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Abstract

During the past three decades, several workshops were held in the United States and
Europe to address the evaluation of air quality models from scientific and operational
perspectives. The conventions and practices for evaluation of regional-scale numerical
air quality models have been evolving in recent years after a long period of routine use
of decades-old model evaluation techniques that are more suited to urban-scale models
and for chemically-inert pollutants. Recognizing the need for comprehensive evaluation
of regional-scale numerical photochemical modeling systems, an international
collaborative research project entitled “Air Quality Model Evaluation International
Initiative (AQMEII)” has been initiated by scientists and managers from Europe and
North America. The primary objectives of this project are to assess state-of-science in
current regional-scale air quality models, rapidly advance the science in these models,
and help assess model’s credibility in simulating the spatial and temporal features
embedded in air quality observations so that the models can be confidently used in
research and policy arenas. This paper discusses the motivation for this study and

approaches to help improve air quality model evaluation practices.

Introduction

Although the focus in the 1970’s was primarily on urban air pollution models, it is well-
known that pollution problems such as acid rain, ozone, and fine particulate matter are
regional in scope, requiring regional-scale multi-pollutant models (e.g., Rao et al., 2008).
In North America and in Europe, several models have been developed by different
research groups. These models have undergone extensive development during the last
three decades worldwide because of the increased concern regarding the impacts of
atmospheric pollution on human health and sensitive ecosystems. For example, during
the 1980s, regional-scale acidic deposition models were developed in Europe, Canada,
and the United States. Within the framework of the National Acid Precipitation
Assessment Program (NAPAP), a number of groups from government, industry, and
academia were involved in addressing the so-called “acid rain” problem in the United
States. Regional air quality models are now being widely used in North America and
Europe for understanding the complex interactions between meteorology and
atmospheric chemistry, and pollutant transport and fate. Regional models are also

playing an important role in developing emission control policies to comply with the



relevant standards for ozone and fine particles, forecasting air quality, and designing

ambient monitoring strategies.

In the early 1980’s, the American Meteorological Society (AMS) and U.S. Environmental
Protection Agency (EPA) held two workshops to discuss and recommend methods for
evaluating plume dispersion models (Fox, 1981 and 1984). AMS and EPA also held
another workshop in 1984 to discuss evaluation issues relating to regional-scale air
quality models, but the workshop participants did not recommend any specific methods
for the model performance evaluation (Demerjian, 1985). Hence, the statistical metrics
identified by the first AMS/EPA workshop continue to be used for evaluating Gaussian
dispersion models as well as numerical regional-scale air quality models, not only in the

United States but also in other countries.

The conventions and practices for evaluation of regional-scale numerical air quality
models have been evolving in the past few years after a long period of routine use of
decades-old model evaluation techniques that are more suited to urban-scale models
and for chemically-inert pollutants. As compared to other geophysical sciences like
climate, the regional character of air quality issues did not often result in the
development of large-scale international collaborative research efforts with
participation from groups on both continents. Regional-scale model evaluations have
been conducted over the years independently in the two continents (e.g. Hogrefe et al.,
2000; Hogrefe et al.,, 2001 a and b; Biswas et al., 2001; van Loon et al., 2004 and 2007;
Atmospheric Environment Special Issue on Model Evaluation, 2006; Appel et al., 2007
and 2008; Irwin et al., 2008; Eder et al., 2009; Foley et al., 2009; Smyth et al., 2009) from

science and policy perspectives.

While there have been some advances in model evaluation approaches, it was felt that
present approaches are too often uncritically applied, without due consideration of the
foundations upon which the techniques are based. Hence, AMS and EPA held a
workshop in August 2007 to discuss issues relating to the evaluation of regional-scale
photochemical modeling systems. Similar workshops on air quality model evaluation
were also held in Europe. Arising out of the August 2007 AMS and EPA Workshop, a

new framework for regional-scale air quality model evaluation has been introduced



(Dennis et al., 2010). This framework calls for operational, diagnostic, dynamic, and
probabilistic evaluations, encompassing a full range of confidence-building exercises
designed to improve the practice of model evaluation and the use of model results in a

regulatory setting.

