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Abstract. Regional and global chemical transport mod-
els underpredict NOx (NO+NO2) in the upper troposphere
where it is a precursor to the greenhouse gas ozone. The NOx

bias has been shown in model evaluations using aircraft data
(Singh et al., 2007) and total column NO2 (molecules cm−2)
from satellite observations (Napelenok et al., 2008). The
causes of NOx underpredictions have yet to be fully under-
stood due to the interconnected nature of simulated emission,
transport, and chemistry processes. Recent observation-
based studies, in the upper troposphere, identify chemical
rate coefficients as a potential source of error (Olson et al.,
2006; Ren et al., 2008). Since typical chemistry evaluation
techniques are not available for upper tropospheric condi-
tions, this study develops an evaluation platform from in situ
observations, stochastic convection, and deterministic chem-
istry. We derive a stochastic convection model and opti-
mize it using two simulated datasets of time since convection,
one based on meteorology, and the other on chemistry. The
chemistry surrogate for time since convection is calculated
using seven different chemical mechanisms, all of which
predict shorter time since convection than our meteorolog-
ical analysis. We evaluate chemical simulations by inter-
comparison and by pairing results with observations based
on NOx:HNO3, a photochemical aging indicator. Inter-
comparison reveals individual chemical mechanism biases
and recommended updates. Evaluation against observations
shows that all chemical mechanisms overpredict NOx re-
moval relative to long-lived methanol and carbon monoxide.
All chemical mechanisms underpredict observed NOx by at
least 30%, and further evaluation is necessary to refine simu-
lation sensitivities to initial conditions and chemical rate un-
certainties.
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1 Introduction

Total oxidized nitrogen [NOy=NO+NO2+NO3+N2O5+
HNO2+HNO3+HO2NO2+CH3(CH2)nC(O)OONO2+
RNO3] includes many compounds with a wide variety of
physical properties and environmental roles. Nitrogen oxides
(NOx=NO+NO2) are water insoluble, chemically reactive
in the atmosphere, and serve as precursors to ozone. Peroxy
nitrates (PNs=HO2NO2+CH3(CH2)nC(O)OONO2) are
insoluble, their chemical reactivity is temperature dependent,
and they act primarily as a reservoir for NOx. Nitric acid,
on the other hand, is highly water soluble, chemically stable,
and is a primary component of acid rain. The partitioning
of the NOy between component compounds is controlled
by a mix of physical (i.e., emissions and transport) and
chemical (i.e., aqueous, particle, and gas-phase) processes
and is critical to accurate simulation of environmental stress.
The partitioning between NOy compounds influences the
efficiency of NOy wet scavenging, the availability of HNO3

for acid rain, and the amount of NOx for production of
the greenhouse gas ozone. As a greenhouse gas, ozone
is 10 times more efficient in the upper troposphere than
in the lower troposphere (Lacis et al., 1990). The upper
troposphere, with its high ozone mixing ratio and high
radiative forcing efficiency, is also where chemical transport
models (CTMs) underpredicted the NOx precursor (Nape-
lenok et al., 2008; Bertram et al., 2007; Singh et al., 2007;
Napelenok et al., 2008).

Underprediction of upper tropospheric NOx could be
caused by any of the interrelated chemical and physical pro-
cesses in CTMs that affect NOy partitioning. Increasing sim-
ulated NOx from aircraft and lightning increase NOx mix-
ing ratios, but does not resolve the bias. Pickering et al.
(2009) found that lightning improved NOx, but most bias im-
provement was below 8 km. Hudman et al. (2007) concluded
that lightning emissions improved simulated NOx mixing ra-
tios, but the median simulated NOx mixing ratio was still
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300 ppt low-biased and the primary chemical sink (HNO3)
was now overpredicted. Other emission studies have quanti-
fied NOx emissions from aircraft (Eyers et al., 2004; Sutkus
et al., 2003), which are generally small compared to light-
ning except perhaps directly in particular flight paths (Hud-
man et al., 2007). Zero dimensional modeling studies have
suggested either missing observations or errors in chemical
transformation of radical precursors in the upper troposphere
(Olson et al., 2006; Ren et al., 2008). Emissions, physics,
and chemistry both contribute to the NOx mixing ratios, re-
quiring evaluation of each process in isolation.

This study develops and implements a new evaluation
technique designed to isolate simulated chemistry in the up-
per troposphere. Chemistry evaluation, to date, uses ei-
ther smog chamber experiments or quasi-Lagrangian mea-
surements. Smog chamber experiments provide a direct
evaluation in a controlled environment, but chamber exper-
iments are carried out at surface level temperatures and pres-
sures (T≈298 K, P≈1 atm) and typically high NOx mix-
ing ratios (NOx>50 ppb), which are significantly differ-
ent from the upper troposphere (medians from this study:
T=240 K, P=0.31 atm, NOx=0.4 ppb). Quasi-Lagrangian
aircraft measurements can provide temperature/pressure ap-
propriate time-series case studies, but the Lagrangian nature
of the sampling is often difficult to verify given uncertainty in
meteorology (as in Real et al., 2008). Smog chamber evalua-
tions do not have appropriate environmental conditions, and
quasi-Lagrangian sampling does not provide enough high-
quality samples for statistical evaluation. Any upper tropo-
spheric evaluation must account for both environmental con-
ditions and air parcel interaction with meteorology.

We propose a statistically robust chemical evaluation using
in situ upper tropospheric aircraft observations from the In-
tercontinental Chemical Transport Experiment (INTEX-NA;
Singh et al., 2006). Although these aircraft measurements
do not sample a single air parcel through space and time, the
measurements can be grouped and sorted by photochemical
age using a technique developed by Bertram et al. (2007).
This technique assumes that the “youngest” air parcels are
the result of deep convection events. Deep convection mixes
air from the earth’s surface into the upper troposphere and
is generally associated with precipitation that removes water
soluble HNO3, but not less soluble NOx (Prather and Ja-
cob, 1997; Jaeglé et al., 1998). Thus air parcels immediately
following convection have very high ratios of NOx:HNO3.
After deep convection, air parcels undergo chemical process-
ing that converts NOx to HNO3, reducing the NOx:HNO3

ratio until the air parcel is removed from the upper tropo-
sphere by convective downdrafts or subsidence. Initial deep
convection is identified by high NOx:HNO3 and subsequent
removal is modeled stochastically. Therefore, the observed
NOx:HNO3 ratio provides a relative metric of time since
convection that can be used to create a time-series. This time-
series is suitable for evaluating chemistry in the upper tropo-
sphere because it has appropriate environmental conditions

and enough observations for statistical evaluation.
This study uses a relative time-series of observations to

evaluate photochemical aging predicted by seven different
chemistry representations. Each chemistry representation,
called a chemical mechanism, uses reaction sets with varying
degrees and methods of simplification (Dodge, 2000). We se-
lected seven chemical mechanisms from chemical transport
models with spatial scales ranging from point to global. The
complexity of each chemical mechanism also ranges from
near-explicit to condensed. Near-explicit chemical mecha-
nisms represent all known chemical compounds and reac-
tions. Although all known reactions are included, many re-
actions have large uncertainty in the rate coefficient and sto-
ichiometric yield. Condensed mechanisms use abstractions
to reduce the computational load, but often include empirical
tuning for conditions that may limit the applicability of the
mechanism to all environmental conditions.

