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Water quality measurement error and variability, while well-
documented in laboratory-scale studies, is rarely acknowledged
or explicitly resolved in most model-based water body
assessments, including those conducted in compliance with
the United States Environmental Protection Agency (USEPA)
Total Maximum Daily Load (TMDL) program. Consequently,
proposed pollutant loading reductions in TMDLs and similar
water quality management programs may be biased, resulting
in either slower-than-expected rates of water quality
restoration and designated use reinstatement or, in some
cases, overly conservative management decisions. To address
this problem, we present a hierarchical Bayesian approach
for relating actual in situ or model-predicted pollutant
concentrations to multiple sampling and analysis procedures,
each with distinct sources of variability. We apply this method to
recently approved TMDLs to investigate whether appropriate
accounting for measurement error and variability will lead to
different management decisions. We find that required
pollutant loading reductions may in fact vary depending not
only on how measurement variability is addressed but also on
which water quality analysis procedure is used to assess
standard compliance. As a general strategy, our Bayesian
approach to quantifying variability may represent an alternative
to the common practice of addressing all forms of uncertainty
through an arbitrary margin of safety (MOS).

Introduction
Uncertainty and the TMDL Assessment Process. The United
States Environmental Protection Agency (USEPA) Total
Maximum Daily Load (TMDL) program is the nation’s most
comprehensive and far-reaching program governing protec-
tion and improvement of surface water quality (1-3). The
TMDL program requires that states identify waters failing to
meet water quality standards and then determine the
maximum allowable pollutant load that can enter such waters
and yet meet applicable water quality standards (4). Although
the TMDL program was adopted into United States policy
as part of the 1972 Amendments to the Federal Water
Pollution Control Act (commonly referred to as the Clean
Water Act), TMDL assessments were not completed on a

large scale until the late 1990s (5). Since then, the number
of TMDLs addressed by USEPA has increased almost every
year (6).

The increased rate of TMDLs addressed by USEPA over
the past ten years follows several federal initiatives, including
development of final rules for the TMDL program and the
publication of a National Research Council (NRC) report
assessing the scientific basis for the program (1). The rate of
TMDL assessments has also increased due to widespread
application of computer-based mechanistic and empirical
water quality models which link pollutant loading rates to
receiving water body quality (7-9). Two frequently proposed
improvements to TMDL assessment methodology, however,
are noticeably absent in most, if not all, approved TMDLs.
First, the NRC (1) recommended that TMDLs assess water
quality impairment using innovative statistical methods of
the type that have since been proposed by Borsuk et al.,
Gibbons, and Gronewold et al. (10-12). Second, the NRC
(1), along with Reckhow and Shirmohammadi et al. (13, 14),
recommended that TMDL models explicitly acknowledge
uncertainty and discontinue the application of arbitrarily
selected margins of safety (MOS). Despite these recom-
mendations, uncertainty in TMDL assessments continues to
be addressed primarily through an arbitrary MOS, based in
most cases on a fixed percentage (e.g., 10%) of the recom-
mended TMDL. Robust statistical approaches recommended
by the NRC (such as probabilistic or Bayesian models) are
rarely applied (1, 15).

One important source of uncertainty in water quality
assessments is measurement variability, defined here as the
extent to which observed values differ from true values of
the quantity being assessed. Such measurement variability
may result from spatial and temporal variability of the
environment or variable and erroneous analytical methods.
The goals of this paper are to demonstrate a Bayesian hie-
rarchical approach for explicitly addressing measurement
error and variability and to investigate whether adoption of
this approach would change the pollutant loading reductions
that have been recommended in some recent TMDL as-
sessments.

Pathogen (Bacterial) TMDLs as an Example. Of the
roughly 27,000 TMDLs approved by USEPA since October
1995, 5600 are pathogen TMDLs, the highest number of any
single pollutant category. Despite their name, however,
pathogen TMDLs typically assess compliance with water
quality standards based on the concentration of nonpatho-
genic fecal indicator bacteria (FIB) including fecal coliforms,
Escherichia coli, and Enterococcus species (16-18). Because
they represent such a large portion of current and proposed
TMDL assessments, and because of their multifaceted sources
of error and variability, we focus here on pathogen TMDLs
as an example.