The above series of Workshops were led by a group of scientists, from Europe (EU) and
North America (NA) interested in instigating a significant advance in the way regional-
scale air quality modeling systems are evaluated and used. However, the North
American and European modeling communities have not worked together in the past on
a common model evaluation framework and activities. The initiative arising out of the
USA and EU workshops is now known as the Air Quality Model Evaluation International
Initiative (AQMEII). AQMEII is aimed at providing a permanent forum to constantly
monitor the state of advancement of regional-scale air quality models and model

evaluation methodologies (http://agmeii.jrc.ec.europa.eu/ ). This is achieved through

the organization of periodic workshops and modeling activities in which the different
aspects of model performance evaluation are considered. The primary purpose of
AQMEII is to coordinate international efforts in scientific research in NA and EU and

help achieve the following objectives:

e exchange expert knowledge in regional-scale air quality modeling

¢ identify knowledge gaps in air quality science

e develop innovative methodologies to evaluate uncertainties in air quality
modeling

e Dbuild a common strategy, adoptable by research communities on both sides of
the Atlantic Ocean, for model development and future research priorities

e establish methodologies for model evaluation to increase knowledge on
processes and to support the use of models for policy development, and

e initiate coordinated research projects and perform rigorous model inter-

comparisons.

A common basis for air quality model performance evaluation is necessary for the
research community to promote the use of regional-scale air quality models for

decision-making and to most efficiently coordinate the modeling efforts between NA



and EU, which are the primary objectives of this initiative. The spatial scales range from
the city scale (~1 km) to the continental scale (1000-5000 km), and time scales range
from hourly to decadal time scales. Phenomena such as acute episodes or long-term
trends will also be considered. Links and feedbacks between climate change and air

quality will be considered as well.

Model Performance Evaluation

Assessing Model’s Credibility

The four components of model performance evaluation identified by Dennis et al (2010)
are as follows. Operational Model Evaluation involves the direct comparison of model
output with analogous observations in an overall sense. It utilizes routine observations
of ambient pollutant concentrations, emissions, meteorology, and other relevant
variables (e.g. Appel, 2008). Diagnostic Model Evaluation examines the ability of a
model to predict pollutant concentrations by correctly capturing physical and chemical
processes, and their relative importance as incorporated in the model (e.g., Godowitch
et al,, 2009). This type of model evaluation generally requires detailed atmospheric
measurements that are not routinely available. Dynamic Model Evaluation focuses on
model’s ability to predict changes in air quality levels in response to changes in either
source emissions or meteorological conditions (e.g., Gilliland et al., 2008; Godowitch et
al,, 2010; Pierce et al., 2010). This exercise requires historical case studies where known
emission changes or meteorological changes occurred that could be confidently
estimated. Finally, Probabilistic Model Evaluation attempts to capture statistical
properties, including uncertainty or level of confidence in the model results for air
quality management or forecasting applications (e.g, Hogrefe and Rao, 2001). This
approach is necessarily based on knowledge of uncertainty imbedded in both model
predictions and observations. Dennis et al (2010) provide illustrative examples of these

four aspects of model performance evaluation.

Characterizing Uncertainty in Air Quality Models

A major difficulty lies in determining the uncertainty underlying a single, apparently
deterministic output from grid-based models. There are several technical tools,
including data assimilation, that give direct or indirect ways to use a deterministic

model in a probabilistic framework. The Bayesian paradigm (Savage, 1954) provides a



framework for this, since all uncertainty is represented by probabilities. In particular,
all the fixed but “known unknowns” have probability distributions. In the absence of any
information, these are called prior distributions but the “knowns”, for example,
measured values of pollutant concentrations alter these distributions in accordance
with Bayes’ rule to yield posterior probability distributions. This paradigm has a
fundamental role in modern inductive inference since it embraces both “aleatory
uncertainty” (that due to chance phenomena such as measurement error) as well as
“epistemic uncertainty” (due to lack of knowledge). However, characterizing those
distributions in complex dynamic systems is challenging owing to their large numbers
of unknowns. One useful approach uses the Bayesian hierarchical model (e.g., Gelman et
al,, 2004) in which all the unknowns are arranged in a sequence of clusters, the
probability distribution for each cluster being conditional on (purely hypothetical)
knowledge of all the previous clusters so that Bayes’ rule may be applied in steps. This
allows uncertainty to be characterized in a structured fashion, one cluster at a time, and
simplifies the stochastic modeler’s task. Nevertheless, the resulting distribution can still
be quite intractable. One example of a Bayesian hierarchical approach, called Bayesian
melding, has been developed to account for the difference between the meso-scale
processes simulated by the chemical transport model output and the micro-scale
processes influencing the individual observations (e.g., Fuentes and Raftery, 2005 for

SO2; Zhong et al., 2007 for O3).