We evaluate each chemical mechanism to test three main
questions. First, is the rate of chemical aging consistent be-
tween chemical mechanisms and observations? Second, are
biases consistent for all chemical mechanisms, and therefore,
fundamental to the state of the science, or can mechanism
differences identify misrepresentations? Third, to what ex-
tent can chemical mechanisms’ photochemical aging cause
underprediction of NO2? Finally, we evaluate factors that
contribute to partitioning biases for total oxidized nitrogen in
an attempt to improve the individual chemical mechanisms.

2 Methods

2.1 Modeling framework

This study simulates photochemical aging and physical pro-
cessing of air parcels following deep convection. Deep con-
vection mixes lower tropospheric air with VOCs and NOx

into upper tropospheric air (Bertram et al., 2007). Deep con-
vection produces clouds that scavenge water soluble HNO3

and lightning that produces NOx. These two processes re-
sult in high NOx:HNO3 ratios that can identify air parcels
transported by recent convection. After convection, the air
parcel photochemically ages, converting NOx to HNO3, and
mixes with background upper tropospheric air until it is re-
moved from the upper troposphere by convective downdrafts
or subsidence. Particle chemistry is most likely of limited
importance in our study due to low particle surface area. In
an initial analysis, less than 1% of HNO3 is in the particle
phase at equilibrium. Aircraft observe air parcels at varying
time since convection and, therefore, with varying extents of
photochemical aging. We then developed a model to repro-
duce the observed distribution of photochemical age. To re-
produce the distribution of air parcels, our model framework
simulates gas-phase chemistry, photolysis, mixing into back-
ground air (i.e., dilution, dispersion, diffusion), and subse-
quent convection. Subsequent convection is caused by mete-
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orological processes external to our box model, and we simu-
late this process stochastically using a distribution of time be-
tween convective influence. First, we simulate 10 d of chem-
ical aging, or air parcel lifetime, for a variety of physical
and chemical conditions representative of recently convected
air parcels in the INTEX-NA observational database. In the
real environment, we expect that air parcel lifetimes have a
distribution that is governed by subsequent convection. We
stochastically simulate subsequent convection by optimizing
the distribution of air parcel lifetimes for consistency with
observed chemical mixing ratios. The air parcel lifetimes can
be evaluated against the empirical distribution, and the pre-
dicted distribution of chemical species during the air parcel
lifetime can be compared to observed mixing ratios.

2.2 Observations

Aircraft observations provide box model initial conditions
and photochemical age needed for model evaluation. We
first sorted observations using NOx:HNO3 as a chemical in-
dicator of photochemical age. The measurements with the
highest NOx:HNO3 ratios provide physical conditions and
initial chemical mixing ratios for model simulations using
seven chemical mechanisms. The predictions are then eval-
uated against the observational time-series to assess the per-
formance of simulated chemistry.

We use aircraft observations from the National Aeronau-
tics and Space Administration (NASA) DC-8 aircraft flights
during Intercontinental Chemical Transport Experiment –
North America (INTEX-NA) campaign (Singh et al., 2006).
We started with the 10-s averaged NASA DC-8 observa-
tion database (n=56465). We then filtered the observation
database to include only measurements of the upper tro-
posphere (8 km<altitude<10 km). We exclude air parcels
with any fractional cloud presence that would have active
wet scavenging, which would influence NOx:HNO3. We
also removed air parcels that might have been influenced
by stratospheric intrusion (7Be:210Pb>1000) or biomass
burning (CH3CN>200 ppt). The remaining observations
fall into two distinct groups: those influenced by polluted
air (CO≥80 ppb) and those influenced by background air
(CO<80 ppb) (Singh et al., 2007). Our analysis has been per-
formed with both polluted and background influenced obser-
vations and excluding background observations. Both analy-
ses give similar results. In this study, we focused on the in-
fluence of polluted air and include only those air parcels with
over 80 ppb CO (n=861). These observations represent up-
per troposphere air parcels with varying photochemical age.

Observations of NO and HNO3 in the INTEX-NA dataset
have known uncertainties and limitations that require ad-
justment. The NO chemiluminescence measurement has a
long 1-minute integration time, is most reliable for mixing
ratios greater than 100 ppt (Singh et al., 2007) and, during
the INTEX-NA campaign, has a strong bias compared to
steady-state NO ([NO]SS = jNO2

[NO2] / (kO3+NO[O3] +

kHO2+NO[HO•
2]). For this analysis, we require finer time

resolution and detection of low NO (17.7% of [NO]SS ob-
servations are below 100 ppt), so we use the steady-state cal-
culated mixing ratio. During the INTEX-NA study, the Uni-
versity of New Hampshire (UNH) and the California Insti-
tute of Technology (CIT) took two separate measurements
of HNO3. When observations are available simultaneously
between 8 and 10 km, the linear least squares fit of UNH as
a function of CIT is 61.7%. The reason for the discrepancy
is currently unknown, so we and other researchers (Bertram
et al., 2007) adjust UNH by a factor of 1.2 and CIT by a fac-
tor of 0.8. The CIT measurement has better time resolution,
but less temporal coverage. We use the adjusted CIT mea-
surement when available and fill in measurement gaps with
the adjusted UNH measurement. The large discrepancy in
the HNO3 measurement could bias our chemical surrogate
of age. As a result, we have performed this analysis using
CIT, UNH, and the adjusted HNO3 values (see Appendix).
The conclusions of this study are robust to the choice of
HNO3 measurement. Since the cause of the discrepancy is
unknown, we use the adjusted values in the rest of this anal-
ysis.