As with most types of TMDL assessments, there is a broad
range of factors which may contribute to discrepancies
between modeled and observed water quality conditions in
pathogen TMDLs. Intrinsic sources of variability, such as
spatial or temporal variability in the environment or in a
sample aliquot, are often quite significant in common mea-
sures of FIB concentration, such as the most probable
number (MPN) and colony forming unit (CFU). Both the
MPN and CFU can have relatively broad and potentially
biased probability distributions (depending on charac-
teristics of the analytical procedure, such as sample aliquot
volume), and the MPN is known to be a biased estimator
for any given in situ concentration (19-22). Therefore,
relating model-based FIB concentration predictions to the
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equivalent sampling distribution of MPN or CFU values
requires consideration of not only spatial and temporal
sampling patterns but also the water quality analysis
method. We find that pathogen TMDLs rarely account for
these sources of variability.

Using a hierarchical Bayesian approach, MPN and CFU
measurements can be graphically and probabilistically related
to the statistics on which standard compliance assessments
are based as well as to FIB concentration parameters. This
allows for assessments that proceed seamlessly from field
data (possibly collected using multiple methods) to integrated
inferences of in situ FIB concentrations or from model-based
concentration predictions to probabilistic standard compli-
ance evaluations - all while appropriately accounting for
measurement error and variability.

We demonstrate the hierarchical Bayesian approach by
applying it to the assessment of two tidal embayments in
Chesapeake Bay determined to be out of compliance with
water quality standards for shellfish harvesting areas. We are
interested in investigating whether an explicit and detailed
accounting for variability in estimates of the in situ FIB
concentration might affect the pollutant loading reduction
recommendations made as part of the TMDL program. We
explore this issue by generating Bayesian posterior probability
distributions of the quantities used to assess standard
compliance in these two water bodies, under current con-
ditions as well as under conditions expected to result from
the recently approved TMDLs for these water bodies. Finally,
in a novel set of calculations, we infer the full probability
distribution of the reduction in the fecal coliform loading
rate which, given intrinsic variability in both the in situ
concentration and water quality analysis procedures, will
lead to full compliance with standards.

Methods
Case Study: Oyster and Mosquito Creeks, Virginia. Oyster
and Mosquito Creeks are two tidal embayments along the
western shore of Chesapeake Bay in Lancaster County,
Virginia. They have been found to be out of compliance with
state water quality standards (see Table S1 in the Supporting
Information for a summary of pertinent standards), and
TMDLs were recently developed and approved (23). We
selected these two embayments for our example not only
because they address the widespread problem of fecal
contamination in coastal shellfish harvesting waters but also
because (along with many other FIB-based TMDLs in coastal
waters) their TMDLs were developed using the simple
volumetric model. This model (also referred to as the
modified tidal prism model) provides an ideal contrast to
our proposed approach because it is widely used, it is less
complex than other TMDL-support models including
(among others) the well-known HSPF (Hydrological Simu-
lation Program-Fortran) and WARMF (Watershed Analysis
Risk Management Framework) models (24, 25), and it
allows us to explore how different approaches to quantify-
ing intrinsic water quality measurement variability alone
might lead to conflicting and, perhaps, misleading TMDL
loading reduction recommendations.

Summary of Conventional TMDL Model and Assessment
Results. In the conventional tidal volumetric models used
to develop the Oyster Creek and Mosquito Creek TMDLs,
water quality is first characterized by the maximum rolling
30-sample geometric mean (µgeo

m ) and maximum rolling 30-
sample 90th percentile (q90

m ) of monthly MPN and CFU values
(in organisms per 100 mL) collected roughly once per month
between May 1995 and July 2008 in Oyster Creek (resulting
in 158 samples for this assessment) and between June 1998
and July 2008 in Mosquito Creek (resulting in 122 samples
for this assessment). The use of rolling statistics in the
conventional approach, rather than data from mutually

exclusive time periods, is a precautionary step (implicitly
representing an MOS) that results in conservative assess-
ments relative to NSSP (National Shellfish Sanitation Pro-
gram)-based standards (26). In the simple tidal volumetric
modeling paradigm, µgeo

m and q90
m are next multiplied by the

average estuary volume to obtain what are commonly
interpreted as corresponding statistics of the FIB loading
rate. Recommended loading rate reductions are then esti-
mated based on the fractional reduction in the loading rate
statistics which bring µgeo

m and q90
m into compliance with the

water quality standard for µgeo and q90. Summary statistics
and current loading reduction requirements from the TMDL
reports for Oyster and Mosquito Creeks (23) are presented
in Table S2 in the Supporting Information.

