD and UHF) in Figure 4. 380 

Figure 5 presents a comparison of SENS1 with the control simulation (BASE) 381 

using this layer-average change in model error. The difference between these 382 

simulations is the elimination of surface nudging in SENS 1, so no nudging is applied 383 

within the PBL. The observation platforms are plotted with different symbols and the 384 

table in the lower left provides the collective error of each platform and the simulations. 385 

These platform-dependent errors indicate the wind speed RMSE decreased slightly 386 

according to both the UHF (2.11 to 2.08 m s-1) and VAD (2.17 to 2.12 m s-1) 387 

observations. The spatial map shows RMSE’s were reduced or did not change much 388 

outside of the southern and southeastern US. Also, out of about 30 sites near the coast, 389 

the error was reduced at about 25, which may infer that by eliminating all nudging within 390 

the PBL, the model was able to better represent mesoscale circulations associated with 391 
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the land-water interface. Figure 4 provides a more detailed look at the error differences 392 

of wind speed for the SENS1-BASE comparison plotted spatially in Figure 5. The 393 

decrease in wind speed error as determined by both VAD and UHF is slightly larger and 394 

more common during the day, while the decreases and increases of error are more 395 

balanced at night although slightly skewed towards a decrease. This is expected as the 396 

300-1000 m layer is generally above the PBL at night, thus, less impacted by surface 397 

analysis nudging.  398 

Wind direction MAE differences are provided in Figure 5 along with the average 399 

MAE for each platform and simulation. The domain-wide average MAE for each 400 

observation platform shows little change in wind direction error. However, there is 401 

considerable site-to-site change in error between the BASE and SENS1, but this is 402 

generally limited to a change in error of less than a couple of degrees. Around 18% of 403 

the approximate 200 sites have a change in wind direction error of more than 3 degrees 404 

and only 6% more than 5 degrees. These changes in error of wind speed and direction 405 

suggest that at least some small improvements in transport winds, mostly the 406 

magnitude, are gained in this 300-1000 m layer when surface analysis nudging of wind 407 

is eliminated and FDDA is only performed above the PBL. As a caution, surface analysis 408 

nudging is strongest near the surface and decreases with height. We do not explore the 409 

performance at model layers below 300 m, so surface nudging may benefit the 410 

simulation in layers closer to the surface. Another point of emphasis is how the average 411 

error level of each platform compares to the observational uncertainty in Table 1. At VAD 412 

and UHF sites SENS1 approaches the same wind speed and direction errors of the 413 

closely located VAD and UHF sites in Table 1.  414 

The next sensitivity experiment (SENS2) eliminates all nudging below 2 km. 415 

Figure 6 provides the impact of this sensitivity on the transport error when compared to 416 

BASE. At VAD and UHF sites the wind speed error increases slightly overall (2.17 to 417 
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2.19 m s-1 and 2.11 to 2.15 m s-1, respectively). The distribution of wind speed error 418 

differences in Figure 4 indicates large error differences in both the positive and negative 419 

directions. At UHF sites, the error differences are balanced at night, but clearly skewed 420 

towards larger SENS2 errors during the day. The VAD data suggests a more balanced 421 

change in error, both night and day, with a slight skew towards higher SENS2 errors. 422 

However, the wind direction error increase for all observation platforms is about 5 423 

degrees on average. The spatial plot indicates many sites have a 3 degree model error 424 

increase in many areas of the US; 77% of sites have an increase in error, 54% of sites 425 

have an increase of more than 3 degrees and 37% have an increase of more than 5 426 

degrees. The overall small increase in wind speed RMSE and large increase in wind 427 

direction errors points to a clear degradation of lower troposphere transport accuracy 428 

when nudging is limited to layers above 2000 m. 429 

The third model sensitivity (SENS3) tests the inclusion of UHF wind profiler data 430 

in the re-analysis used for grid nudging and is compared to SENS1. The only difference 431 

tested is the use of UHF profiler observations in the assimilation above the PBL. Figure 432 