The upper troposphere observations are then divided into
age groups according to photochemical age as assessed by
NOx:HNO3. The observed NOx:HNO3 ratio in our filtered
dataset is log-normally distributed, and we split observations
into 4 age groups that are non-overlapping, have comparable
sample sizes, and capture the range of air parcel aging. The
age groups, which represent relative photochemical age, will
be referred to as fresh, young, midage, or old. Each category
has a minimum of 215 observations (fresh: 216, young: 215,
midage: 215, old: 215). An additional classification, “ini-
tial”, was added to capture immediate convection for model
initialization. The initial age group includes the youngest
50% of the fresh observations and represents air parcels that
have been convected most recently. Figure 11 shows the total
oxidized nitrogen (NOy) partitioning of each age group and
shows that pernitric acid, PANS, and organic nitrates did not
show strong age-dependent mixing ratios.

2.3 Box model

We use a common box model framework for all simulations
to remove artifacts of multiple modeling systems and isolate
differences between seven chemical mechanisms. The use
of a common box model removed variability in ordinary dif-
ferential equation solvers and physical representations. The
Dynamically Simple Model of Atmospheric Chemical Com-
plexity (DSMACC) provided the flexibility and power neces-
sary to model all our chemical mechanisms. The DSMACC
model (Emmerson and Evans, 2009) is based on the Kinetic
Pre-Processor (KPP) (Sandu and Sander, 2005), which has a
flexible rate coefficient representation. The flexible rate rep-
resentation allowed all seven chemical mechanisms to use
their native reaction rate coefficient forms. We have added
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a mixing process to the DSMACC model to account for di-
lution, dispersion, and diffusion. Air parcels mix in “back-
ground” air where each chemical species mixing ratio is the
mean of observations described above. The “background”
air includes air parcels influenced by both polluted and back-
ground air. The rate of mixing is assumed to be constant
and set to 5% per day (Bertram et al., 2007). Sensitivity
analysis using up to 10 times the mixing rate, and/or more
complex dynamic background and dynamic mixing rates did
not yield meaningfully different results (see Fig. 110). This
box model represents only gas-phase chemical reactions and
mixing with background air; there is no particle or aqueous
chemistry.

2.4 Gas-phase chemistry

This study evaluates gas-phase chemistry from seven chem-
ical mechanisms that each have different research goals.
Carbon Bond version 2005 (Yarwood et al., 2005) and the
State Air Pollution Research Center ’99 (SAPRC99) (Carter,
2000) are typically used for urban to continental simulation.
In addition, SAPRC ’07 (Carter, 2009) and Regional Atmo-
spheric Chemical Mechanism version 2 (RACM2) (Stock-
well et al., 2008; Goliff and Stockwell, 2008; Goliff et al.,
2010) are mechanisms that are planned to be included in
the Environmental Protection Agency’s Community Multi-
scale Air Quality model. The Goddard Earth Observing
System-Chemistry (GEOS-Chem) (Mao et al., 2009) and
Model for OZone And Related chemical Tracers (MOZART-
4) (Emmons et al., 2010) are typically used for global simula-
tion. The near-explicit LEEDS Master Chemical Mechanism
(MCM) (Saunders et al., 1997) is typically used in box model
or trajectory simulations. For MCM, we extracted only those
chemical reactions that would be active given our initial con-
ditions and subsequent chemical products. The seven chemi-
cal mechanisms we evaluate are used for a range of research
goals and have a range of computational complexity (see re-
actions and species in Table 11).

2.5 Photolysis

Gas-phase chemistry simulations typically use different
photo-dissociation models that strongly influence radical ini-
tiation and photochemical cycling. Each chemical mecha-
nism evaluated in this study is typically used in a host chem-
ical transport model (i.e., CMAQ, GEOS-Chem, MOZART4,
and SBOX) with specific photolysis models to calculate
photo-dissociation rates. For example, Carbon Bond and
SAPRC chemical mechanisms both used the CMAQ pho-
tolysis preprocessor (JPROC), GEOS-Chem used FAST-J
photolysis (Wild et al., 2000), MCM used the Tropospheric
Ultraviolet model (TUV) version 4.2 (Madronich, 2002),
RACM2 used a predecessor of TUV, and MZ4 used TUV
version 4.6. Not all photolysis models have implemented
pressure/temperature sensitivities and the resulting differ-

ence in photolysis rates dominated the nitrogen partition-
ing in our initial tests. Particularly, representation of car-
bonyl photolysis temperature/pressure dependence led to dif-
ferences in PAN predictions and the representation of near-
IR photolysis (0.00001 s−1 Murphy et al., 2004) of pernitric
acid led to diverse predictions. The different photolysis rates
were not a function of chemical mechanism, but rather of
the photolysis model calculation. To truly focus on chem-
ical mechanism differences, the photolysis rates were stan-
dardized using TUV v4.6 with modifications consistent with
those used in DSMACC for MCM with one exception. All
mechanisms except MCM had photolysis reactions for PAN
and HO2NO2 and, for this analysis, PAN and HO2NO2 pho-
tolysis has been added to MCM.

2.6 Base simulations

Each chemical mechanism simulates chemical aging for each
initial observed air parcels (ni=108). The initial air parcels
were used as the initialization of all simulated physical and
chemical conditions (see Table 12). The initial observations
of chemical species were mapped to their appropriate chem-
ical mechanism species. Where particular chemical com-
pound measurement was not concurrently available, the me-
dian of all initial values for that compound was used. An ad-
ditional simulation was generated using the initial age group
median value of every chemical compound. Each chemi-
cal mechanism was used to simulate 10 d of chemical pro-
cessing for each initial air parcel and the median air parcel
(ns=ni+1). Nighttime simulation results (i.e., solar zenith
angles, θ, higher than 75 degrees) are ignored to be consistent
with exclusively daytime observations (i.e., 8<θ<75◦).

2.7 Stochastic convection model description

Our simulations must take into account the frequent ex-
change between the upper and lower troposphere. Convec-
tive updrafts loft air parcels into the upper troposphere which
are later removed from the upper troposphere by convec-
tive downdrafts or subsidence. The time between convec-
tive lofting and removal, hereafter air parcel lifetime τair,
can be used to calculate the instantaneous or sampled dis-
tribution of time since convection Pr(t) in the upper tropo-
sphere. To accurately represent observed upper tropospheric
air parcels, we must derive the distribution of time since con-
vection Pr(t) and subset our simulation results accordingly.
We estimate the distribution of time since convection using
a maximum likelihood technique with one stochastic model
and two observationally-derived datasets of time since con-
vection.