By basing loading reduction estimates on sample-based
characteristics, the conventional tidal volumetric model (like
most FIB TMDL-support models) implicitly equates in situ
FIB concentrations with the MPN and CFU values on which
water quality standards are based. However, MPN and CFU
values have significant and distinct sources of bias and
variability relative to in situ concentrations (22, 27). Put
differently, for a given set of conditions, a probability dis-
tribution of measured MPN values will very likely differ from
the probability distribution for CFU values as well as from
the true in situ FIB concentration distribution. While this is
apparent to most water resource management agencies, few
assessments formally acknowledge this discrepancy. In fact,
it is notable that, from 1984 to 2007, the Virginia Department
of Environmental Quality (VDEQ) used the 3-tube ×3 series
multiple tube fermentation (MTF) procedure (28-31) to
estimate MPN values and then in 2007 switched to using
standard membrane filtration (MF) procedures (20) to derive
CFU values. The measurements, although made with different
procedures, are currently treated as equivalent for the
purposes of TMDL determination. Our approach will allow
us to directly test this assumption.

Proposed Bayesian Approach. We propose a Bayesian
procedure for inferring both current conditions and the FIB
loading reduction required to bring a waterbody into
compliance with standards. This procedure allows variability
in estimates of the in situ FIB concentration arising from
single or multiple analysis procedures to be reflected explicitly
in the underyling FIB concentration assessment. The method
is based on the recognition that, within the framework of the
simplified tidal prism model, MPN and CFU values (along
with the associated statistics which serve as the basis for
water quality standards) are related to FIB loading rates
through an implied, but rarely acknowledged, hierarchical
relationship. This hierarchy (presented graphically in Figure
1) begins with the observation that variability and uncertainty
in the in situ FIB concentration at a monitoring site can be
represented by assuming that concentration values c (in
organisms per 100 mL) arise from a log-normal LN(c | µ, σ)
probability distribution with log-concentration mean µ and
log-concentration standard deviation σ, both in log-organ-
isms per 100 mL (32, 33).

The relationship between the in situ FIB concentration
c and corresponding MPN and CFU values can then be
expressed through a series of commonly employed and
empirically validated statistical models (for details, see the
Supporting Information and refs 19, 22, 28, and 33-36). By
“reversing” the logic of these statistical models (12, 22), and
of the hierarchical relationship shown in Figure 1, we use the
pattern of positive tubes from MTF measurements, or the
number of colonies counted on a growth plate in an MF
procedure, to infer the Bayesian posterior distribution of the
underlying in situ FIB c as well as the parameters µ and σ.
This approach represents a logical and defensible framework
for combining FIB concentration analysis results from a
variety of different testing procedures (each with distinct
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sources of variability) into a comprehensive assessment of
uncertainty in the in situ FIB concentration. We know of no
other water quality assessment procedure which provides a
comparable approach to resolving this issue.

Using these inferred parameter values, we follow the logic
of Figure 1 (and eqs 1 and 2 in the Supporting Information)
to simulate 1000 size-30 FIB concentration samples and
associated MPN and CFU values. For each size-30 sample
we calculate the geometric mean (µgeo) and 90th percentile
(q90), leading to 1000 samples from the posterior distribution
for each of these quantities.

Finally, we infer the required reduction (η) in the FIB
organism loading rate that achieves compliance with water
quality standards by calculating the reduction in the FIB
log-concentration mean µ that will bring the distribution of
c into a range that is compliant with current MPN- and CFU-
based standards. In this way, the posterior distribution of η
will account for uncertainty at all levels of the assessment
procedure and provide an alternative to arbitrary selection
of an MOS in the TMDL. Following ref 12, we define the
compliance range as an inequality in terms of µ and σ (see
the Supporting Information for details)

We inferred posterior probability distributions of η and
other unknown parameters for each creek by encoding the

hierarchical relationship (Figure 1) in the Bayesian analysis
software package WinBUGS (37) using diffuse prior prob-
ability distributions for each model parameter (38, 39). Data
consisted of the pattern of positive tubes from 3 tube ×3
series MTF procedures and the number of colonies counted
on each growth plate in MF procedures conducted between
May 1995 and July 2008 in Oyster Creek and between June
1998 and July 2008 in Mosquito Creek. We confirmed the
assumed serial independence of each time series through
visual inspection of the autocorrelation function. Code and
additional details of our WinBUGS procedure are included
in the Supporting Information.

