DEARS NO ₂ exposure factors 1
The Influence of Human and Environmental Exposure Factors on Personal NO_2 Exposures
Ron Williams ^{a,*} , Paul Jones ^a , Carry Croghan ^a , Jonathan Thornburg ^b , and Charles Rodes ^b
^a US Environmental Protection Agency, National Exposure Research Laboratory, RTP, NC 27711, USA ^b RTI International, RTP, NC 27709, USA
Address all correspondence to Ron Williams, US Environmental Protection Agency, MD E-204- 05, Research Triangle Park, NC 27711. Tel.: +1-919-541-2957; Fax.: +1-919-541-0905. E-mail: <u>williams.ronald@epa.gov</u>
Keywords: nitrogen dioxide, DEARS, personal monitoring, exposure factors.
Running head: DEARS NO ₂ exposure factors

44 Abstract

45

46 The US Environmental Protection Agency's (US EPA) Detroit Exposure and Aerosol 47 Research Study (DEARS) deployed a total of over 2000 nitrogen dioxide NO₂ passive monitors 48 during three years of field data collections. These 24-hr based personal, residential outdoor, and 49 community-based measurements allowed for the investigation of NO₂ spatial, temporal, human 50 and environmental factors. The relationships between personal exposures to NO₂ and the factors 51 that influence the relationship with community-based measurements were of interest. Survey 52 data from 136 participants were integrated with exposure findings to allow for mixed model 53 effect analyses. Ultimately, 50 individual factors were selected for examination. NO₂ analyses 54 revealed that season, exposure to environmental tobacco smoke, and residential gas appliances 55 were strong influencing factors. Only modest associations between community-based measures 56 of nitrogen dioxide and personal exposures impacted by various exposure factors for heating (r 57 = 0.44) or non-heating seasons (r = 0.34) were observed indicating that use of ambient-based 58 monitoring as a surrogate of personal exposure might result in sizeable exposure 59 misclassification.

60

61

62 Introduction

Allowable community-based concentrations of select air pollutants, including nitrogen
 dioxide (NO₂) are regulated by the U.S. Environmental Protection Agency (EPA) under the
 Clean Air Act (CAA, 2004). National Ambient Air Quality Standards (NAAQS) have been
 established and are required to undergo review on a regular basis. The EPA recently completed

an integrated science assessment for the oxides of nitrogen (EPA, 2008). The NAAQS represents community-based air concentration limits believed to provide an adequate margin of safety for those most susceptible to the effects of these pollutants. However, the monitoring for

these pollutants is often limited to a small number of measurement locations in a given

71 demographic area (EPA, 2008). Likewise, humans are involved in various time activities and

rarely do they spend time either in close proximity to these compliance monitors or even in

73 outdoor settings that might be close approximations to where these monitors are located (Klepis

74 et al 2001; Williams 2000, Williams 2003).

67

68

69

75 A number of studies have examined the relationship between community-based 76 measures of NO₂ and personal exposures (Alm et al., 1998; Brauer et al., 1989; Sarnat et al., 77 2001). These studies have focused on convenience populations of specific age groups or some susceptible subpopulation (e.g., children, elderly). These study populations were not recruited 78 79 with a specific spatial intent in mind as part of their study design. These studies have shown 80 highly variable degrees of agreement between personal and ambient-based measures. Human 81 time activity patterns, environmental factors, residential combustion sources, as well as reactivity 82 of some of these gases themselves in indoor environments, are a number of the parameters that 83 have been reported as influencing these associations.

The EPA's Detroit Exposure and Aerosol Research Study (DEARS) was designed to provide information as to the magnitude and variability of central community site (ambient) measurements as compared to residential and personal-based exposure monitoring for particulate matter (PM) and select air toxics and gases (Williams, 2005; Williams et al., 2009). In doing so, a randomized household recruitment strategy was employed so that participants living in