The stochastic model for the distribution of air parcel life-
times and of time since convection Pr(t) are both exponen-
tial. From an air parcel’s perspective, encountering a down-
draft is a random and time independent event that will have
an exponential distribution (Gallager, 1996). If the INTEX-
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NA observations were an unbiased random sample, Eq. (1)
would describe the distribution of observed time since con-
vection, where τair is the mean air parcel lifetime. The
INTEX-NA observations, however, preferentially sampled
freshly convective air parcels. Bertram et al. (2007) showed
that 21.4% of air parcels had time since convection less than
6 h, which is far greater than 12.5% of the sampling domain
with convective activity during the INTEX-NA campaign. To
approximately correct the sample bias, we increase the rela-
tive probability of sampling time since convection less than
6 h by a factor of 2. Eq. (2) doubles the probability of sam-
pling young (t<6 h) air parcels (real or simulated), and still
has only one fitting parameter τair.

Pr(t)=
1

τair
exp

( −t
τair

)
(1)

Pr(t)=


1

κ
(
2−exp

(
−6
τair

)) exp(−tκ ) if t≤ 6

1

τair
(
2−exp

(
−6
τair

)) exp( −t
τair

)
if t> 6

(2)

where κ=
−6

log
(
2exp

(
−6
τair

)
−1
) and τair≥ 9

We estimate τair by fitting our statistical models (Eqs. 1
and 2) to two empirical estimates of INTEX-NA observed
time since convection. First, we use back trajectory encoun-
ters with convection systems calculated by Fuelberg et al.
(2007). Second, we use our statistical model with chemical
mechanisms to reproduce NOx:HNO3, a chemical indicator
of time since convection. These two approaches, described in
detail below, require different assumptions, rely on different
models, and provide independent estimates of estimate τair.

Fuelberg et al. (2007) simulated back trajectories and esti-
mated time since convection, which we use to optimize our
statistical model. Fuelberg et al. (2007, Table 3) reported the
cumulative distribution function (CDF) of time since convec-
tion event at intervals starting at 6 h, and ending at 240 h. At
240 h, 91.8% of observations had encountered convection,
which leaves 8.2% of observations with unknown time since
convection. As a conservative approach, we fit our time since
convection model to both the reported and renormalized CDF
and provide the range of results as the back trajectory esti-
mate of τair. For both the original and renormalized dataset,
we find the τair (between 1 and 240 h) that minimizes the
sum of squared prediction error.

Chemical indicators of time since convection, such as
NOx:HNO3, provide a second dataset for determining τair.
The chemical evolution of NOx:HNO3 is reproducible by
chemical simulations, using chemical mechanisms, and then
subsetting results proportional to Eq. (2). We iteratively sub-
set our base simulations according to the probability of time
since convection for each possible τair (1–240 h). To max-
imize the size of each subset, we normalize the probabil-
ity of time since convection to a percentage (exponential:

Eq. 3, bias-corrected: Eq. 4) of simulations at each model
output time. Each result subset is an ensemble of simulated
NOx:HNO3 with varying initial conditions and time since
convection. We then selected the optimal τair based on the
agreement of the simulation ensemble NOx:HNO3 with ob-
served NOx:HNO3.

p(t)= exp

( −t
τair

)
(3)

p(t)=

{
exp
(−t
κ

)
if t≤ 6

κ
τair

exp
(

−t
τair

)
if t> 6

(4)

where κ=
−6

log
(
2exp

(
−6
τair

)
−1
) and τair≥ 9

For each τair, we then evaluate the agreement of the
simulation ensemble with observed NOx:HNO3 using the
non-parametric Anderson-Darling K-sample goodness-of-fit
statistic (Scholz and Stephens, 1987). The Anderson-Darling
test makes no assumptions about data distribution (i.e., skew,
kurtosis, etc.), and is particularly sensitive on tails of data
distributions. Further, the fit criterion (A2

kaN ) is inversely
proportional to goodness-of-fit, which makes it ideal for op-
timization. For each chemical mechanism, we minimize the
fit criterion to identify the optimal τair.

2.8 Evaluation approach

We derive τair using one approach that relies on back trajec-
tory simulation and another that depends on chemical simu-
lation. Using the back trajectory dataset provides an estimate
of τair that depends on the accuracy of a meteorology model.
Using the chemical mechanism approach provides an esti-
mate of τair that depends on the modeled NOx to HNO3 con-
version. If these two approaches confirm each other, we gain
confidence that the chemical mechanisms are photochemi-
cally aging at the same rate as observations. If these two
approaches conflict, we further evaluate chemical simulation
results for evidence that the chemical aging rate is consistent
or inconsistent with observed mixing ratios.

We evaluate simulation results, sampled by optimal τair, to
test the consistency of chemical aging precursors and prod-
ucts. Chemical aging, here assessed by NOx:HNO3, in-
cludes the net production or loss of all oxidation precursors
and products. If the chemical aging is consistent with obser-
vations, other oxidation precursors and products should also
be correctly predicted. Our null hypothesis is that, given the
same amount of nitrogen oxidation, simulated and observed
mixing ratios will be statistically similar for chemical species
that were not used to optimize τair. The predicted distribu-
tions of mixing ratios for simulated and observed chemical
species are statistically compared using a Mann-Whitney-
Wilcoxon rank sum test (hereafter rank sum test) (Mann and
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Whitney, 1947). The rank sum test compares the entire dis-
tribution (i.e., not just the mean, median or mode) to test if
one is statistically greater than the other. The rank sum test
is a non-parametric test and, as such, makes no assumptions
about data distribution (i.e., skew, kurtosis, etc). There is no
perfect comparison between simulated and measured chemi-
cal mixing ratios. For instance, the aircraft observations are
time (10 s) and space (1.5 to 3 km) averaged while predic-
tions are instantaneous. The averaging of observations could
smooth out some extremes; this is especially true for fast re-
acting radical species (Olson et al., 2006). To account for
some anticipated variation, this study requires a very high de-
gree of confidence to conclude that observations are distinct
from model mixing ratios. We only reject the null hypothesis
if the probability of the difference in distributions is less than
0.01% (p<0.0001).

