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1. Motivation

The scope of air quality model evaluation has expanded greatly recently, in both
methodology development as well as the amount of modeled data that needs to be
evaluated. As recently as five years ago, modelers would have at most a short simulation,
perhaps a month in length to evaluate. As computing capabilities increased, so did the
modeler’s ability to simulate over greater spatial and temporal scales, with annual and
even decadal, continental-scale simulations becoming possible. While such large scale
simulations can be advantageous, they can also provide new challenges, as the amount of
output that needs to be evaluated can become overwhelming. Rudimentary techniques
and performance statistics become less elucidating, even when broken down into seasonal
or monthly periods (Appel et al., 2008; Eder and Yu, 2006).

Accordingly, the purpose of this paper is to introduce and demonstrate a multivariate
statistical technique called Principal Component Analysis (PCA), with the hope of
motivating the evaluation community in its use. Though infrequent, the use of PCA and
similar analyses in the evaluation of air quality models is not unprecedented. For
example, Li et al. (1994) use PCA to evaluate the Eulerian Acid Deposition and Oxidant
Model (ADOM) against aerosol and gas observations in Ontario, Canada. With Li’s and
other similar applications, the PCA was performed separately on model output and
observations, and then subsequently compared. The approach demonstrated here is
different, in that we apply PCA directly to a measure of the Community Multi-scale Air
Quality (CMAQ) model’s performance, namely the modeled S0,° bias (CMAQ
concentration — CASTNet concentration). Keep in mind that the analysis could be
applied to any measure of performance (i.e. root mean square error) and for any specie
concentration or deposition simulated by CMAQ.

The advantage of using such an approach is that it will identify any systematic
patterns of model bias across a myriad of spatial and temporal scales (i.e. not constrained
to geopolitical boundaries nor monthly/seasonal time periods). Such analysis is useful in
that it: (1) provides “weight of evidence” concerning the regional-scale nature of any
CMAQ bias patterns; (2) facilitates understanding of the probable mechanisms
responsible for the statistically unique behavior among bias patterns; and (3) identifies
stations that can be used as indicators for more diagnostic evaluation.

2. Data
2.1 CMAQ Simulation

This evaluation used a five-year (2002-2006) simulation of CMAQ (Version 4.7) released
in December 2008 (Byun and Schere, 2006). The modeling domain covered the
contiguous United States using a 36 km x 36 km horizontal grid resolution (148
(columns) x 112 (rows) = 16,576 grid cells) and a 24-layer logarithmic vertical structure,
extending from the surface to ~ 100 hPa. ~ The meteorological fields were provided
from MMS3, the Fifth-Generation Pennsylvania State University/National Center for
Atmospheric Research (NCAR) Meso-scale Model and were processed using the
Meteorological-Chemistry Interface Program (MCIP). This S-year simulation used the
CBO05 gas-phase chemistry mechanism. The emissions, which were processed using the



Sparse Matrix Operator Kernel Emissions (SMOKE) processor, were based on EPA’s
2002 National Emissions Inventory, with year-specific fire, mobile (from MOBILESG),
biogenic (from Biogenic Emission Inventory System (BEIS) v. 3.13) and major point
source Electrical Generating Unit (EGU) data.

2.2 CASTNet

Currently operated by EPA’s Clean Air Markets Division (CAMD), CASTNet is a long-
term, predominately rural monitoring network designed to measure and characterize
broad-scale spatial and temporal trends of pollutants contributing to acidic deposition.
While the primary purpose of the Network is to assess the efficacy of emission control
strategies established by EPA (i.e. the NO, “State Implementation Plan” Call), its long-
term, high-quality data also makes it ideal for use in evaluation of deterministic air
quality models like CMAQ. Ambient air concentrations are measured weekly (Tuesday
to Tuesday) from a height of 10 m using an open faced, three-stage filter pack. The
CASTNet data used in demonstration of this evaluation technique consist of ambient air
concentrations of particulate SO,* (ug m?).

The CMAQ modeled concentrations were post-processed in order to achieve spatial
(monitor to grid cell, with no interpolation) and temporal (weekly) compatibility with the
CASTNet observations. A total of 45 stations were selected, focusing on the Eastern
United States (locations of the CASTNet sites are shown in the left panel of Fig. 1).
Given CMAQ’s five year simulation period and CASTNet's weekly sampling schedule, a
total of 256 weekly observations were available (Tuesday, Jan. 1, 2002 through Tuesday,
Dec. 26, 2006), resulting in a total of 11,520 data pairs. Missing observation data were
imputed by using a spline interpolation scheme, across time.

3. Methodology
3.1. Spatial analysis

The rotated principal component analysis begins with the calculation of a square,
symmetrical correlation matrix R (having dimensions of 45 x 45) from CMAQ’s SO,
bias matrix having dimensions of 45 (CASTNet stations) x 256 (weekly biases) and
containing 11,520 observations. By using R and the identity matrix (I) of the same
dimensions, 45 eigenvalues (A) were derived that satisfy the polynomial equation:
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For each root of (1), which is called the characteristic equation, a non-zero vector (e)
can be derived such that:

45 Rys € = hys€, (2)

where e is the eigenvector of R, associated with its corresponding eigenvalue (A). The
eigenvectors represent the mutually orthogonal linear combinations or “modes of
variation™ of the bias matrix, while their respective eigenvalues represent the amount of
variance explained by each of the eigenvectors. By retaining only the first few
eigenvector-eigenvalue pairs, collectively called the principal components, a substantial
amount of the total variance of each pattern of bias can be explained while ignoring the
higher order principal components which explain smaller amounts of the variance. The
exact number of components that should be retained was determined by examination of a
Scree plot and revealed that a 10 component solution was most appropriate.

