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Abstract

Partial least squares (PLS) analysis offers a nunabeadvantages over the more
traditionally used regression analyses applied amd$cape ecology, particularly for
determining the associations among multiple camestits of surface water and landscape
configuration. Common data problems encounterethguandscape ecological analyses
may include small sample sizes, missing data vahmeng sampled areas, a large
number of predictor variables, correlated varialdesl high noise-to-signal relationships.
PLS attempts to account for the above data problembuilding a robust association
model. We utilized PLS to prediit situ surface wateEscherichia coli (E. coli) bacterial
counts in the Upper White River from the associdéediscape-ecological metrics in the
Ozark Mountains (southwestern Missouri and northeresArkansas, USA). The amount
of variability in E. coli counts was explained by each PLS model and reflies
composition of the contributing landscape amongwh&ersheds analyzed. The predicted
values and their confidence intervals explain hamdlcover type and configuration, and
land use may affect the abundancdcotoli in surface waters of the Upper White River
region of the Ozark Mountains.

Key Words: Partial Least Square regression, confidence intdaredscape ecology,
watershed, surface water, Ozark.

Site Selection

The study area is a 21,848 square kilometer ar&ndfthat encompasses the headwaters
of the White River, and generally the Ozark Moumsai{Figure 1). The study area
contains a mix of pasture and other agriculturg.(goultry production facilities, cattle
operations, and hay operations), forest, and ut@ad cover, as well as several large
reservoirs (Figure 2). The White River originatesniorthwestern Arkansas and flows
through southwestern Missouri and north-centralafidas. The White River descends
from the Ozark Mountains into Arkansas’ agricultuptain where it meanders to its
confluence with the Mississippi River (not showrFigure 1).

1. Data Description
1.1 Water Biota Variable
Escherichia coli in surface water measurements from 1997 to 2002 wempiled from
U.S. Geological Survey and State Agency data semylting in 244 stream sample
locations.E. coli is a species of fecal coliform bacteria that iscfic to fecal material
from humans and other mammals and birds. We seléttcoli as a surface water
response parameter because EPA recommends it asf ahe important indicators of
health risk from water contact in recreational wai@SEPA, 1997). Sources Bf coli
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contamination in surface water include municipasteavater treatment plants, ineffective
septic systems, domestic animal manure, wild anifeaks, and storm water runoff
(Lory, 1999). The water biota data (Y) used in #mslysis was the abundant®toli in
surface water.
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Figure 1: The study area is in the Upper White River stutBaa21,848 kA in the
Ozarks of Missouri and Arkansas, shown as fourrsgpa-digit U.S. Geological Survey
hydrologic unit codes (HUCs).
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Figure 2: The Upper White River study area is in the OzarfkMissouri and Arkansas,

where 244 water quality sampling locations wereath(A) and used as “pour points’
from which 244 contributing sun-watersheds werengated (B). A combination of

multiple Landsat Thematic Mapper imagery (C) argltdi aerial photography was used
to produce a 2000 land cover map of the study é@p@awhich was used to calculate
landscape metrics.

1.2 Landscape Variables

A total of 30 landscape variables (see Table 1vemiable description) used in this
analysis are derived from available digital dates $& a geographic information system
(GIS). Most of the landscape variables were catedlasing the delineated drainage area
(watershed) above the field sampling point as tmehunit. These variables represent the
percent forest, urban, human, agriculture and haareas within sub-watersheds and
within different proximities to streams (i.e., withriparian zones). Other variables such
as elevation, stream density, road density and riviqngs layer were also included in the
model.
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Table 1. Description of the thirty landscape metrics tleddted to surface watéx.
coli (Ln) in the Ozark Mountain

Abbreviation

Agtsls
Agto

Agtso

Agtizo

Agt

Forg
Forzg

FOI’]_ZO

For

Nafty
Natgo
Nat]_zo
Humy
Humgg
Humlzo
Mbar
Mbar30
Mbar]_zo
Mbar
Ul'bo
Urb30
Urbi2o
Urb
Elevmin
Pctia_rd
Rddens

F_plgp

Strmlen
Strmdens
Flargest

Landscape Metric Description

Percent agriculture (including all cropland and
pastureland/grassland) Land-cover on slopes gréaer3%
Percent agriculture (including all cropland and
pastureland/grassland) Land-cover adjacent toraseand rivers
Percent agriculture (including all cropland and
pastureland/grassland) Land-cover within 30 meiéstreams
and rivers

Percent agriculture (including all cropland and
pastureland/grassland) Land-cover within 120 medestreams
and rivers

Percent agriculture (including all cropland and
pastureland/grassland) Land-cover within sub-whests
Percent riparian forest land-cover adjacentreashs and rivers
Percent riparian forest land-cover within 30 metarstreams and
rivers

Percent riparian forest land-cover within 120 metd streams
and rivers

Percent forest land-cover within the sub-wéteds

Percent natural land-cover adjacent to streamsiaers

Percent natural land-cover within 30 meters dashs and rivers
Percent natural land-cover within 120 meters i&ashs and rivers
Agto+Urbg
AgtzotUrbsg
AgtiogtUrbizg