3 Results

3.1 Stochastic convection: back trajectory results

The back trajectory estimation technique has four discrete
estimates of mean air parcel lifetime (τair). Each estimate
comes from combining a time since convection dataset, ei-
ther the unadjusted or renormalized, and a statistical model,
either the exponential (Eq. 1) or bias-corrected (Eq. 2) as
described in the Stochastic Model Description. Figure 12
shows that renormalizing the back trajectory dataset short-
ens the τair estimate, while using the bias-corrected statisti-
cal model lengthens the τair estimate. Both the renormal-
ized dataset and the bias-corrected statistical model incre-
mentally improve the coefficient of correlation (R2). Using
the unadjusted back trajectory results, the exponential model
(A) predicts τair=40 h and our bias-corrected model (B) pre-
dicts τair=51 h. With renormalized back trajectory results,
the exponential model (C) predicts τair=47 h and our bias-
corrected model (D) predicts τair=58 h.

3.2 Stochastic convection: NOx:HNO3 results

The chemical mechanism technique of estimating of τair con-
sistently yielded shorter τair values than the back trajectory
approach. Figure 13 compares the back trajectory and chemi-
cal mechanism τair. The shortest τair estimates for all chem-
ical mechanisms was derived using the exponential model
(18–23 h). When using the optimized exponential model
(Eq. 3), all chemical mechanisms, except SAPRC99 and
RACM2, predicted NOx:HNO3 ratios that are statistically
different from observations. When the convection model is
corrected for sampling bias (Eq. 4), estimated air parcel life-
times are longer (28–34 h) and NOx:HNO3 compares bet-
ter with observations. When correcting for sampling bias,
Fig. 14 shows that all the chemical mechanisms capture the
general shape of the observed NOx:HNO3. As a result, the
Anderson-Darling goodness-of-fit test cannot reject the null

hypothesis that NOx:HNO3 is consistent with observations
(α<0.01). Even though the chemical mechanisms capture
the distribution of observed NOx:HNO3, the highest τair es-
timate is 6 h shorter than the shortest back trajectory estimate.

The back trajectory estimates of time since convection are
all longer than any estimate by chemical mechanisms. If
any of the back trajectory τair estimates are correct, all of
the chemical mechanisms too rapidly remove NOx. Because
NOx components NO and NO2 are in steady state, this leads
to an underprediction of NO2. We estimate the NO2 low-bias
by sampling simulated results using our statistical model of
convection optimized with back trajectory time since convec-
tion. Even when we sample the simulation results using the
lowest τair estimate (40 h), we underpredict NO2 by at least
30%.

3.3 Chemical mixing ratio evaluation

The chemical mechanism and back trajectory τair estimates
disagree, suggesting a need to further evaluate predicted ox-
idation precursors and products. We evaluate oxidation pre-
cursors and products to assess our confidence in the chemical
mechanism estimate and to understand chemical mechanism
differences. For the chemical evaluation, we use the bias-
corrected convection (Eq. 4) because it produces the longest
τair and, therefore, is the most conservative comparison. Fig-
ure 15 overlays simulation ensemble predictions over obser-
vations for selected chemical species illustrating chemical
mechanism biases. For each chemical species, Fig. 15 shows
the distribution of predictions and observations for the five
age groups. Figure 15 also denotes observed statistically sig-
nificant trends between age groups and statistically signifi-
cant biases in chemical mechanism predictions (see caption
for details). For each chemical mechanism, the median is a
circle that is hollow when simulations are statistically biased
compared to observations. The statistical biases demonstrate
that some problems are mechanism-specific, while others af-
fect all tested mechanisms.

Given the same amount of nitrogen aging or oxidation, we
expect other oxidation products to compare well. The oxida-
tion products ozone and hydrogen peroxide, however, were
only well-predicted until the midage age group. For ozone,
SAPRC99 underpredicts midage and old mixing ratios. For
hydrogen peroxide, SAPRC99, SAPRC07, and GEOS-Chem
underpredict as early as the midage age group. By the old age
group, all chemical mechanisms now under-predict hydrogen
peroxide.

Given the same amount of nitrogen aging, we also ex-
pect oxidation precursors to compare well. Chemical mech-
anisms, however, tended to underpredict quickly-reacting
carbonyls acetaldehyde (CH3CHO) and peroxy acetic acid
(CH3C(O)OOH) while overpredicting longer-lived species
carbon monoxide (CO) and methanol (CH3OH). Acetalde-
hyde observations, for example, showed no statistical trend,
but the predicted mixing ratios decrease with time. All chem-
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ical mechanisms underpredict the acetaldehyde magnitude
and inter-quartile range almost immediately. Peroxy acetic
acid observations also had no statistically significant de-
crease with time, but predictions bias depended on the chem-
ical mechanism. For peroxy acetic acid mixing ratios, the
SAPRC99 mechanism overpredicted, SAPRC07, RACM2
and GEOS-Chem underpredicted, while MZ4 and CB05 per-
formed statistically well. For longer lived carbon monox-
ide and methanol, all chemical mechanisms overpredicted as
early as the young age group.

These long-lived species, particularly methanol (CH3OH)
and carbon monoxide (CO), are important because they are
alternative indicators of time. Methanol and carbon monox-
ide are lost exclusively by slow, well-known OH• reactions
and have relatively little secondary chemical production in
the upper troposphere. The bias in predicted carbon monox-
ide, when NOx:HNO3 is used as a surrogate for time, is a
clear discrepancy. The chemical mechanisms incrementally
remove long-lived carbon as a function of integration time,
but as a function of NOx:HNO3 there is little integration
time difference between age groups. As a result, long-lived
carbon is relatively constant between age categories until the
parcel is old.

3.4 Chemical mechanism biases and recommendations

In several cases, chemical mechanisms had striking biases
that can be explained by either modeling assumptions or up-
dates to the kinetic literature. The CB05 mechanism had by
far the highest bias for organic nitrates (RNO3), which can
be explained by its representation of acetone. Both GEOS-
Chem and RACM2 oxidized peroxy acetic acid much faster
than the other chemical mechanisms, which can be explained
by the choice of kinetic surrogate. All mechanisms overpre-
dict peroxy nitric acid during the young age group, which
can be improved by updating the OH• rate constant. Each of
these issues is explored in detail below, and implemented to
see the change in estimated air parcel lifetime (τair).