Results
The posterior distributions of the MPN and CFU geometric
means and 90th percentiles are shown for Mosquito Creek in
Figure 2 and, for Oyster Creek, in Figure S1 (in the Supporting
Information). These represent the uncertainty in the actual
values of these parameters as inferred from all available raw
data from both MTF and MF procedures. We find that the
observed maximum rolling 30-sample statistics (thick black
vertical line in each figure) are indeed conservative, based
on the fact that they lie at the upper tails of the posterior
distributions. However, their degree of conservatism is
inconsistent between the two creeks; the sample statistics
are located much further out in the tails in the posterior
distributions for Oyster Creek than for Mosquito Creek.

FIGURE 1. Graphical representation of two approaches to estimating the FIB loading reductions required to achieve standard
compliance in Oyster and Mosquito Creeks. Ovals represent variables and parameters, while rectangles represent constants. Shaded
nodes represent measured quantities. The conventional approach (bounded by dashed lines) is based on maximum rolling 30-sample
statistics (µgeo

m , q90
m ) of combined MPN and CFU values. Our proposed approach (bounded by solid lines) is based on inferring the FIB

log-concentration mean (µ) and standard deviation (σ) from “raw” data on the total number (n), volume (v1, v2, v3), and number of
positive tubes (t1, t2, t3) in each dilution series of MTF experiments as well as the number of colonies counted on a growth plate (y)
and volume filtered (V) in MF experiments (for additional details, see the Supporting Information).

µ e 2.34 - σ1.30

0.88
(1)
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The posterior distributions shown in Figure 2 and Figure
S1 also confirm that Oyster Creek and Mosquito Creek are
both highly unlikely to comply with NSSP-recommended
numeric standards (thick vertical gray line in each figure)
under existing conditions. This is evidenced by the fact that
the creeks have posterior distributions for the 90th percentile
that have a significant probability of exceeding the relevant
standards (measured as the proportion of the histogram to
the right of the vertical gray line). In fact, Mosquito Creek
has a high probability of exceeding the geometric mean
standard as well.

Additionally, our results indicate that the 30-sample CFU
geometric mean (lower left-hand panel of Figure 2 and Figure
S1) is negatively biased relative to the 30-sample MPN
geometric mean (upper left-hand panel in each figure), yet
the corresponding water quality standard for the geometric
mean is 14 organisms per 100 mL regardless of whether CFU
or MPN values are used in the assessment (see Table S1,
Supporting Information). There also appears to be a some-
what less significant bias in the CFU 90th percentile relative
to that of the MPN (right-hand panels of each figure). While
the water quality standards for the 90th percentile are adjusted
to each testing procedure (Table S1, Supporting Information),
they still appear to lead to quantitatively different assessments.

Our hierarchical Bayesian analysis integrates raw data
from both MTF and MF procedures to yield posterior dis-
tributions on the underlying FIB concentration parameters
µ and σ (Figure 3). These confirm that Oyster Creek and
Mosquito Creek are both highly unlikely to comply with water
quality standards under existing conditions (Figure 3, left
column) with none of the joint distribution lying in the
compliance range for either water body. These plots also
indicate that Mosquito Creek is further from compliance than
Oyster Creek, since the joint probability distribution for
Mosquito Creek falls further to the right of the compliance
line than the probability distribution for Oyster Creek.

The loading reductions recommended by the VDEQ
translate into a shift of the joint distribution of µ and σ to
the left for each creek. However, even after these reductions,

only approximately 5% of each distribution lies in the
compliance region of the graph (Figure 3, right column).
Therefore, we can say that the confidence of compliance (CC)
with relevant standards after the currently approved loading
reduction is approximately 5% (10, 12, 21).