89	predefined spatial locations would participate. Spatiality of the resulting ambient to personal
90	measurements would be assessed to better define the factors influencing this relationship. A
91	number of exposure or linked epidemiological summaries of DEARS findings have been
92	reported (Baxter et al., 2008; Brook et al., 2010; Rodes et al., 2010).
93	A separate article being developed will describe multi-pollutant relationship observations
94	of particulate matter (PM), NO ₂ , and other gases. The current article focuses on the impact of
95	various human and environmental exposure factors on total personal exposures to NO ₂ . This
96	includes the influence of environmental tobacco smoke (ETS). Models describing these impacts
97	on personal exposures are reported.
98	
99	Study design
100	The DEARS study design has been reported in depth (Williams et al., 2009) and is
101	available at the study website (www.epa.gov/dears). A total of 136 non-smoking adults from
102	neighborhoods in Wayne County, Michigan participated in the monitoring over a three year
103	period (2004-2007). We provide a full description of the participant selection process and
104	recruitment/retention and demographics statistics elsewhere (Phillips et al., 2010). Participants
104 105	recruitment/retention and demographics statistics elsewhere (Phillips et al., 2010). Participants had to be ambulatory, able to read or understand English or Spanish and plan on staying in their
104 105 106	recruitment/retention and demographics statistics elsewhere (Phillips et al., 2010). Participants had to be ambulatory, able to read or understand English or Spanish and plan on staying in their existing housing through consecutive summer (June-August) and winter (January-March)
104 105 106 107	recruitment/retention and demographics statistics elsewhere (Phillips et al., 2010). Participants had to be ambulatory, able to read or understand English or Spanish and plan on staying in their existing housing through consecutive summer (June-August) and winter (January-March) monitoring periods. They were asked to consent to personal exposure monitoring. More than
104 105 106 107 108	recruitment/retention and demographics statistics elsewhere (Phillips et al., 2010). Participants had to be ambulatory, able to read or understand English or Spanish and plan on staying in their existing housing through consecutive summer (June-August) and winter (January-March) monitoring periods. They were asked to consent to personal exposure monitoring. More than 70% of those enrolled participated in both seasons allowing seasonal impacts on their exposures

Participants were predominately female (77%) with the total cohort representing 51%

111	African-American, 28% White and 21% other. The median age was 41 years and 67 % were
112	not engaged in work outside the home. All of the participants lived in single-family detached
113	homes. In addition to personal monitoring, a central community monitoring location (ambient)
114	was established at a State of Michigan regulatory air quality platform in Allen Park, MI. We
115	have previously reported on the spatial characteristics of the neighborhoods where the
116	participants lived and their relationship to the ambient monitor (Williams et al., 2009).
117	
118	Methods
119	Environmental Monitoring
120	Ogawa (Pompano Beach, FL) passive dosimeters were deployed for the 24-hr daily
121	collection of NO ₂ air mass pollutant concentrations. Specific procedures have been reported
122	(Williams et al., 2009). These devices have been used extensively in other EPA studies and
123	details of their use and validation reported earlier (Williams et al., 2003; Murkerjee et al., 2004,
124	2009).
125	NO2 monitors were deployed each day (Tuesday through Sunday morning) on a
126	consistent 9 am to 9 am schedule $(24 \pm 2.5 \text{ hrs})$ for a maximum of 5 days per participant per
127	season. Personal monitoring was achieved using a nylon support vest (Williams et al., 2003;
128	Williams et al., 2009) with the monitor affixed in the breathing zone. Ambient monitoring was
129	performed with the monitor affixed to a weather-shielded stand. Method detection limits
130	(MDLs) of 5.1 ppb were established. MDLs represented a three-fold value of the average
131	standard deviation observed in field blank concentrations. More than 99% of all personal and
132	ambient NO ₂ measures had environmental concentrations at or above the MDL with replicate

133 precision error of 12.5%.

134	Estimation of environmental tobacco smoke (ETS) was performed using an active
135	personal PM _{2.5} filter-based monitor collocated with the NO ₂ monitor. ETS estimations were
136	performed using procedures defined by Lawless et al. (2004). Even though the DEARS was a
137	non-smoking cohort, we have reported on the significant contribution ETS had on total personal
138	PM _{2.5} exposures (Williams et al., 2009., Brook et al., 2010; Phillips et al., 2010; Rodes et al.,
139	2010). A contribution of $\ge 1.5 \ \mu g/m^3 ETS$ per PM _{2.5} filter sample was deemed to be indicative
140	of significant ETS exposures during any sampling period. The criteria for this mass
141	concentration selection value have previously been reported (Brook et al., 2010; Rodes et al.,
142	2010).
143	Daily air exchange rates for each home was performed using perfluorocarbon tracer
144	sources and receptor tubes (Williams et al., 2009). The techniques used to perform the
145	monitoring were those reported by Dietz and Cote (1982) with the Brookhaven National
146	Laboratory (Upton, MY) providing all resources and sample analyses.
147	
148	Survey questionnaires
149	A major component of the DEARS study design was the collection of detailed time
150	activity pattern data and survey information needed to investigate human and environmental
151	exposure factors. A total of five such data collection instruments were used and are publically
152	available (<u>www.epa.gov/dears</u>). Williams et al. (2009) have explained the use of each
153	instrument. Nearly 50 ordinal or categorical inputs associated with either the environmental
154	monitoring data or the survey instruments were incorporated into the data analysis. These are