When the elements of each eigenvector are multiplied by the square root of the
associated eigenvalue (A", one obtains the principal component loading (L), which
represents the correlation between the bias component and the CASTNet station. The
retained principal components were then “rotated”, to facilitate spatial interpretation,



using an orthogonal rotation. This rotation technique increases the segregation between
component loadings, which in turn better defines the areas of homogenous bias. The
station(s) with the highest loading in each of the bias regions can then be designated as
the “bias pattern indicator”, subsequently allowing more focused diagnostic analysis.

3.2. Temporal analysis

Having identified the spatial patterns of bias, examination of their time series was then
achieved through the calculation of the rotated principal component scores (PC,). The
PC, for week w on component i/ are weighted, summed values, whose magnitudes are
dependent upon the weekly bias (B,,) for week w at station j and the L; is the loading of
station j on component / as seen below:

(PC)y; = ZByLii 3)
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The PCs are standardized, so they have a mean of zero and standard deviation of one.
Positive scores correspond to positive CMAQ bias, while negative scores represent
negative CMAQ bias. When plotted as a time series, the weekly PC; provide excellent
insight into the spectrum of temporal variance experienced by each bias pattern. A four
week moving average was applied to each time series to aid in interpretation.

Spectral Density Analysis (SDA) using the finite Fourier transformation was also
applied to each of the time series. This analysis decomposes each time series into a sum
of cosine and sine waves of varying amplitudes and wavelengths, yielding a measure of
the distribution of the bias variance over a continuous spectrum of all possible
wavelengths. The abscissa on the spectral density plots ranges from 0 to 262 weeks,
which corresponds to cycles or periodicities from as little as 2 weeks to as long as trends.

4. Results
4.1. Spatial analysis

A total of 10 principal components were deemed significant by the Scree test, which
together explained 69.8% of CMAQ’s SO, * bias. For the sake of brevity, we present the
results for just one of the components (PCs), which, with an eigenvalue (A;) of 3.94,
explained 8.8% (3.94/45) of CMAQ’s total SO, bias. Examination of the left of panel
Fig. 1 reveals this bias component’s unique spatial characteristic, as the component
loadings (which again represent the correlation between the pattern and the CASTNet
stations) clearly indentify five high-elevation locations (Lye Brook (Loading: 0.74),
elev.: 730 m; Claryville (0.70), 765 m; Horton Station (0.66), 920 m; Shenandoah (0.60),
1073 m and Cranberry (0.50), 1219 m. Of these five stations, four are classified by
CASTNet as mountain top, with the fifth (Claryville) classified as a complex terrain site.

4.2. Temporal analysis

Examination of this component’s principal component scores time series (right panel of
Fig. 1) is equally compelling in that a strong, systematic pattern of bias is revealed in
which CMAQ tends to over-predict SO,” concentrations at these locations during the
first six months of the year, under-predict during the months of July, August and
September, then over predict from October through December. The strength of this
pattern, which is strongest in 2002, 2003 and 2005, is affirmed in Fig. 2, which depicts a
“typical year” constructed by using the median of each of the five years of simulations
(left panel) and a SDA plot revealing a statistically significant cycle at 52 weeks (right
panel.) Note the periodicity at 26 weeks may be a spurious alias of the 52 week and will
be investigated. Having identified and characterized this statistically unique pattern of
SO,” bias, the next step in the evaluation approach (not discussed) will involve a
diagnostic analysis of its most representative site (Lye Brook), which should facilitate



understanding into the process(es) responsible for this systematic bias. The other
principal components characterized nine equally compelling systematic patterns of bias,
each providing “indicator stations™ that will be the focus of future diagnostic evaluation.

5. Conclusions

Examination of only one of the ten components has demonstrated the advantage of using
principal component and spectral density analyses, in that they have identified systematic
patterns of CMAQ SO,” bias across spatial and temporal scales unconstrained by
geopolitical boundaries and calendar periods. Such analysis has provided “weight of
evidence” concerning the regional-scale nature of these patterns while identifying stations
that should be used for diagnostic evaluation, which will lead to a better understanding of
the mechanisms responsible for the modeled bias.
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Fig. 1. Component loadings (x10) at each of the 45 paired CASTNet — CMAQ locations
(left panel) and time series of the principal component scores (right panel) associated
with the third rotated principal component.
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Fig. 2. Weekly median values of the principal component scores (with a four week

moving average - left panel) and SDA of the raw time series (right panel) associated with

the third rotated principal component.
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6. Questions and Answers
Question: How do you deal with missing data? (Jeremy Silver)

Answer: Principal component analysis should not be applied to a dataset that contains
missing data. Accordingly, all missing data were imputed using a spline interpolating
scheme. To limit the amount of interpolation, stations with less than 90% capture were
excluded from the analysis.

Question: If the PCA was based on model error at points, how were the spatial maps
made? (Bruce Denby)

Answer: The maps were produced by Kriging the principal component loadings. It is
noted that care must be used when interpreting such results in areas where data are
sparse.



