

How Well Are We Able to Measure Acrolein, Formaldehyde, and other HAP Carbonyls?

Jason Herrington, David Shelow, Donald Whitaker

United States Environmental Protection Agency

NATTS

National Ambient Air Toxics Trends Stations (NATTS) are to monitor formaldehyde, acetaldehyde, and acrolein once every 6 days, for a 24-hour duration.

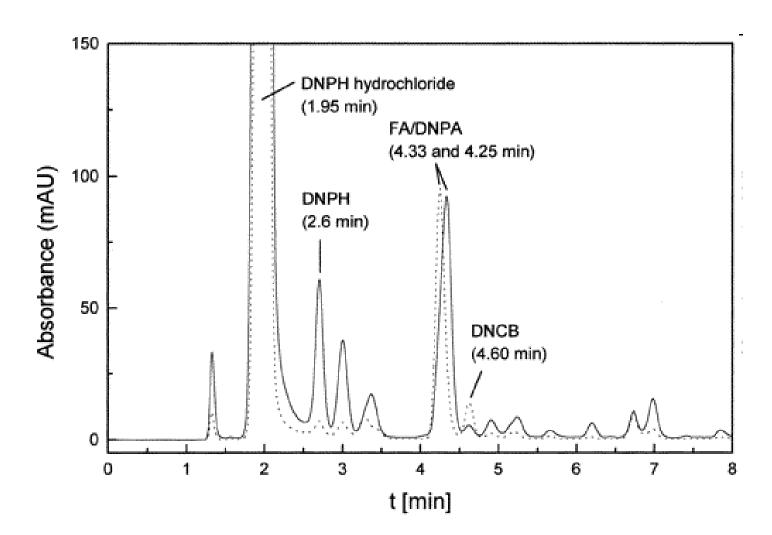
EPA Compendium Method TO-11A

 Inarguably the most frequently utilized method to date.

 Utilizes a cartridge packed with acidified 2,4-dinitrophenylhydrazine (DNPH)-coated Silica-Gel.

EPA Compendium Method TO-15

- Sampling with 6 L silonite coated passivated canisters.
- Recently, utilized for the sampling and analysis of acrolein.


Formaldehyde

DNPH reacts with NO₂ to form 2,4-Dinitrophenyl azide (DNPA).

DNPA coelutes with the formaldehyde-DNPH derivative.

DNPA

Formaldehyde

Several studies have capitalized on the formation of DNPA for the sampling of NO₂, by altering/optimizing their HPLC gradient.

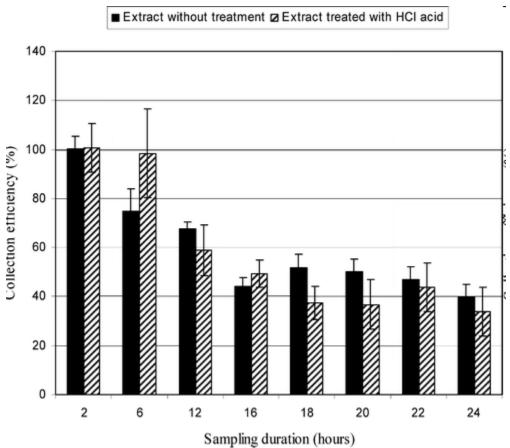
The use of KI scrubbers to limit O_3 intereferences promotes NO_2 by the oxidation of NO.

TO11A does not reflect any of the aforementioned information.

Acetaldehyde

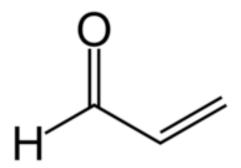
Through an extensive literature search, we were only able to find three studies during which carbonyls other than formaldehyde were evaluated on DNPH-coated solid sorbents for long-term sampling (i.e., 24 h or greater).

Lazarus (1999) reported low acetaldehyde collection efficiencies (CE); and Grosjean (1991), and Grosjean and Grosjean (1995) evaluated breakthrough of the collection media, which does not necessarily reflect CE.