presented in Supplemental Table S1 and represent potential NO₂ sources the participants might have encountered or factors that might impact such sources contributing to total personal exposures. Variables include residential air exchange, ambient NO₂ mass concentrations, and use of fans or specific gas appliances in the home, among others. Limited exposure factor information pertaining to non-home situations was obtained. This included air quality issues the participants might have encountered while visiting local schools, stores and restaurants among other locations, as well as that involved in commuting.

162

163 *Statistical analyses*

164 Univariate analyses have been described elsewhere (Williams et al., 2009). The impact of 165 ETS as a non-ambient NO₂ source was investigated by determining the distribution of the sample 166 population with concentration values above the ETS screening level. This allowed for ETS-167 impacted and non-ETS impacted personal monitoring periods to be established. ETS was 168 observed to be a significant factor upon personal winter time NO₂ concentrations (P < 0.05). 169 Therefore, personal NO₂ data from this season associated with monitoring days on which 170 specific individuals had ETS exposures above the screening level were excluded from model 171 runs attempting to attribute ambient source contributions to total personal exposures. Of the 50 172 exposure factors examined, 26 were determined to have sufficient responses (sample size) for 173 testing. This number was further reduced to a total of 13 variables based upon t-tests associated 174 with seasonal association. Mixed models were then employed to account for repeated measures. 175 Backwards elimination of factors was then performed until the smallest number of variables 176 associated with the highest degree of overall accountability in variability in personal exposures

177	was obtained. General linear models were also performed using a reduced set of variables to
178	investigate any improvement in ambient measures predicting personal exposure variability. All
179	statistical analyses were performed using SAS, version 9.1, Cary, NC. Statistical comparisons
180	reported here had to have P values ≤ 0.05 to be significant.
181	
182	Results
183	Personal and ambient NO ₂ concentrations and home air exchange rates are presented in Table
184	1. Mean personal winter measurements (35.6 ppb) were 40% higher than the average
185	community-based winter measures (25.5 ppb) and were statistically different. Personal and other
186	exposure factors would therefore appear to be influencing total exposures to this pollutant during
187	colder weather. Residential air exchange rate was an important factor. Mean air exchange rates
188	were vastly different by season (summer = 1.9 ± 1.9 ; winter 1.1 ± 0.7).
189	Some of the seasonal differences in total exposures might be explained in part by ETS. Even
190	though the cohort was required to be non-smoking, a small number of the participants were non-
191	compliant and ultimately had to be removed from the study (Phillips et al., 2010). In addition,
192	participants had no ability to stop others from smoking in their presence or prohibited from
193	visiting locations away from the home where smoking was permitted. Table 2 reports the
194	potential impact of ETS on personal measures by season. There was a very strong association (p
195	<0.01) of personal NO ₂ exposure concentrations when ETS above the 1.5 μ g/m ³ screening limit
196	occurred. Only measurements performed during the winter seasons revealed this pattern. Mean
197	non-ETS impacted winter levels of personal NO2 exposures were 26.8 ppb while ETS impacted
198	exposures for this season averaged nearly 50 ppb. Summer personal comparisons averaged

199 approximately 25 ppb regardless of ETS exposures. The higher ETS contributions to total NO₂ 200 exposures in winter are believed to be explained by the seasonal variations in residential air 201 exchange rates reported in Table 1. Few participants employed central air conditioning during 202 the summer and natural (window) ventilation was often observed. Any ETS released indoors in the winter had a far greater capacity to result in environmental concentrations of significance. 203 204 Activity patterns previously reported (Rodes et al., 2010) indicated participants spent an average 205 6.1% more time indoors in the winter as compared to the summer. 206 The impact of various exposure factors are presented in Table 3 and categorized by 207 season. Established ETS-impacted data were removed prior to the analysis. Listed variables 208 represent a reduced version of those described earlier in Table S1. This truncation was the result 209 of determining which variables had a sufficient sampling population to permit a valid 210 examination of effects. It is interesting to note that participants who thought they were exposed

211 to ETS in the winter (but had measured ETS levels below the screening threshold) still had NO₂ 212 exposure concentrations higher (P=0.05) than those who did not respond positively to this

213 question.