The CB05 simulations partition up to 25% of total nitro-
gen into RNO3, but all chemical mechanisms that explicitly
represent acetone predict less than 3%. The RNO3 produc-
tion is a sink for both HOx and NOx, decreasing availability
of OH• and NO2, which leads to CB05 predicting the low-
est HNO3. The overprediction of RNO3 by CB05 is a result
of structural lumping that combines acetone into the model
species PAR. The CB05 PAR species holds all singly bonded
carbon, but also holds all carbon from acetone (Yarwood
et al., 2005). Acetone has a long lifetime and high mixing
ratios in the upper troposphere, so it can dominate the car-
bon in PAR (see Fig. 16). The PAR+OH• organic nitrate
yield, however, is based on urban, surface PAR reactivity
(i.e., primarily alkanes). In CB05, the PAR+OH reaction
creates an operator species (XO2N), directly (13%) and indi-
rectly (3%), that yield >10% organic nitrates production. In
contrast, explicit representation of acetone in GEOS-Chem

yields 3.6% organic nitrates. In the upper troposphere where
acetone is the dominant PAR contributor, the organic nitrate
fraction would have to be adjusted or acetone would need
to be handled explicitly. A simple adjustment in CB05 of
organic nitrate yield to 3% (as in GEOS-Chem) improves or-
ganic nitrate yield significantly and increases the τair to 40 h,
which is also the lower bound back trajectory τair estimate.

GEOS-Chem and RACM2 predict a median peroxy acetic
acid (CH3C(O)OOH) mixing ratio less than the observed
25th percentile by the young age group. Peroxy acetic acid
is the second largest acyl peroxy radical source (i.e., PAN
precursor) in the first 6 h of simulated aging. The primary
loss pathway for peroxy acetic acid is reaction with OH•,
but the OH• rate coefficient is not available in the litera-
ture. Both chemical mechanisms that underpredict peroxy
acetic acid choose methyl peroxide as a surrogate compound
for the OH• rate coefficient. The chemical mechanisms that
perform better, however, use the acetic acid OH• rate coef-
ficient. At upper tropospheric temperature and pressure, the
acetic acid rate coefficient reported by Sander et al. (2006)
(not updated from 2003 report see errata) and Atkinson et al.
(2006) are both roughly ten times lower than the methyl per-
oxide OH• rate. Preliminary peroxy acetic acid OH• rate
studies confirm the kOH• similarity to CH3C(O)OH (Or-
lando and Tyndall, 2002, private communication).

Pernitric acid is overpredicted by all chemical mechanisms
and acts as an important radical sink in the upper tropo-
sphere. In the upper troposphere, pernitric acid that is formed
(HO•

2+NO2→HO2NO2) is thermally stable, and the pri-
mary loss is OH•+HO2NO2 (see Fig. 17). The net per-
nitric acid reaction consumes two HOx radicals (Wennberg
et al., 1998) and, in this study, this net reaction accounts for
29% of the radicals terminated in the first 6 h. We recom-
mend using the latest kOH+HO2NO2

(Jimenez et al., 2004)
which improves HO2NO2 agreement with observations and
increases competition of pernitric acid with NO2 for OH•

radicals. Even with this recommendation, the pernitric acid
reaction rates have large uncertainties at low temperatures
and laboratory studies are restricted to temperatures above
those typical in the upper troposphere (Atkinson et al., 2004;
Gierczak et al., 2005; Sander et al., 2006).

The peroxy acetic acid and peroxy nitrate recommen-
dations implemented together into our working version of
GEOS-Chem. These changes improve peroxy acetic acid
and pernitric acid predictions, and increase the τair estimate
from 32 to 34 h. The new predicted NOx:HNO3 is now sta-
tistically consistent with observations at the p<0.01 level.
Despite the improved NOx:HNO3, the τair estimate is still
6 h shorter than the lowest back trajectory estimate, and the
marginally longer τair has little affect on long-lived carbon.
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4 Discussion

The evidence gathered here suggests that the chemical mech-
anisms photochemically age NOx too quickly. First, all
chemical mechanism estimates of air parcel lifetime, the time
necessary to age NOx, are at least 15% shorter than the short-
est back trajectory estimate. Second, the chemical mecha-
nism air parcel lifetime estimates are insufficient to remove
long-lived carbon, as seen in observations. Given these dis-
crepancies, we conclude that chemical mechanisms will be
low-biased for NOx in the upper troposphere at any given
time since convection.

We investigated individual chemical mechanism biases to
develop and test recommendations. Peroxy acetic acid, a per-
oxy acetyl nitrate precursor, is removed too quickly by chem-
ical mechanisms that use methyl peroxide; we recommend
all mechanisms use acetic acid as a surrogate until a spe-
cific rate is available. Peroxy nitrates are an important radical
sink in the upper troposphere, and we recommend several up-
dates. The primary peroxy nitrate loss reactions in the upper
troposphere are photolysis and hydroxyl attack. For photol-
ysis, we recommend that all chemical mechanisms include
photolysis for PANs and pernitric acid, and that pernitric
acid near IR photolysis be included. For hydroxyl attack, we
recommend updating the OH• reaction rate (Jimenez et al.,
2004). Finally, explicit or targeted parameterization of ace-
tone is necessary to properly model radical cycling in the
upper troposphere. Improved representation of acetone will
decrease overpredictions of alkyl nitrates, which will alter
radical cycling and total oxidation. The recommendations
improved target species predictions and increased air parcel
lifetime, but did not solve overpredictions of long-lived car-
bon.

This analysis included only gas-phase chemistry and
ignores heterogeneous processing that also affects the
NOx:HNO3 ratio. Including N2O5 heterogeneous hydroly-
sis would exacerbate the rate of NOx to HNO3 conversion
(Jaeglé et al., 1998; Olson et al., 2001; Evans and Jacob,
2005). Mineral dust and ice particle uptake of HNO3 would
buffer or counteract the effect of N2O5 hydrolysis. Our ini-
tial analysis of HNO3 uptake suggests that this rate would
be small compared to nitric acid production NO2+OH•. We
intend to evaluate heterogeneous processing in more depth
along chemical rate analysis there.

During this study, several best practices for atmospheric
chemical modeling became apparent. The chemical system
is very sensitive to the photolysis rates, and so it is critical
to simulate photolysis in a detailed way when evaluating the
chemical mechanisms. Photolysis simulations need to rep-
resent up-to-date pressure/temperature sensitivities. For in-
stance, two models evaluated for use in this study did not
include temperature/pressure sensitivities, which are critical
in the upper troposphere. To accurately simulate tempera-
ture/pressure sensitivities, photolysis rates need to be cal-
culated at the chemical transport model vertical resolution.