Our inferred distributions of the parameter η (Figure 4)
translate the joint distributions shown in Figure 3 (left
column) into the FIB loading reduction required to comply
with standards. The proportions of the histograms to the left
of the gray vertical lines in Figure 4 indicate the CC associated
with the current VDEQ recommended loading reductions.
Consistent with Figure 3, at both locations there is only
approximately a 5% CC attached to these reductions. To
achieve a CC of 50% or greater, a reduction upward of 60%
is required at Oyster Creek. Similarly, at Mosquito Creek, a
reduction greater than 80% is necessary to achieve greater
confidence in compliance than in noncompliance.

Discussion
Our Bayesian hierarchical approach acknowledges that MPN
and CFU values are distinctly different measures of the actual
in situ FIB concentration and therefore explicitly accounts
for the variability and biases of each. This is important
because many water quality assessments continue to be
based on long (e.g., 3-4 year) historic records, which
increasingly include both MPN and CFU values and, in some
cases, MPN values derived from differing serial dilution
analysis-based procedures. It is erroneous to consider these
methods as equivalent, yet the older data should not be
ignored. The approach we introduce here has the distinct
advantage of being able to accommodate all FIB concentra-
tion analysis procedures simultaneously because they are
each represented mathematically by an appropriate likeli-
hood function for the “true” FIB concentration c. Each
likelihood function reflects the sources of variability and
uncertainty inherent to each procedure. This means that
our method also has the advantage of being able to easily
incorporate novel microbial analysis procedures that have
recently been developed and may soon be employed in water

FIGURE 2. Histograms of simulated geometric mean (left-hand column) and 90th percentile (right-hand column) values from a size-30
sample of MPN (top row) or CFU (bottom row) values based on historic water quality data from Mosquito Creek, Virginia. Vertical
black lines indicate maximum rolling 30-sample values from the Mosquito Creek TMDL assessment (see Table S2, Supporting
Information), and vertical gray lines indicate NSSP-recommended numeric water quality standards (see Table S1, Supporting
Information).
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quality assessment programs (40-42). It should also be noted,
however, that the proper exposition of the likelihood function
for the true FIB concentration requires “raw” data on the
actual pattern of positive tubes (in an MPN experiment) or
the number of colonies counted on a growth plate and the
dilution factor (in a CFU experiment). Unfortunately, these
raw data may not always be available for performing
retrospective analyses (43).

When using our method to compare Bayesian posterior
distributions of sample-based statistics µgeo and q90 against
rolling statistics and NSSP-recommended standards at the
two case study locations, Oyster and Mosquito Creeks, we
found that there were significant inconsistencies (Figure 2
and Figure S1). Point values based on maximum rolling 30-

sample statistics showed a varying degree of conservatism
relative to the full posterior probability distributions. As the
degree of conservatism associated with the use of such rolling
statistics is not typically quantified, the loading reduction
requirements implied by these statistics ( Table S2, Sup-
porting Information) may be either too conservative or too
tolerant. Additionally, the determined loading reduction will
depend critically on which metric (CFU or MPN) is used in
the analysis. Although the standards differ slightly between
the two methods, the difference is apparently not sufficient,
as evidenced by the difference in probability of a violation
at Oyster and Mosquito Creeks when CFU, rather than MPN-
based, standards are assumed (see Figure 2). This is consistent
with the general relations between the various standards

FIGURE 3. Contour plots of the joint posterior probability density function of fecal coliform log-concentration mean (µ) and standard
deviation (σ), both in log-organisms per 100 mL, for Oyster and Mosquito Creeks under existing conditions (left column) and
approved loading reduction (right column) as described in ref 23. The diagonal dashed line in each panel represents the compliance
boundary: combinations of µ and σ to the left violate NSSP CFU-based standards with less than 0.5% probability. Confidences of
compliance (CC) with such standards are given in the upper right of each panel.

FIGURE 4. Histograms of samples from the posterior probability distribution for η (the required fractional FIB loading reduction) for
Oyster and Mosquito Creeks. Vertical gray lines indicate the loading reduction required based on the VDEQ TMDL report (23).
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noted by ref 12. The fact that TMDL implementation success
may depend on which analytical procedure is used to assess
future compliance has not, to our knowledge, been ac-
knowledged in any TMDL assessments.