214 The t-tests reported in Table 3 resulted in 13 variables ultimately selected for inclusion 215 into mixed modeling. Participants indicating they employed home air conditioning of any type 216 had on average a 28.1 ppb daily personal exposure during the summer. The use of a gas space 217 heater in the home during the winter was observed to influence daily personal NO₂ exposures by 218 59.6 ± 46.6 ppb. In fact, a number of gas appliance-related survey questions appeared to 219 potentially represent significant exposure risk estimates during the winter. Having so many 220 survey findings related to a common exposure source (gas combustion products) resulted in

DEARS NO₂ exposure factors some difficulty in ultimately reducing the mixed model inputs to a satisfactory number as described below.

221

222

223 Data in Table S2 provide mixed model effect estimates for personal exposure to NO₂ by 224 monitoring season. A number of fixed effects were employed in the analyses such as participant, 225 season and date. Use of a dryer pilot light was a component of the full model but dropped as part 226 of the reduction effort. Two remaining variables reflected significant exposure effects during 227 summer monitoring following stepwise eliminations. Selection of gas as a cooking fuel resulted 228 in an average increase of approximately 9 ppb additional exposure each day. Likewise, use of 229 window air conditioning units appeared to result in an increase of nearly 6 ppb per operating 230 unit. Since such units do not generate NO₂ themselves, this effect must be related to some 231 general air exchange taking place in the home and thus bringing in outdoor sources of NO_2 . This 232 result is somewhat contradicted though as residential air exchange in itself was observed to have 233 a modest but positive effect (lowering) of one's personal daily NO₂ exposure (-0.8 ppb/air 234 exchange rate).

235 Mixed modeling results for the winter seasons resulted in only one significant (p =236 0.0112) effect following the stepwise elimination process. Both use of a dryer pilot light and 237 kitchen fans were eliminated. Participants using a forced air gas furnace would appear to reap a 238 significant positive benefit relative to one's personal exposure (-16.1 ppb). One would assume 239 that this variable is acting as a surrogate of residential air exchange in some manner by replacing 240 NO₂ tainted indoor air from any number of sources and replacing it with fresher outdoor air, 241 thereby reducing residential indoor source strengths. However, air exchange itself was not 242 determined to be a significant effect during the winter season.

General linear models (GLM) were then applied to the reduced data sets for both
seasons In such modeling, we performed naïve analyses (i.e., ignoring potential correlations
between repeated measures) using the SAS GLM procedure to generate a traditional coefficient
of variation (r^2). Coefficients ($r^2 = 0.19, 0.11$) were established for the summer and winter

DEARS NO₂ exposure factors

247 seasons, respectively. Because a number of questions remained following this round of

243

244

245

246

248 modeling, additional models (mixed or GLM) were applied to investigate the impact of gas-

249 related survey findings upon personal NO₂ exposures and variance components on the total (non-

250 season categorized data). Select findings from these models are highlighted in Table 4 and

251 defined by model run number. These efforts attempted to constrain the analyses so that data

relating to personal exposures from significant home-related NO₂ sources might be removed

from the analysis. This would theoretically provide the greatest opportunity to determine the true
 impact of ambient-based NO₂ concentrations on personal exposures.

The first of these six runs incorporated effects associated with ambient NO₂, air exchange, use of dryer pilot light, operation of home air conditioning, gas as a cooking fuel, heating with a forced gas furnace and use of window AC units. Elimination of the nonsignificant dryer pilot light variable in the next run (#2) resulted in minimal improvement. Once again, use of a gas furnace had the greatest positive impact upon personal exposures (-19.3 ppb; p = 0.0031), while use of gas as a cooking fuel resulted in increased personal exposures (13.6 ppb; p=0.0357).

Elimination of the residential gas source variables described immediately above in the next mixed model run provided no improvement relative to ambient NO₂ being a significant predictor of personal exposure (p = 0.7832). Model runs # 4 and 5 (GLM) ignored repeated

12

measures using the variables defined earlier in run #2. An r^2 of 0.08 resulted from this 265 266 exercise in run #4. Model #5 also ignored repeated measures but without the inclusion of heat 267 source variables as potential source variables. Such a run excluded exposure data from which 268 participants had provided a positive response to all residential gas-related source effect 269 questions. Such a dataset would have theoretically increased the potential for an improved 270 association between personal and ambient based measures. No such improvement was observed with an even poorer agreement ($r^2 = 0.012$) between matched personal and ambient 271 272 measurements obtained. This indicates that even though both of the GLM runs resulted in an 273 extremely poor fit, heat source variables would appear to account for most of the variability in 274 personal NO₂ exposures.