Acetaldehyde

Experimental condition	Carbonyl	SUPELCO	WATERS	XPOSURE	HOUSE
3 hours at 30% RH	Formaldehyde	$89 \pm 10^{\circ} (3)$			
	Acetaldehyde	93 ± 8° (3)			
24 hours at 30% RH	Formaldehyde	83 ± 4 (3)	87 ± 11 (3)	111 ± 4 (3)	104 ± 25 (3)
	Acetaldehyde	39 ± 7 (3)	43 ± 3 (3)	62 ± 7 (3)	1 ± 2 (3)
48 hours at 30% RH	Formaldehyde	89 ± 8 (3)	93 ± 4 (3)	105 ± 19 (3)	14 ± 8 (3)
	Acetaldehyde	51 ± 22 (3)	43 ± 2 (3)	40 ± 11 (3)	0 (3)
24 hours at 60% RH	Formaldehyde	101 ± 8 (3)	101 ± 13 (3)	121 ± 32 (3)	133 ± 27 (3)
	Acetaldehyde	27 ± 4 (3)	29 ± 2 (3)	30 ± 2 (3)	9 ± 2 (3)


Acetaldehyde

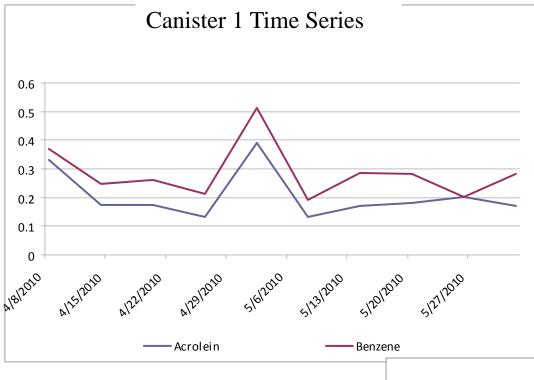
• Herrington, J.; Fan, Z.; Lioy, P. J.; Zhang, J. Low acetaldehyde collection efficiencies for 24-hour sampling with 2,4dinitrophenylhydrazine (DNPH)-coated solid sorbents. Environ. Sci. Technol. 2007, 41, 580-585.

Acrolein

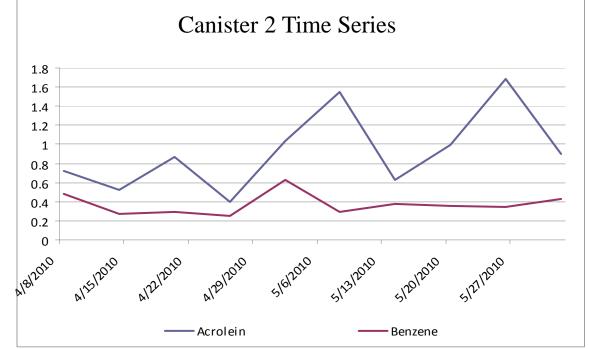
- L. Benning and A. Wahner, J. Atmos. Chem., 1998, 31, 105–117.
- •E. Goelen, M. Lamrechts and F. Geyskens, Analyst, 1997, 122, 411–419.
- •S. B. Tejada, J. Environ. Anal. Chem., 1986, 26, 167–185.
- •K. Olson and S. J. Swarin, J. Chromatogr., 1985, 333, 337–347.
- •M. Possanzini and V. DiPalo, Chromatographia., 1995, 40,134–138.
- •C. H. Risner and P. Martin, J. Chromatogr. Sci., 1994, 32, 76–82.
- •C. H. Risner and P. Martin, J. Chromatogr. Sci., 1994, 32, 76–82.
- •A. Sakuragawa, T. Yoneno, K. Inoue and T. Okutani, J. Chromatogr.,1999, 844A, 403–408.
- •R. Schulte-Ladbeck, R. Lindahl, J. O. Levin and U. Karst, J. Environ. Monit., 2001, 3, 306–310.