Photolysis rates of many species (e.g. ozone) exhibit com-
plex shape throughout the troposphere and linear interpola-
tion can drastically underpredict local minima and maxima.
Coarse resolution in some photolysis preprocessors is most
likely a hold over from historically coarser CTM vertical res-
olutions. Also, ensure that the chemical mechanism used ac-
counts for PAN photolysis and near-IR HO2NO2 photolysis.
Photolysis is the dominant PAN chemical loss process in the
upper troposphere, where many have reported PAN overpre-
diction (Pickering et al., 2009; Yu et al., 2010; Fang et al.,
2010).

5 Conclusions

This study uses a new probabilistic approach to isolate sim-
ulated chemistry for evaluation in the upper troposphere.
This approach uses a large number of observations for sta-
tistical power and parameterizes processes whose stochastic
nature precludes box model simulation. Parameterizing all
other processes isolates gas-phase chemistry and produces
an ideal modeling system for evaluation in the upper tro-
posphere. Other upper troposphere gas-phase evaluations
rely on steady-state assumptions or quasi-Lagrangian mea-
surements. Steady-state assumptions may not be valid in
the upper troposphere because convective mixing constantly
perturbs NOx and radical mixing ratios (Prather and Jacob,
1997). Quasi-Lagrangian analysis provides a direct evalua-
tion approach when sufficient observations are available and
their Lagrangian nature can be confirmed. Both the quasi-
Lagrangian approach and our probabilistic approach have
benefits that can complement each other to strengthen our
body of knowledge where time-series observations from a
single air parcel (e.g. smog chamber experiments) are not
available.

One specific goal of this study was to characterize the con-
tribution of chemistry to upper troposphere underprediction
of NO2. The results presented here confirm previously re-
ported NO2 underpredictions, and do so in an isolated chem-
istry model. All evaluated chemical mechanisms converted
NOx to HNO3 too rapidly and, consequently, underpredicted
NO2 by at least 30%. Even if all emissions, physical trans-
port, and aqueous-phase chemistry were accurately simu-
lated by a chemical transport model, gas-phase chemistry
would cause model underpredictions of NO2.

This paper isolates chemistry and establishes NO2 bias
caused by chemistry. While this work does not resolve the
problem, the modeling framework described provides a test
environment for further analysis. Initial analyses demon-
strate that results presented here are robust to uncertainty
in initial conditions, but that rate expression uncertainty can
meaningfully slow chemical mechanism NOx aging. Future
research will conduct sensitivity tests to identify key rate
expressions. The results from subsequent sensitivity tests
should be used to direct gas-phase rate research that will im-
prove state of the science chemical mechanisms.
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Appendix A

A1 Observation

The spatial distribution of all age groups (defined in the pa-
per) are shown in Fig. 18.

A2 Subsequent convection

Upper troposphere air parcel lifetimes are limited by sub-
sequently encountered convection and, so are exponentially
distributed. Air parcels in the UT subside along isentropic
surfaces, but not as rapidly as they are removed by con-
vection related downdrafts (Prather and Jacob, 1997; Jaeglé
et al., 1998). The importance of convection is most clear in
the tropics where convection is very frequent. To confirm the
importance of convection during the INTEX-NA, we simu-
lated back trajectories a 12 locations forming a grid over the
Northeastern United States using the Hybrid Single Particle
Lagrangian Integrated Trajectory Model (HYSPLIT Draxler
and Hess, 1997). During a 84 h (70% of the time between
INTEX-NA convective events (Fuelberg et al., 2007)) back
trajectory with only isentropic vertical motion, Fig. 19 shows
that only 3 of the 12 simulations originated below 8 km or
above 10 km. This confirms our conceptual model of con-
vection as the dominant removal process of air parcels from
the upper troposphere.

A3 Alternate background mixing scenarios

Our analysis uses background mixing calculated by Bertram
et al. (2007), but there are significantly higher literature val-
ues. We test the sensitivity of our analysis by scaling our
mixing parameter by 2, 4, and 10. Standard mixing is
5% per day, so these scaling values evaluate to 10%, 20%,
and 50%. Twenty percent is the upper bound of values
found in the literature (Bertram et al., 2007, and references
therein) and 50% is used to demonstrate the influence of
drastically increasing mixing. We also test the possibility
of variable mixing efficiency and variable boundary condi-
tions. This dynamic mixing test (DynMix) has mixing effi-
ciency of 50% per day in the initial age group, 25% per day
in the fresh age group, and 5% in midage and old age groups.
These initial and fresh air parcels vigorously mix in chem-
ical mixing ratios set by the air parcel’s initial conditions.
When the air parcel transitions to young age status, I de-
crease the mixing to 5x (also tried 6x) and start mix (1:1)
of initial and background air, where background air is the
average mixing ratio of all observations. When the air par-
cel transitions to midage, I return to the standard mixing rate
and mix in “background” air. This is an extreme assumption
because surrounding parcels should also be aging during the
fresh time period.

A4 Implications of Measurement Discrepancy for Ni-
tric Acid

The disagreement between HNO3 measured by CIT and
UNH has the potential to influence our mean air parcel life-
time. The CIT and UNH measurements are not always co-
incident in time, so analysis using either has fewer total ob-
servations. When using just the CIT measurements, there
are only 507 total observations and only 65 initial condi-
tions. When using the UNH measurements, there are 842
total observations and 107 initial conditions. The CIT and
UNH measurements both have log-normal distributions. The
CIT distribution is broader and less smooth than the UNH
distribution (see Fig. 111).

Our modeling framework is able to capture NOx:HNO3

distribution using the UNH and CIT measurements. Both the
UNH and CIT mean air parcel lifetimes (τUNH and τCIT) are
shorter than predicted with adjusted values (see 112). Using
the lower UNH measurements increases the NOx:HNO3 val-
ues and shifts the NOx:HNO3 age bin cut-points to higher
values. Because the chemistry model tends to overpredict
conversion of NOx to HNO3, the higher NOx:HNO3 obser-
vations and higher cut-points cause τUNH to be shorter than
the standard τair. Using the higher CIT measurements in-
creases NOx:HNO3 values and shifts the NOx:HNO3 age
bin cut-points to lower values. With lower cut-points, we
might expect an increased τCIT relative to the adjusted val-
ues. The CIT measurements, however, extend the distri-
butions low-value tail that the model cannot capture with-
out over predicting values from 0.2 to 0.5. Because our
goodness-of-fit statistic is sensitive to the whole distribution,
τCIT is 1 hour shorter than when using adjusted HNO3 val-
ues.