275

276 **Discussion**

DEARS personal and community-based (ambient) daily NO₂ measures were successfully measured across all spatial settings and seasons using a passive monitor with a relatively short time integral (24 hr). Data were consistent with other recent human exposure studies in regard to the wide range in concentration and spatial variability observed in other personal and ambientbased settings in the U.S. and Europe for individuals not overly exposed to automotive emissions (Spengler et al., 1994; Alm et al., 1998; Harrison et al., 2002; Nerriere et al., 2005; Brown et al., 2009).

Personal NO₂ exposure distribution for the DEARS would indicate the 50th percentile
being well below the current national ambient standard. With rare exception, individuals
experiencing elevated daily exposures to NO₂ (in one instance 474 ppb), had identifiable sources

288 ETS exposures had a significant impact on NO₂ exposures during winter measurements. 289 Increased NO₂ exposures in populations of smokers or those exposed to ETS have been reported 290 elsewhere (Alm et al., 1998; Harrison et al., 2002). This complication compounds the difficulty 291 in trying to accurately assess the relationship of ambient NO₂ on personal exposures in the 292 general population. It would appear that the presence of ETS needs to be carefully screened for 293 in human panel studies for accurate spatial relationships to be investigated. 294 Mixed modeling revealed that pinpointing specific exposure factors (beyond ETS 295 exposures) would be problematic in this population and sometimes contradictory. While use of 296 gas as a cooking fuel was significant for the summer seasons relative to an increase in personal 297 exposures, use of a forced air gas furnace actually had a positive (lowering effect) upon 298 participants during the winter. Refined GLM and mixed models attempting to consolidate or 299 exclude a number of these factors to simplify the analyses yielded little additional insight. At 300 best, participants having a higher extent of exposure to various gas combustion-related factors 301 had more of their overall personal exposure variability explained. A number of other studies 302 have also attempted to determine the factors influencing personal exposures to NO₂. Spengler et 303 al. (1994) reported from a Los Angeles basin study that persons living in homes with or without 304 gas as a heating fuel, gas water heaters or gas clothes dryers were statistically equivalent. Homes 305 with gas appliances have been linked to potentially higher personal exposures in the Boston area 306 (Brown et al., 2009). Results from the large Genotox ER study reported that personal exposures 307 were higher in individuals using a gas stove but that inclusion of this factor did not significantly 308 improve the overall understanding of personal versus ambient relationship (Nerriere et al., 2005).

14

309 Piechocki-Minguy et al. (2005) reported that a major component of personal NO₂ exposure 310 variability could be explained using factors related to mobile emissions (transportation survey 311 questions). A specific question related to travel by auto in the DEARS did not yield data 312 supporting such a finding.

313 Considering that the DEARS was designed specifically to help address issues related to 314 how ambient sources impact personal exposures and that more than a thousand source-based 315 questionnaires were collected in support of this objective, it is surprising that a better 316 understanding in personal variability could not be obtained. Residential gas-related factors did 317 help explain a minor component of the overall variability. Ambient-based measures as a 318 surrogate for true personal exposures were determined to be an extremely poor predictor 319 regardless of season. Even when exposure data potentially impacted by ETS and residential gas 320 appliance use were removed from the analysis, the resulting models showed little overall 321 improvement. Other studies have been more successful in associating ambient-based measures 322 with personal exposures, especially those that have incorporated time activity diary input into the 323 models (Kousa et al., 2001; Talar et al., 2009). It is apparent that studies even more focused than 324 the DEARS need to be designed and performed concerning this environmental pollutant. 325

326

327

328 Acknowledgments

329 The US Environmental Protection Agency through its Office of Research and Development

funded and conducted the research described here under contract 68-D-00-012 (RTI

DEARS NO₂ exposure factors 15 Columbus Laboratory) 68-D-00-206 and FP-05-D-065

- 331International), EP-D-04-068 (Battelle Columbus Laboratory), 68-D-00-206 and EP-05-D-065
- 332 (Alion Science and Technology). Mention of trade names or commercial products does not
- 333 constitute endorsement or recommendation for use. Dennis Williams of Alion Science and
- 334 Technology was responsible for preparation of sampling media.