The above approaches are generally based on analysis of model output as a statistical
space-time process, and this analysis can be used to provide estimates of model
uncertainty. A completely different approach to characterizing model uncertainty lies in
sensitivity analysis methods (e.g., Saltelli et al., 2008). The greatest challenge in this
type of uncertainty analysis is identifying and quantifying the different sources of
uncertainty introduced into the modeling system, such as errors in model inputs or
simplifications in the parameterizations used to represent complex chemical systems.
These simplifications all propagate through a highly nonlinear modeling system to
produce uncertainties in model output. For example, an uncertainty analysis of a
chemical mechanism would include the determination of the standard deviations of that
chemical mechanism rate constants and product yields. These standard deviations

could then be used in a sensitivity analysis, for example, a constrained Monte-Carlo



analysis, to determine the probability of a model’s estimated chemical concentrations.
Likewise, different cloud schemes or PBL formulations could be used in air quality
models to assess the sensitivity of the estimated pollutant concentrations to various
physics options. Here, the identification of the sources contributing to significant
uncertainty is important because it will help guide where model improvements are
needed. While brute-forcet methods do exist for quantifying the nature and magnitude
of these uncertainties, a comprehensive, theoretically-based and computationally-

efficient framework remains to be defined.

Estimating Uncertainties from Ensemble Modeling

The combination of several model results in what is normally defined as ensemble
modeling has proven to produce an improvement in the model results when compared
with measurements and with the individual model ensemble members. While there has
been some progress in ensemble modeling regardless (Dabbert, Miller, 2000; Delle
Monache, Stull, 2003; Delle Monache et al, 2003; Galmarini et al, 2001; Galmarini et al,
2004a; Galmarini et al, 2004b; Killip et al, 2003; Krishnamurti et al, 2000; Mallet, Sportise,
2006; McKeen at al, 2005; Mutemi et al, 2007; Potempski et al 2008; Potempski, Galmarini,
2009; Riccio et al 2007; Straume, 2001; Van Loon et al, 2007; Vautard et al, 2008; Vijaya
Kumar et al, 2003; Wang et al, 2008; Yun et al, 2004; Ziehmann, 2000) of the way in which
the ensemble has been constructed and what the generic expression “ensemble” means,
it seems the whole ensemble modeling technique has more the character of a practice
than a theoretical framework as pointed out by Potempski and Galmarini (2009). The
use of ensemble and in particular multi-model ensembles is felt to be an excellent
opportunity for a model inter-comparison exercise, with the added value of improving
individual model performance (e.g., Pinder et al,, 2009). It is acknowledged that multi-
model ensembles can provide some consensus on the model results based on multiple
models and, therefore, it should have a prominent role as one of the techniques to be
used in future. Given the level of attention gathered around multi-model ensembles (not
only in regional-scale air quality models, but also in global-scale and climate models), it
is becoming increasingly clear that research efforts need to focus on a more rigorous

theoretical framework for ensemble modeling. There is a series of fundamental

T By “brute-force” we mean the estimation of uncertainties by performing multiple runs of the entire modeling
system with small, but realistic changes of the independent variables in question.



questions that must addressed; for example, in what way should an ensemble of model
results be assembled? what is the minimum number of model results necessary to
define the group of an ensemble? how can we get around the model dependence issue?
can we diagnose a-priori the ensemble properties based on model characteristics? how
can we guarantee a priori maximum coverage of the measurement probability density
functions by the ensemble and compensate for missing portions? Given the fact that
ensembles are in operational use in weather forecasting, it is suggested that the air
quality modeling community work with the meteorological community in advancing air

quality ensemble theory.

Representing and communicating model uncertainty

Much of the motivation for enhanced model evaluation approaches stems from the need
to use model output to provide guidance in the policy-making realm. Communication
within the scientific realm is a well-established practice, and makes use of particular
media and language. By contrast, communication between scientific and policy realms
is difficult because these two realms use different media and language. If model results,
as evaluated by scientists are to be transferred to the policy realm, it is clear that
particular attention must be paid to the language of communication. For this reason,
scientists need to work with communications specialists, journalists and psychologists
to develop communications strategies that will be effective in the policy realm. This
work must include the development of methods for display and presentation of model
output, including animations, spaghetti plots and other devices. Of particular difficulty
will be the communication of the linked space-time nature of air pollution fields, and the

use of probabilities in making environmental decisions.

Operational, diagnostic, and dynamic evaluation approaches complement one another
by not only characterizing how well the model simulated the air quality levels at that
time, but how well the model captures the role and contributions of individual inputs
and processes and the ability of the air quality model to respond correctly to changes in
these factors (Dennis et al., 2010). While it is true that all evaluation approaches use
some form of statistical techniques, under this framework probabilistic evaluation is
viewed as a comprehensive approach to evaluation that goes beyond the mere

application of statistical tools.