Acrolein by Canisters

- EPA Compendium Method TO-15
 - -SUMMA Canisters
 - -24 hour samples
 - –Analyzed by GC/MSD
- Recent work (*Heaton, Dann*) has demonstrated growth of acrolein within canisters.
- We designed a small study to investigate

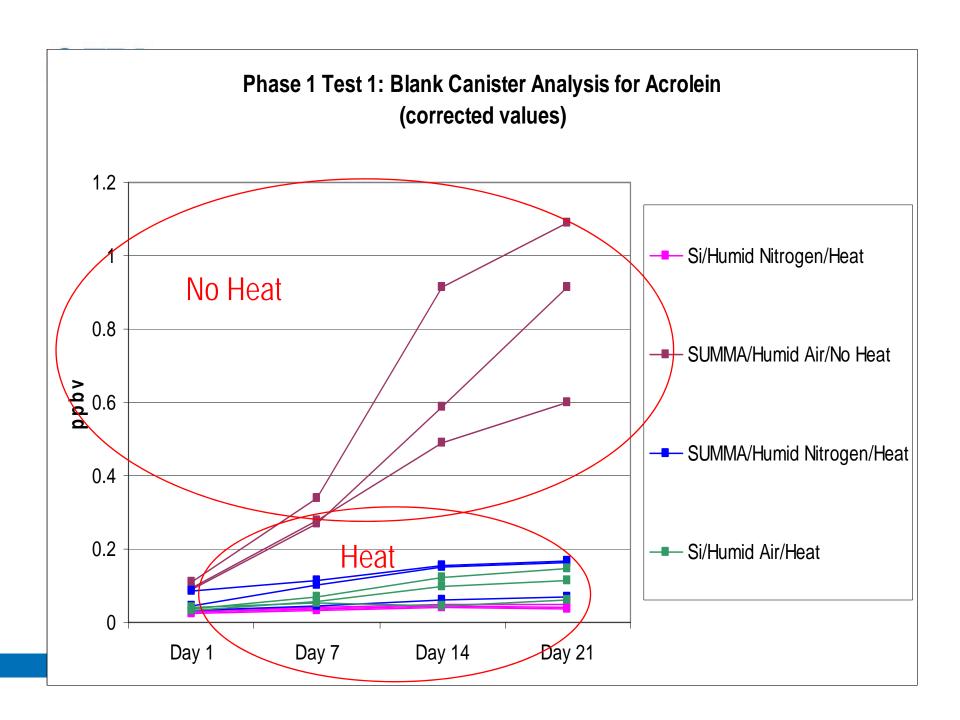

Collocation for Acrolein

Canister collocation


- Same SampleSplit to 2 canisters
- 10 sampling events
- 2 different labs prepare and analyze canisters

•Site: Bronx NYC

- Acrolein As a Mobile Source should tract Benzene
- •Typical Acrolein concentration should be lower than benzene


Not the case here – Why? Canister is contributing to acrolein values.

Acrolein Study

- Experimental Design
 - Variables studied
 - Canister type and prep (cleaning)
 - Heat vs No-Heat
 - Humidified Air vs Humidified Nitrogen
 - SUMMA canister vs Silco lined
 - 2. Lab analysis and calibration gas standards
- Test 1: Blank canisters analysis looking at Acrolein growth
 - Test for cleanliness over 21 days
 - Assumption all SUMMA created equal

Recommendations

-Add heat to canister prep. At least 90°C.

-Start with fresh canisters and test **each** canister for cleanliness **over time** to ensure capability for use for Acrolein. (no growth)

-Collocate each sampling event.

Conclusions

- Laboratory staff need to be aware of DNPA and the possible coelution with the formaldehyde-DNPH derivative.
- Field sampling technicians need to be aware of acetaldehyde collections efficiencies beyond 6 hours of sampling.
- Acrolein-DNPH issues appear to be well known throughout the scientific community.
- Canisters must be cleaned with heat in order to attempt sampling acrolein.