7 and the histograms in Figure 4 indicate that as expected, when UHF data is used in 433 

the nudging, and then used to evaluate the model, a dramatic decrease in wind speed 434 

error is clearly evident. The RMSE decreases from 2.08 to 1.78 m s-1 at UHF sites. At the 435 

independent VAD sites there is also a decrease in RMSE, but much smaller with an 436 

overall decrease from 2.12 to 2.10 m s-1. With that said, the reduction of error at UHF 437 

sites does translate to more significant improvements at nearby VAD sites with the 438 

exception of a few cases. In the northeast US, every decrease in error at UHF sites is 439 

matched with a -0.1 to -0.5 m s-1 change in error at the nearby VAD sites. This is also 440 

mostly true in the other areas of the US where UHF sites exist (i.e., central Plains, upper 441 

Midwest US and the West Coast). The histograms of wind speed error change in Figure 442 

4 for the SENS3-SENS1 comparison illustrates the large reduction of error as 443 
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determined by the UHF observations both day and night. One important result to expand 444 

upon is the clear decrease during the daytime. Since the 300-1000 m layer examined 445 

here is most often within the PBL where direct nudging has been eliminated, this error 446 

decrease within the PBL is a response to UHF data being assimilated above the PBL. 447 

The error changes as determined by VAD is not as clear at the smallest change bins of 448 

the histogram, but at the larger change bins the error decrease is more frequent, both 449 

day and night, than error increases. These largest error decreases in the histograms are 450 

at those VAD sites near the UHF sites shown in Figure 7. Wind direction error change in 451 

Figure 7 does not show much difference in an overall sense at the VAD sites (both 23 452 

degrees), but at UHF sites there was a clear decrease from 26 to 22 degrees. The 453 

largest decreases in wind direction error, as determined by VAD, were in regions where 454 

UHF data was assimilated. 455 

The fourth sensitivity test (SENS4) examines the change in model error when 456 

VAD wind profile observations are exclusively incorporated into the FDDA analysis used 457 

for grid nudging. The main focus here is the change in model error as judged by 458 

independent hourly UHF observations. Figure 8 and Figure 4 provides the comparison 459 

between SENS4 and SENS1. The mean RMSE and the spatial representation obviously 460 

show the large model error decreases at VAD sites in response to a portion observations 461 

being directly used in the data assimilation, with an overall error decrease from 2.12 to 462 

1.82 m s-1. The mean RMSE of the independent UHF sites decreases, to a lesser extent, 463 

than VAD, from 2.08 to 2.03 m s-1. An inspection of the spatial wind speed RMSE 464 

differences (Figure 8) reveals that in almost every case, UHF sites that are located near 465 

VAD sites report a reduction of WRF error. In fact, across the eastern US only a couple 466 

of UHF profiler sites independently confirm an increase in error, and most have the 467 

same level of error reduction as VAD sites in the same region. Figure 4 depicts the error 468 

change at UHF sites within this 300-1000 m layer is skewed towards sizable error 469 
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reduction at night with more balanced binned differences during the day. This is strong 470 

evidence that the use of VAD alone improves the simulated nocturnal wind speed in this 471 

important 300-1000 m layer above ground level. This may have been less clear in the 472 

previous sensitivity because VAD unlike UHF is more evenly spaced and widespread.  473 

Wind direction error is reduced at VAD sites overall, with a reduction from 23 to 474 

21 degrees over the 300-1000 m layer. The spatial plot verifies that this decrease of 475 

wind direction error at VAD sites is consistent across the domain, with the largest 476 

improvements along the West Coast and southern US. As an independent dataset, the 477 

UHF sites do not show a decrease in error when averaged, but the spatial plot reveals 478 

that very few of the UHF sites have a wind direction error difference more than a couple 479 

of degrees. A histogram of these error differences not shown here indicates balanced 480 

error differences with only 12% of the wind direction error differences of more than 3 481 

degrees.   482 

SENS5 includes both VAD and UHF profiler data in the objective re-analysis 483 

used for nudging, and compared here to SENS1 (Figure 9). The key question is whether 484 

or not the inclusion of both platforms maintains the error reduction found when each is 485 

included separately. A reduction of wind speed error is noted at most VAD and UHF 486 

sites as one would expect. The average RMSE at UHF sites is reduced from 2.08 to 487 

1.73 m s-1 and at VAD sites the error is reduced from 2.12 to 1.83 m s-1. These average 488 

wind speed RMSE’s for each platform in SENS5 are about the same or even lower as in 489 