335 References

- 336
- Alm, S., Mukala, K., Pasanen, P., Tiittanen, P., Ruuskanen, J., Tuomisto, J., Jantunen, M.
 Personal NO₂ exposures in preschool children in Helsinki. *J. Expos. Anal. Environ. Epidemiology* 1998: 8; 79-1000.
- Baxter, L., Barzyck, T., Vette, A., Croghan, C., Williams, R. Contributions of diesel truck
 emissions to indoor elemental carbon concentrations in homes proximate to the Ambassador
 Bridge. *Atmos. Environ.* 2008: 42: 9080-9086.
- 344

352

- Brauer, M., Koutrakis, P., Spengler, J. Personal exposures to acid aerosols and gases. *Environ. Sci. Tech.* 1989: 23: 1408-1412.
- Brook, R., Bard, R., Burnett, R., Shin, H., Vette, A., Croghan, C., Stevens, C., Phillips, M.,
 Williams, R. The associations between daily community and personal fine particulate matter
 levels with blood pressure and vascular function among non-smoking adults. *Occupational and Environmental Medicine* 2010. Doi:10.1136/oem.2009.053991
- Brown, K., Sarnat, J., Suh, H., Coull, B., Koutrakis, P. Factors influencing relationships
 between personal and ambient concentrations of gaseous and particulate pollutants. *Science of the Total Environ*. 2009: 407: 3754-3765.
- Clean Air Act 2004. P.L. 108-201. Code of Federal Regulations. Title 42. February 24, 2004.
- 359 DEARS. The US EPA Detroit Exposure and Aerosol Research Study (DEARS) website.
 360 www.epa.gov/dears.
 361
- Dietz R., and Cote R. Air infiltration measurements in a home using a convenient perfluorocarbon
 tracer technique. *Aerosol Science Technology* 1982: 8: 419-433.
- 364
 365 EPA 2008. Integrated Science Assessment for Oxides of Nitrogen-Health Criteria (Final
 366 Report). U.S. Environmental Protection Agency, Washington, DC. EPA/600/R-08/071, 2008.
 367
- Harrison, R., Thornton, C., Lawrence, R., Mark, D., Kinnersley, R., Ayres, J. Personal exposure
 monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including suspectible
 groups. Occup. Environ. Med. 2002: 59: 671-679.
- Klepeis, N., Nelson, W., Ott, Robinson, P., Tsang, A., Switzer, P., Behar, J., Hern, S., Engelmann,
 W. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to
 environmental pollutants. *Journal of Exposure Analysis and Environmental Epidemiology* 2001:
 11(3):231-252.

Kousa, A., Monn, C., Rotko, T., Alm, S., Oglesby, L. and Jantunen, M. Personal exposures to
 NO₂ in the EXPOLIS-study: Relation to residential indoor, outdoor and workplace