Current Focus of AQMEII

As aresult of the May 2009 AQMEII Workshop in Stresa, Italy (see Galmarini et al.,
2010), an initial exercise has been launched in which participating modeling groups in
the United States and Canada and across Europe, will be using their regional-scale air
quality modeling systems to simulate full-years (years 2002 or 2003 and 2006)
retrospective continental applications on both sides of the Atlantic Ocean with a
common reference model input data set, namely the emissions inventory and lateral
boundary conditions, and applying the four elements of the above model evaluation
framework to inter-compare results across the models as well as compare results with
routine observations and special field studies. To this end, a reference database
consisting of satellite and aircraft observations has been created. Evaluation of
emissions, meteorological and air quality models within the photochemical modelling
systems will also be considered. The modeling domains that will be used for NA and EU

simulations are displayed in Figures 1 and 2.

Invitations to participate in AQMEII were sent during mid-2009 and commitments have
been secured thus far for the participation of regional models such as CMAQ and CAMx
models (United States), AURAMS (Canada), CHIMERE (France), RAMS-CAMx (Greece),
EMEP (Norway), EURAD (Germany), HIRLAM (Denmark, Finland), and LOTOS
(Netherlands). Other modeling groups are currently securing funding support and are
expected to join AQMEII. So far, 23 modeling groups from 15 countries are engaged in
the AQMEII activity. All models will be utilizing the same base emissions inventory and
lateral air quality boundary conditions, which have been developed specifically for the
AQMEII project. Also, common analysis grids have been defined for each continent to
facilitate model inter-comparisons. Data from standard meteorological and air quality
monitoring networks across NA and EU for 2006 will be used for model evaluation.
Emphasis for air quality is placed on ozone, nitrogen oxides, PM25 and PM1o including
chemical species components, as well as surface deposition of key pollutants. Other
measurements from regional field studies, profilers, satellites, and commercial aircraft
(including the MOZAIC program of measurements on-board commercial European
aircraft) will be used in the evaluation. The Joint Research Center (JRC) of the European

Commission will house the data archive and make available to participants the web-



based statistical and graphical facilities of its ENSEMBLE analysis system (Galmarini et
al,, 2004). Several technical documents and protocol for participation in the AQMEII
activity can be found on the AQMEII web site. It is envisioned that the participating
scientists will run probe multiple models, rather than running their own, to elucidate
the similarities and differences among different models from the diagnostic model
evaluation perspective. Thus, this major collaborative effort is a first of its kind in
bringing together modelers and data analysts from Europe and North America in an
attempt to assess the current state-of-science in air quality models and work together to

rapidly advance the science in regional-scale numerical photochemical models.

Next Steps

A workshop to present preliminary analyses of the first phase of the AQMEII project is
scheduled to take place during September 26-27, 2010 in Torino, Italy in conjunction
with the 31st NATO/SPS International Technical Meeting Air pollution Modeling and Its
Application. Itis expected that this Workshop will determine future analyses for the
continental model simulations as well as suggest additional model simulations and
evaluation datasets for the next phase of AQMEII. A subsequent Workshop will be held
in Research Triangle Park, NC, USA during 2011 for discussion of final analyses for the
2006 model evaluations as part of the first phase of AQMEI], to plan publications and
communications of the results, and to plan and coordinate the next phase of AQMEII to
involve simulations of other years and field-study periods, and to include new sources
of data for the model evaluations. A special issue of Atmospheric Environment, devoted
to AQMEII-related papers will be published in 2012. The first phase of AQMEII will be

concluded with a workshop in Europe in 2012.

Future Focus of AQMEII

Recently, regional models have been linked to global models for examining the impacts
of climate change on future air and water resources. Weaver et al. (2009) provide a
summary of studies relating to downscaling of global climate models to regional climate
models for assessing the effects of climate change on ozone air quality. Also, coupled
meteorology-chemistry models are being developed by various research groups in EU
and NA to better simulate the effects of atmospheric loading of aerosols on the radiative

forcing. Hence, it is envisioned that the second phase of AQMEII will consider global-to-

10



regional models to better understand the interactions of climate change and air quality
and the linkages to human health and ecosystems. The intended outcome of AQMEII is a
set of international collaborations involving model evaluation exercises carried out on

shared data sets using different state-of-science multiscale photochemical models.
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