SENS3 (UHF 1.78 m s-1 in SENS3 versus 1.73 m s-1 in SENS5) and SENS4 (VAD 1.82 490 

m s-1 in SENS4 versus 1.83 m s-1 in SENS5), where these observation were exclusively 491 

incorporated. This same conclusion is true for the wind direction. Overall the wind 492 

direction error, as determined by VAD and UHF, is reduced by the SENS5 configuration 493 

when compared to SENS1, and the overall SENS5 VAD wind direction error is the same 494 

as SENS4 where VAD was used exclusively. Wind direction error at the UHF sites is 495 
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decreased in SENS5 compared to SENS1, and the same as SENS3 where UHF was 496 

used exclusively. Figure 4 indicates the distribution of wind speed error differences are 497 

skewed almost exclusively towards error reduction by SENS5 in nearly all cases. This is 498 

expected at night, but the clear improvements during the day when this 300-1000 m 499 

layer is frequently within the PBL where nudging has been eliminated is strong proof 500 

again that improved transport above the PBL will translate to improved transport within 501 

the un-nudged convective PBL, more so than using 10 m wind analyses to nudge near-502 

surface wind to levels upward in the PBL.  503 

The final sensitivity (SENS6) explores the error change when VAD, UHF and 504 

finally the RAOB are used in the data assimilation. SENS6 is compared against SENS5 505 

instead of SENS1 in this case to understand whether the addition of twice-daily RAOB 506 

will degrade the model relative to VAD and UHF. The average error for each platform in 507 

Figure 10 indicates very little degredation when RAOB are added to the data 508 

assimilation. The UHF error does increase slightly from 1.73 m s-1 in SENS5 to 1.79 m s-509 

1 in SENS6, but with the more widespread VAD sites, errors remains about the same 510 

(1.82 m s-1 versus 1.83 m s-1). The distribution in Figure 4 indicates the much smaller 511 

error changes as a result of RAOB than in the other sensitivities. Wind direction error 512 

differences in Figure 10 are also small where at 95% of the VAD and UHF sites the error 513 

difference is less than 1 degree. The overall error levels of wind speed (approx. 1.8 m s-514 

1) and wind direction (approx. 20 degrees) in SENS6 are comparable to the level 515 

inherent in the observations (Table 1), which infers the direct data assimilation is working 516 

well at not only the analysis times, but also in between. Furthermore, the assimilation of 517 

these data above the convective PBL improves the winds within the PBL potentially 518 

without the need of an artificial surface analysis nudging algorithm. The full summer 519 

case will explore the use of this SENS6 configuration in a seasonal simulation. 520 

 521 
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3.3  Summer 2006 Case 522 

SENS6 was the configuration determined to provide the lowest overall wind speed and 523 

direction error. For this longer-term 2006 case, WRF was configured identically to 524 

SENS6 and executed for the June 1 through August 31, 2006 period. The main interest 525 

here is how the wind errors in the 300-1000 m layer compare with the original AQMEII 526 

simulation (Vautaurd et al., 2011) that was configured similarly to BASE. Figure 11 527 

provides the layer-averaged wind speed RMSE and bias for both simulations, as well as 528 

the MAE for wind direction. The domain-wide error and bias computed for each 529 

observation platform is also provided. The wind speed error is visibly reduced, or about 530 

the same, at all profiler sites. The average RMSE of the model at VAD sites decreased 531 

from 2.14 to 1.74 m s-1, which is similar to the error reduction seen between SENS1 and 532 

SENS6 (Figure 5 and Figure 10). The overall RMSE as determined from all the UHF 533 

observations was also reduced from 2.07 to 1.84 m s-1 because of the new assimilation; 534 

again this is similar to the reduction seen in the sensitivity tests. Spatially, the error 535 

reduction occurs across the whole domain, but is most evident across the eastern half of 536 

the US. Error levels of the AQMEII simulation were generally in the 1.8 to 2.5 m s-1 range 537 

in the eastern US. The new assimilation technique reduced those transport errors to 1.2 538 

to 2.0 m s-1. Also of importance, the spatial distribution of error illustrates that the new 539 

simulation has an error that is regionally consistent, even across platforms. Almost every 540 

UHF site, for example, has a similar level of error as the nearest VAD site, and those 541 

errors are similar to the observational uncertainty documented in Table 1.  542 

Wind speed bias is presented in Figure 11. The platform-averaged bias indicates 543 

a large reduction from -1.34 to -0.75 m s-1 at VAD sites and from -0.44 to -0.21 m s-1 at 544 