377	DEARS NO ₂ exposure factors 17 concentrations in Basel, Helsinki and Prague. <i>Atmos. Environ.</i> 2001: 35: 3405-3412.
378 379	Lawless, P., Rodes, C., Ensor, D. Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon. <i>Atmos. Environ.</i> 2004: 38: 3373-3383.
380 381 382 383 384 385	 Mukerjee, S., Smith, L., Norris, G., Morandi, M., Gonzales, M., Noble, C., Neas, L., Ozkaynak, H. Field method comparison between passive air samplers and continuous monitors for VOCs and NO₂ in El Paso, Texas. <i>Journal of Air and Waste Management Association</i> 2004: 54: 307-319.
386 387 388 389 390	Murkerjee, S., Oliver, K., Seila, R., Jacumin, H., Croghan, C., Daughtrey Jr., H., Neas, L., Smith, L. Field comparison of passive air samplers with reference monitors for ambient volatile organic compounds and nitrogen dioxide under week-long integrals. J. Environ. Monitoring 2009: DOI:10.1039/b809588d.
391 392 393 394 395	Nerriere, E., Zmirou-Navier, D., Blancard, O., Momas, I., Ladner, J., Mouleec, Y., Personnaz, M., Lameloise, P., Delmas, V., Target, A., Desqueyroux, H. Can we use fixed air monitors to estimate population long-term exposure to air pollutants? The case of spatial variability in the Genotox ER study. <i>Environ. Res.</i> 2005: 97: 32-42.
396 397 398	Phillips, M., Rodes, C., Thornburg, J., Shamo, F., Whitmore, R., Chowdhury, D., Allpress, J., Vette, A., Williams, R. Optimizing recruitment and retention strategies for the Detroit Exposure and Aerosol Research Study (DEARS). <i>RTI Press</i> 2010 (In Press).
400 401 402 403	Piechocki-Minguy, A., Plaisance, H., Schadkowski, C., Sagnier, I., Saison, J., Galloo, J., Guillermo, R. A case study of personal exposure to nitrogen dioxide using a new high sensitive diffusive sampler. <i>Science of the Total Environ</i> 2006: 366: 55-64.
403 404 405 406 407	Rodes, C., Lawless, P., Thornburg, J., Croghan, C., Vette, A., Williams, R. DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population cohort. <i>Atmos. Environ.</i> 2010: 44:1386-1399.
408 409 410 411	Sarnat, J., Coull, B., Schwartz, J., Gold, D., Suh, H. Factors affecting the association between ambient concentrations and personal exposures to particles and gases. <i>Environ. Health Perspectives 2006</i> : 114: 649-654.
412 413 414 415	Spengler, J., Schwab, M., Ryan, B., Colome, S., Wilson, A., Billick, I., Becker, E. Personal exposure to nitrogen dioxide in the Los Angeles Basin. J. Air Waste Manage. Assoc. 1994: 44: 39-47.
416 417 418	Talar, S., Su, J., Brook, J., Burnett, R., Loeb, M., Jerrett, M. Predicting personal nitrogen dioxide exposures in an elderly population: integrating residential indoor and outdoor measurements, fixed-site ambient pollution concentrations, modeled pollutant levels, and time-activity patterns.

- DEARS NO₂ exposure factors 18 419 *J. Toxicol. and Environmental Health* 2009: 72: 1520-1533. 420
- Williams, R., Suggs, J., Zweidinger, R., Evans, G., Creason, J., Kwok, R., Rodes, C., Lawless, P.,
 Sheldon, L. The 1998 Baltimore particulate matter epidemiology-exposure study: part 2.
 Personal exposure assessment associated with an elderly study population. *J. Exposure Analysis Environmental Epidemiology* 2000: 10: 518-532.
- Williams, R., Suggs, J., Rea., A., Leovic, K., Vette, A., Croghan, C., Sheldon, L., Rodes,
 Thornburg, J., Ejire, A., Herbst, M., Williams Sanders Jr. The Research Triangle Park
 particulate matter panel study: PM mass concentration relationships. *Atmospheric Environment* 2003: 37: 5349-5363.
- Williams, R. EPA's Detroit Exposure and Aerosol Research Study. EPA Research Highlights,
 AWMA Environmental Manager, October 2005, pp43.
- 433

- Williams, R., Rea, A., Vette, A., Croghan C., Whitaker, D., Wilson, H., Stevens, C., McDow, S.,
 Burke, J., Fortmann, R., Sheldon, L., Thornburg, J., Phillips, M., Lawless, P., Rodes, C.,
 Daughtrey, H. The design and field implementation of the Detroit Exposure and Aerosol
 Research Study (DEARS). *J. Exp. Sci. and Environ. Epidemiology* 2009: 19: 643-659.
- 438
- 439
- 440
- 441 442

443 Table 1. Summer and Winter Seasons Pollutant Descriptive Statistics.

Summer									
Variable	Ν	Mean	STD	Min	25^{th}	50	75	95 th	Max
					PCT	РСТ	РСТ	РСТ	
Ambient	759	23.7	11.6	8.0	17.0	22.0	27.0	40.0	100.0
NO_2									
Personal	508	25.5	20.3	3.5	17.0	23.0	29.9	45.0	298.7
NO_2									
Air	492	1.9	1.9	0.1	0.5	1.3	2.5	5.3	17.0
exchange									
				Win	ter				
Ambient	653	23.9	8.6	3.5	19.0	24.0	28.0	41.0	48.0
NO_2									
Personal	401	35.6	50.6	3.5	17.0	24.0	36.0	83.0	474.0
NO_2									
Air	424	1.1	0.7	0.2	0.6	0.9	1.4	2.7	3.7
exchange									