The TMDLs developed by VDEQ for Oyster and Mosquito
Creeks are based on determinations of the difference between
the observed maximum rolling 30-sample values of the
geometric mean (µgeo

m ) and 90th percentile (q90
m ) and the NSSP-

recommended standards regarding these statistics. This
approach has two drawbacks. First, it assumes that the
required reduction should be based entirely on the statistic
that is furthest from compliance. Second, it assumes that the
reduction required to exactly bring that single statistic into
compliance with standards would provide just the right
degree of confidence that the water body actually will be in
compliance in future monitoring. The problem with these
assumptions is that the full range of the FIB concentration
distribution is unlikely to respond homogeneously to a
reduction in FIB loading, so that barely achieving compliance
with one uncertain statistic such as the maximum rolling
value of q90 may or may not achieve adequate compliance
for either that statistic itself or for the other statistic being
monitored.

In addition to providing a framework for integrating
FIB concentration measures from multiple and variable
analytical methods, we feel that our inferred concentration-
based analysis (represented by Figure 3) addresses the two
problems with common practice described in the previous
paragraph. This is because the full FIB concentration
distribution as well as the uncertainty in its location and
spread are represented by the joint posterior distribution of
µ and σ. Assumptions about how the characteristics of this
distribution are likely to change as a result of loading
reductions can then be made explicit, with the results
“tracked” graphically in the (µ, σ) parameter space. In our
analysis, we assumed that loading reductions would shift
the log-concentration mean µ to lower values, while the log-
concentration standard deviation σ would remain constant.
This is reasonable if we consider the variability in FIB
concentration to be the result of multiplicative, rather than
additive, departures from the expected value. We have
confirmed this assumption in other settings experiencing
pollutant load reductions (44). Certainly, other assumptions
could be made and defended on a case-specific basis.

Once current conditions are located as a joint distribution
in the (µ, σ) parameter space (Figure 3, left panels) and an
assumption is made regarding the effect of a loading
reduction on µ and/or σ, then a distribution for the reduction
required to achieve compliance (which we refer to as η) can
be directly inferred (Figure 4). The cumulative probability of
values of η following this distribution represents the associ-
ated confidence we can have that the value of η will lead to
compliance with applicable standards, i.e., the confidence of
compliance, or CC. A CC assessment acknowledges that, in
an impacted natural system, it is not possible to ensure that
samples will never be found to be in violation with water
quality standards (i.e., there is always some nonzero prob-
ability of noncompliance) (10, 12, 21).

Directly addressing the question of “How confident do
we need to be?” that a water body will be in compliance with
standards is a practical and rational alternative to arbitrarily
adding an MOS to TMDL determinations. In fact, for Oyster
and Mosquito Creeks, we found that approved TMDLs yield
only about a 5% CC, even with an implicit MOS (through the
use of maximum rolling statistics). This suggests that the
MOS often employed in TMDLs is not adequate to address
the typically unrecognized sources of error and variability
we acknowledge here, let alone more widely acknowledged
uncertainties, such as those related to pollutant source,
transport, and fate processes. The question then becomes

the following: “If a TMDL assessment were to adopt the
specific procedure we propose, what additional MOS would
be necessary to account for these other uncertainties?”. Of
course, our suggestion would be to employ a probabilistic
modeling approach to modeling these other processes in a
manner similar to the one we describe here. Some recent
examples in the literature include refs 10, 11, and 45.

We recognize that most water quality models used to
support pathogen TMDLs currently yield only deterministic
predictions of pollutant concentrations rather than proba-
bilistic assessments that account for sampling variability.
We also realize that the probabilistic models necessary to
relate actual (or model-simulated) in situ concentrations to
sample-based measures are relatively complex and special-
ized. Therefore, to encourage practical implementation, we
have created a free software tool, ProVAsT-FIB (Probabilistic
Violation Assessment Tool), which translates in situ FIB
concentrations into the expected frequency of sample-based
standard violations and provides an estimate of the confi-
dence of compliance in the assessment (46). Users can input
their own actual or model-simulated concentration values
as well as specify the particular analytic methods employed
and numeric limits that pertain to local water quality
standards. It is our hope that such a tool will encourage
rational consideration of measurement error and variability
in water quality assessments by reducing the burden of
complex statistical calculations.
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