UHF sites. The observational uncertainty analysis indicated that VAD had around a +0.5 545 

m s-1 bias when compared to both UHF and RAOB. The use of these VAD data in 546 



 

 23 

assimilation essentially increases the domain-wide wind speed in the lower troposphere 547 

since VAD sites are evenly spaced, and hourly.  548 

A consistent reduction of wind direction error is also apparent (Figure 11) across 549 

the model domain where the overall MAE is reduced by 2-4 degrees at both VAD and 550 

UHF sites. Like the RMSE of wind speed, the wind direction errors are much more 551 

regionally consistent within the VAD and UHF networks, but also across observation 552 

platforms. All UHF and VAD sites in the southeast US, for example, have an MAE of 20-553 

25 degrees. In the northeast US and especially central US, the wind direction errors are 554 

even lower with values between 10 and 20 degrees with many sites with model errors as 555 

low as 10-15 degrees. The wind direction errors are more variable in the western US, 556 

but sites from different observation platforms, in the same vicinity, have about the same 557 

level of error. A level of error in the 20 to 25 degree range is approaching the inherent 558 

uncertainty levels found in the observations (Table 1). Furthermore, the large number of 559 

sites that have model errors on the order of 10-20 degrees indicate the model is actually 560 

at or below the uncertainty levels of the observations, which is in the range of 17-20 561 

degrees at collocated RAOB and VAD sites. 562 

Figure 12 provides a final examination of model performance over the diurnal 563 

cycle. The RMSE and bias of wind speed and MAE of wind direction are partitioned into 564 

far eastern (see Figure 2 for sites) and far western US (see Figure 2 for sites). The 565 

model performance is computed using all VAD and UHF profilers in those regions at the 566 

400, 700 and 1000 m levels. Model error and bias of wind speed and error of wind 567 

direction are reduced at all levels at all times of the day in both regions. During the day 568 

(~12-23 UTC) in the eastern US, the wind speed error is reduced by 0.25 m s-1 and the 569 

bias decreases from -1.25 m s-1 to less than -0.5 m s-1. Wind direction errors were also 570 

decreased, but only by a few degrees during the daytime. There is less of an 571 
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improvement in the western US during the daytime, but some model performance gains 572 

are apparent.  573 

These results provide some support to the idea that the representation of the 574 

daytime convective boundary layer can be improved if the geostrophic forcing above the 575 

PBL is improved through the use of the VAD and UHF observations in the FDDA if the 576 

surface-based nudging in the PBL is relaxed or eliminated. An argument against this 577 

claim could be that these observations used in the evaluation are being used in the 578 

nudging. This is only minimally true as the 400, 700 and 1000 m layers are typically 579 

within the PBL during the daytime, so in these experiments those UHF and VAD 580 

observations within the PBL are not used in the nudging.  At night, these layers are 581 

generally above the PBL, so improvement shown here are a direct result of the data 582 

assimilation. Another point, the observations are used through the assimilation of 3-583 

hourly re-analyses while the evaluation uses the entire database of hourly observations, 584 

so even between analyses the model performance is shown to improve in Figure 12. At 585 

night specifically, the wind speed RMSE decreases by around 0.3 to 0.5 m s-1 in both 586 

regions and the wind speed bias generally improves. Wind direction error is reduced at 587 

night much more than the day with decreases of error on the order of 5-8 degrees in 588 

both regions. These results at night provide some confidence that nocturnal transport 589 

within the nocturnal jet and residual layer have been improved with the new data 590 

assimilation. 591 

 592 

4. Conclusions 593 

The focus of this research is improving regional-scale transport of pollutants in air quality 594 

models by reducing the uncertainty in the simulated wind speed and direction in the 595 
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lower 1000 m of the atmosphere where pollution transport is most important. The means 596 

of these model improvements was explored through several sensitivity experiments.  597 