- 446
- 447

448 Table 2. Effect of Environmental Tobacco Smoke (ETS) on Personal NO₂ Exposures

		Variable	ETS (<1.5)	ETS ≥ 1.5	P value
	Summer	NO ₂	25.2 ± 18.0	25.9 ± 25.7	0.75
	Winter	NO_2	26.8 ± 20.4	49.3 ± 74.9	< 0.01
449	NO ₂ exposure conc	entration values in	units of ppb. ETS con	ncentrations of ≥ 1.5	μg/ used to
450	challenge personal	gas exposures for effective	ffect.		
451					
452					
453					
454					
455	Table 3. Impact of	Select Factors on	Personal NO ₂ Expo	sures	
			Summer		

Summer			
	Yes	No	P value
Air conditioning	28.1±26.9	23.4±9.2	0.08
Candles burned	25.8±9.2	25.1±20.3	0.86
Travel by auto	23.4±26.9	29.8±30.4	0.03
Central AC in home	28.1±15.8	23.4±8.7	< 0.01
Doors opened	23.5±10.2	27.2±32.9	0.17
ETS exposure believed to have occurred	20.3±9.9	26.1±26.1	0.22
Cooking fuel type	20.5±33.1	26.1±20.4	0.07
Furnace pilot light	23.1±21.8	27.3±23.3	0.09
Use of gas fireplace	10.4 ± 3.4	23.4±23.7	0.04
Use of gas appliance	24.3±19.6	28.3±37.5	0.24
Window AC used	26.5±21.3	19.9±9.9	< 0.01
Windows opened	24.6±26.9	26.7±21.6	0.47
Kitchen exhaust fan operated	25.2±28.5	24.9±20.3	0.84
Winter			
Central AC in home	20.5±14.0	28.3±19.9	< 0.01
ETS exposure believed to have occurred	34.3±20.7	26.5±21.0	0.05
Cooking fuel type	29.3±26.9	17.8±6.9	< 0.01
Furnace pilot light	25.5±13.4	31.1±29.9	0.03
Use of gas fireplace	10.5±1.73	28.3±21.6	< 0.01
Use of gas appliance	29.2±23.6	22.1±9.3	< 0.01
Use of gas space heater	59.6±46.6	25.3±16.2	< 0.01
Kitchen exhaust fan operated	21.7±9.5	32.4±26.5	< 0.01

456 Values represent ppb concentrations and their standard deviations. T-test P values at the 0.05

457 level indicate significant concentration differences between the yes/no response groups.

459 Table 4. Final Mixed and General Linear Models

Model	Effect	Estimate	Std Error	DF	t value	$\Pr > t $			
	Intercept	50.3852	9.1650	105	5.50	< 0.0001			
	Ambient NO ₂	-0.06399	0.1052	419	-0.61	0.5432			
	Home air exchange	-2.4808	0.8951	419	-2.77	0.0058			
	Dryer pilot light	-3.2426	4.5342	419	-0.72	0.4749			
1	Air conditioning	-8.3337	3.3837	418	-2.46	0.0142			
	Cooking fuel type	13.8680	7.2333	418	1.92	0.0559			
	Forced air gas furnace	-23.1700	7.3684	418	-3.14	0.0018			
	Use of window AC	-6.7595	4.6282	418	-1.46	0.1449			
	Full mixed model CS=98	38.90; ICC =	$= 0.67; r^2 = 0$.12					
	Intercept	41.3105	7.7830	121	5.31	< 0.0001			
	Ambient NO ₂	-0.04436	0.09752	500	-0.45	0.6494			
	Home air exchange	-2.6173	0.8242	500	-3.18	0.0016			
2	Air Conditioning	-7.6253	2.9093	500	-2.62	0.0090			
	Cooking fuel type	13.6172	6.4659	500	2.11	0.0357			
	Forced air gas furnace	-19.3218	6.5128	500	-2.97	0.0032			
	Reduced mixed model CS= 860.23 ; ICC = 0.65 ; $r^2=0.08$								
	Intercept	24.0974	5.2364	5	4.60	< 0.0058			
	Ambient NO ₂	-0.03960	0.1422	22	-0.28	0.7832			
3	Home air exchange	-2.506	1.5921	22	-1.58	0.1276			
	Air Conditioning	1.8196	3.3711	22	0.54	0.5948			
	Reduced mixed model w/o heating source variable $CS=71.80$; $r^2=0.13$								
4	GLM (ignoring repeated measures) $r^2 = 0.0815$								
5	GLM (ignoring repeated measures w/o heat source variable) $r^2 = 0.0129$								