Using either measurement by itself increases the discrep-
ancy between τair inferred from back trajectories and τair
inferred from chemical simulation. By increasing the dis-
crepancy, using either measurement by itself increases our
estimation of the chemistry-based NO2 low-bias.
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Table 11. Overview of chemical mechanisms in this study.

Chemical Mechanism (abbreviation) # Rxns # Spcs

Carbon Bond ’05 (CB05) 176 62
State Air Pollution Research Center ’99 (SAPRC99) 222 77
State Air Pollution Research Center ’07 (SAPRC07) 691 153
Model for OZone And Related chemical Tracers “Standard” (MZ4) 196 86
GEOS-Chem “full” (GEOS-Chem) 286 88
Regional Atmospheric Chemistry Mech v.2 (RACM2) 349 117
Master Chemical Mechanism Active Subset (MCM) 4685 1610
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Table 12. Median observed values for filtered initial (ni=108) and
background (nbkg=1006) selected chemical compounds and phys-
ical conditions.

Measured Background Initial Principal Investigator

Altitude 8841 m 9149 m J. Barrick, NASA LaRC
Pressure 314.7 hPa 300.6 hPa
Temperature 241.1 K 233.7 K
HO• 0.5396 pptv 0.6101 pptv W. Brune, Pennsylvania State University; Adjusted according

to Ren et al. (2008)
HO•

2 13.16 pptv 11.24 pptv
O3 77.76 ppbv 70.61 ppbv M. Avery, NASA LaRC
NO2 95.52 pptv 153.6 pptv R. Cohen, UC Berkeley
NO 203.3 pptv 411.8 pptv Derived from NO2, O3, and HO2

HNO3 280.1 pptv 125.9 pptv P. Wennberg, California Institute of Technology; R. Talbot,
Univ. of New Hampshire; Adjusted following Bertram et al.
(2007)

HO2NO2 82.00 pptv 67.80 pptv G. Huey, Georgia Institute of Technology
H2O2 234.2 pptv 195.9 pptv P. Wennberg, California Institute of Technology; B. Heikes,

Univ. of Rhode Island; Adjusted following Bertram et al. (2007)
CO 98.36 ppbv 108.0 ppbv G. Sachse, NASA LaRC
CH4 1.789 ppmv 1.784 ppmv D. Blake, UC Irvine, and E. Atlas, Univ. of Miami
C2H6 790.0 pptv 800.0 pptv
C3H8 146.0 pptv 153.5 pptv
C2H4 1.500 pptv 1.500 pptv
Speciated alkyl 8.630 pptv 8.630 pptv
nitrates (RNO3)
CH2O 174.5 pptv 437.0 pptv A. Fried, NCAR; B. Heikes, Univ. of Rhode Island
CH3C(O)H 83.80 pptv 117.5 pptv H. Singh, NASA ARC
CH3C(O)CH3 1475. pptv 1375. pptv
CH3C(O)C2H5 71.25 pptv 95.00 pptv
PAN 374.9 pptv 370.6 pptv
CH3C(O)OOH 172.8 pptv 226.1 pptv P. Wennberg, California Institute of Technology
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Table 13. Optimization results for stochastic convection using the
pure exponential model and the model with correction for preferen-
tial sampling. Table includes optimal air parcel lifetime (τair) and
Anderson Darling goodness-of-fit test value (TkaN ) for alternative
background mixing rate sensitivities. The predicted NOx:HNO3 is
statistically different than observations when TkaN is greater than
3.752 (α=0.01).

exponential corrected
Mechanism τair TkaN τair TkaN

GEOS-Chem 23 9.9 33 2.77
2×Mix 21 10.6 32 3.62
4×Mix 20 11.6 31 5.59
10×Mix 18 15.9 28 10.2
GC∗ 24 8.32 36 2.28
M10×Init 28 65.9 43 51
DynMix 24 7.42 36 2.28
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Fig. 11. Nitrogen partitioning of fresh, young, midage and old age
categories demonstrates influence of chemical aging. Each age cat-
egory has been tested for statistical difference (p<0.0001) from the
preceding age category (∗) and fresh (#).
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Fig. 12. Optimization results for stochastic convection using the
exponential and bias-corrected statistical model with the unadjusted
and renormalized back trajectory dataset. (A) exponential model
(Eq. 1) with unadjusted dataset; (B) bias-corrected model (Eq. 2)
with renormalized dataset; (C) exponential model with unadjusted
dataset; (D) bias-corrected model with renormalized dataset.
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Fig. 13. Range of estimated mean air parcel lifetimes (τair) derived
from back trajectory and chemical simulation. Asterisks indicate
whether chemically simulated NOx:HNO3 is statistically consis-
tent with observations (α<0.01) when using the exponential (left,
Eq. 3) and bias-corrected (right, Eq. 4) statistical models.
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Fig. 14. Observed NOx:HNO3 (bars) compared to simulated
(lines) from each chemical mechanism using the optimized, bias-
corrected statistical model.
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Fig. 15. Simulation results (circle: median; bars: 0, 25, 75,
100 percentiles) and observations (box and whisker) binned by
NOx:HNO3. For observations, each age category is superscripted
for statistical difference (p<0.0001) from the preceding (∗) and
fresh (#) age group. For model predictions, the median for
each chemical mechanism is left hollow when statistically different
(p<0.0001) from the observations.
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Fig. 16. Composition of CB05 PAR chemical mechanism species
as measured during INTEX-NA in the median air parcel for fresh
and young age groups.
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Fig. 19. HYSPLIT back trajectories for 12 northeast locations at
9 km altitude with only more than half of the air parcels originating
between 8 and 10 km.
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Fig. 110. Same as Fig. 15, but for GEOS-Chem with standard and
alternate background mixing.
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Fig. 111. Observed NOx:HNO3 (bars; left: CIT, right: UNH) com-
pared to simulated (lines) from the GEOS-Chem chemical mecha-
nism using the optimized, bias-corrected statistical model.
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Fig. 112. Estimated mean air parcel lifetimes (τair) derived
from back trajectory and chemical simulation. Chemical simula-
tions use our updated GEOS-Chem mechanism with the adjusted
HNO3, the unadjusted CIT measurement, or the UNH unadjusted
measurement. Asterisks indicate whether chemically simulated
NOx:HNO3 is statistically consistent with observations (α< 0.01)
when using the exponential (left, Eq. 3) and bias-corrected (right,
Eq. 4) statistical models.