To establish a baseline for the lower bound for the errors, an observational 598 

uncertainty analysis was first presented where three observation platforms were inter-599 

compared (UHF profiler, VAD profiles and radiosonde) by pairing the closely located 600 

sites from different platforms. In particular, the comparison of VAD with nearby 601 

radiosonde data is the best example as a number (38) of VAD sites are actually 602 

collocated with the radiosonde balloon soundings. There were also about 34 VAD sites 603 

that were in close proximity to UHF profiler sites. The RMSE in wind speed between 604 

these collocated or closely spaced sites is approximately 1.8 m s-1 (+/- 0.2 m s-1), and 605 

the average absolute differences in the wind direction is near 20 degrees. This 606 

uncertainty in wind, as one would expect, is greater in areas of complex terrain and near 607 

coastal areas where local sea and land breezes dominate. In the future, the 608 

development of site specific uncertainty levels and directly comparing that to model 609 

errors determined at these sites would advance this type of uncertainty analysis.  610 

The sensitivity analysis examined a four day case study in August 2002 and 611 

found that surface nudging did not substantially improve and in some cases increased 612 

wind speed and direction errors in the 300-1000 m layer during the day. The most 613 

spatially-consistent improvement in wind speed and direction in the 300-1000 m layer 614 

was the sensitivity that included all observation platforms in the reanalysis used for 615 

nudging above the PBL. The two sources of hourly observation, VAD and UHF profilers, 616 

were injected into the reanalysis separately as well as combined. The simulation that 617 

used the UHF observations, for example, was evaluated using the independent VAD 618 

wind observations and vice versa. The independent evaluation in both cases showed 619 

that model error as determined by VAD observations decreased in areas near the UHF 620 

assimilated sites, in almost every case. When both sources of observations were used, 621 
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the level of error was about the same as cases where they were used separately. This 622 

level of model error with respect to UHF and VAD observations did not degrade when 623 

RAOB observations were incorporated. Furthermore, the level of model error in the 624 

sensitivity that used all observations approaches that found in the observational 625 

uncertainty analysis. 626 

The model configuration determined by the sensitivity analysis to contain the 627 

least amount of error was applied to a longer three month WRF simulation covering the 628 

summer of 2006. This experimental result was then compared to those from a previous 629 

simulation done for the AQMEII project. The comparison shows a clear improvement in 630 

lower tropospheric transport wind, which is directly linked to the new data assimilation. 631 

Results of diurnal wind speed and direction statistics for both the eastern and western 632 

US indicate that the use of the new observations are key in reducing the uncertainty in 633 

wind speed/direction at night around the nocturnal jet core and throughout the residual 634 

layer. A clear improvement was also noted in the mid and lower PBL during the day, 635 

which would support the idea that the removal of all nudging in the PBL can improve the 636 

representation of the convective PBL as long as these VAD and UHF observations are 637 

used to improve the characterization of the geostrophic wind at the top of the PBL. 638 

Conceptually, this is a preferred modeling methodology as the PBL and LSM are allowed 639 

to interact without any artificial nudging influence. Furthermore, the level of error of both 640 

wind speed and direction is in the range of the uncertainty of the observations, which 641 

implies an evaluation limit or level of predictability might have been reached with this 642 

particular simulation. Any further reduction of model error would likely have to originate 643 

from reducing the uncertainty of the observations that are input to the data assimilation, 644 

except in the case where the PBL and LSM parameterizations are improved. 645 

Observation uncertainty is an important consideration in any model evaluation 646 

study. Deterministic models can never reach perfection and they contain inherent errors 647 
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that are partly a function of inputs, especially when data assimilation like that done in 648 

retrospective simulations is performed. Evaluation results should be viewed in this 649 

context. Other sources of meteorological wind observations should be explored including 650 

in-flight, take-off and landing observations from aircraft as well as satellite derived wind 651 

data. The recent study Benjamin et al. (2010) similarly explored the use of a number of 652 

the more recent observation platforms including UHF wind profilers, VAD and RAOB, but 653 

they also examined the impact of aircraft and various satellite derived observations. An 654 

exploration of these data will be a next step of this evolving research.  655 
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Figure 1 10 m wind speed error (squares) and bias (circles) of the original AQMEII 956 
simulation that used surface analysis nudging of wind within the PBL (green) and a test 957 
simulation without this surface nudging (red). All statistics include data for the summer of 958 
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Figure 2 Location of various observation sites for each platform. Sites highlighted in blue 966 
represent those used for the eastern and western US partitioned statistics in Figure 12 967 
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 970 
Figure 3 Observational uncertainty between RAOB and VAD sites as measured by 971 
RMSE (wind speed) and MAE (wind direction). These values are computed using RAOB 972 
and VAD paired sites that have a spacing of less than 150 km. The circles in the spatial 973 
plot are inversely proportional to the site spacing where the largest circles indicate the 974 
site pairs that are collocated.  975 
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Figure 4 Histograms of layer-average (300-1000 m) wind speed RMSE differences as 978 
determined by UHF and VAD sites. These are partitioned by observation network, 979 
night/day, and the six sensitivity comparisons. 980 
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 982 
Figure 5 Spatial plot of the difference in RMSE (wind speed; top) and MAE (wind 983 
direction; bottom) between Sensitivity 1 (SENS1) and the base simulation (BASE). 984 
Positive (negative) values indicate SENS1 has a larger (smaller) error than BASE. UHF 985 
profiler and VAD profiler values are plotted with different symbols as indicated by the 986 
legend on the right. The embedded table provides the average error that includes all 987 
sites partitioned by platform.  988 
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 990 
Figure 6 Spatial plot of the difference in RMSE (wind speed; top) and MAE (wind 991 
direction; bottom) between Sensitivity 2 (SENS2) and the base simulation (BASE). 992 
Positive (negative) values indicate SENS2 has a larger (smaller) error than BASE. UHF 993 
profiler and VAD profiler values are plotted with different symbols as indicated by the 994 
legend on the right. The embedded table provides the average error that includes all 995 
sites partitioned by platform. 996 
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 1000 
Figure 7 Spatial plot of the difference in RMSE (wind speed; top) and MAE (wind 1001 
direction; bottom) between Sensitivity 3 (SENS3) and Sensitivity 1 (SENS1). Positive 1002 
(negative) values indicate SENS3 has a larger (smaller) error than SENS1. UHF profiler 1003 
and VAD profiler values are plotted with different symbols as indicated by the legend on 1004 
the right. The embedded table provides the average error that includes all sites 1005 
partitioned by platform. 1006 
 1007 
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 1008 
Figure 8 Spatial plot of the difference in RMSE (wind speed; top) and MAE (wind 1009 
direction; bottom) between Sensitivity 4 (SENS4) and Sensitivity 1 (SENS1). Positive 1010 
(negative) values indicate SENS4 has a larger (smaller) error than SENS1. UHF profiler 1011 
and VAD profiler values are plotted with different symbols as indicated by the legend on 1012 
the right. The embedded table provides the average error that includes all sites 1013 
partitioned by platform. 1014 
 1015 
 1016 
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 1018 
Figure 9 Spatial plot of the difference in RMSE (wind speed; top) and MAE (wind 1019 
direction; bottom) between Sensitivity 5 (SENS5) and Sensitivity 1 (SENS1). Positive 1020 
(negative) values indicate SENS5 has a larger (smaller) error than SENS1. UHF profiler 1021 
and VAD profiler values are plotted with different symbols as indicated by the legend on 1022 
the right. The embedded table provides the average error that includes all sites 1023 
partitioned by platform. 1024 
 1025 
 1026 
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 1029 
Figure 10 Spatial plot of the difference in RMSE (wind speed; top) and MAE (wind 1030 
direction; bottom) between Sensitivity 6 (SENS6) and Sensitivity 5 (SENS5). Positive 1031 
(negative) values indicate SENS6 has a larger (smaller) error than SENS5. UHF profiler 1032 
and VAD profiler values are plotted with different symbols as indicated by the legend on 1033 
the right. The embedded table provides the average error that includes all sites 1034 
partitioned by platform. 1035 
  1036 
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 1037 
Figure 11 Comparison of the 300-1000 m layer-average RMSE and bias of wind speed 1038 
and MAE of wind direction for the original AQMEII simulation and the new experimental 1039 
assimilation. Also provided in the lower left corner of each panel are the platform-1040 
averaged statistics. Un-shaded square represent ignored sites that had less than half the 1041 
maximum number of hourly samples for the period. 1042 

1043 
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 1045 
Figure 12 Simulated wind speed RMSE and bias as well as wind direction MAE as a 1046 
function of time of day. The statistics were computed using UHF profiler and VAD profiler 1047 
observations at three levels (approx. 400, 700 and 1000 m) for the June 1- August 31, 1048 
2006 period. The sites used for these statistics are highlighted blue in Figure 2. 1049 