Percent barren land-cover adjacent to streamsizers

Percent barren land-cover within 30 meters @&@astrs and rivers
Percent barren land-cover within 120 meters @estrs and rivers
Percent barren land-cover within sub-watershed

Percent urban land-cover adjacent to streamsiagic

Percent urban land-cover within 30 meters of stieand rivers
Percent urban land-cover within 120 meters ofstieand rivers
Percent urban land-cover within sub-watershed

Minimum topographic elevation

Percent impervious surfaces based upadsro

Total road density

Percent of entire sub-watershed comprisddrggst patch of
forest

Total stream length

Total stream density

Area of largest forest patch
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2. Statistical Methods Overview

The 30 landscape variables were related to Bheoli count in the PLS modeling
procedures. The PLS model was built using a ‘natetewatershed’ approach (n=10;
Figure 3) and th&. coli values were log-transformed. Cross validation,(helding one
value out) was used to finalize the model, whidhined the significant model factors (P
> 0.05, van der Voet, 1994). The relative imporeaand coefficient values of each of the
30 predictor (X) variables were analyzed for thelationships with, and prediction of,
surface waterE. coli counts (Figure 4). Based on Figure 4, predictorth vgimall
coefficient and VIP < 0.8 can be removed and a nmewdel can be built. The reduced
models (23 landscape variables) still have oneifsggnt factor with a minimum root
mean PRESS = 0.4969, but have a lower percentizariaccounted for by PLS (85.2%).
The VIP values for all 23 variables > 0.8.

117 - 5250
5251 - 20620

Figure 3: The non-nested watersheds wighcoli sampling points (n=10) that
were used in the Partial Least Squares analysesatedE. coli bacterial counts
were positively correlated with landscape metrieat tare indicators of human
activities.
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2.1 PLS Step by Step

1- Center and scale each of the response (Y) agdigbor (X) variables, Yand X,
respectively.
2- Construct linear combinations of the predictss

J(score) =X °afweight)
Scores are orthogonal
3- Construct linear combinations of the response &&= Y°v

4- Verify the linear combination in (2) has maximeovariance (0'L) \T/vith the response
linear combination in (3); in addition constraind w=1 and®d' d=1 should
be met.

5- Predict for both Yand X by regression ond  (scores):
X°=d!
Y= a,

where L, (= (89)IX°) andly (= (09)™IY°) are the X- andogdings,

6- The above steps are for constructing the fitS factor
7- Residuals for each X and Y are produced as:

X, = X° = X°
Yl - YO _ YAO
8- The second factor is constructed by applyingsste through 5 to the residual (7);
additional factors are constructed by repeating pnocess for each residual until
the X matrix becomes null. Weights are the contrdsuof each the predictors in
X to the PLS factor. The scores are the regressiefficients of the variables in
X and Y regressed upon the various variables dn and represent how the

different manifest variables are related to thaesd . The scores are sometimes
thought of as latent unobservable variables

9- We also aimed to find the statistical significahpredictors and the reliability of

predicted response values.

- To identify the role of predictors in explanatgrgwer on the response variable,
statistical significance of predictor coefficientasvassessed using the
95% confidence interval (Cl) from bootstrap. If tbenfidence interval
of a coefficient crosses zero value implies the nsignificant
contribution of that predictor.

- The reliability of the predicted values can disoassessed. We used the 5th and
95thpercentile for the predicted resporisectli).
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3. Statistical Output

Since the reduced model did not improve in the gr@reariability explained, we used the
initial model to predict thé. coli in other watersheds. Figure 4 shows the coefficien
and relative importance values for the 30 landseapi@bles in the PLS model. Number
of significant factors =1; Minimum root mean Prddit Residual Sum of Squares =
0.412; Percent variation accounted for by PLS factor the dependent variable=89.1%.
Coefficient estimates are for the centered andedodata. Figure 5 presents the observed
E.coli vs. the predicted boot-strapped mean (red open cimiejlian (star)and thebth

and 95th percentiles in respect with the 1:1 relationships.

4. Resultsand Conclusion

Despite a relatively small sample size (n=10), Pe8nitted valid analyses of the Ozarks
data, where other multivariate analyses providesfesptions. The analyses revealed that
different landscape variables likely affect surfagater (bacteriological) biota, based
upon spatially explicit parameters. The role ofamrtand human activities enhanced the
level of E. coli counts but more so within proximity of the stregdnr( Figure 4: Urb0,
Urb30 > Urb120), than with the sub-watershed ashalev While a decrease in slope
within the sub-watershed enhanced Ehecoli count, stream density and stream length
resulted in a decreaseHincoli counts, perhaps as a result of a dilution effeger@ll, an
increase in the amount of forest, whether by peaggnor by forest patch size within a
sub-watershed, decreasé&d coli counts, likely as a result of either the physical
impediment to surface flow of bacteriological conbaants, by forest vegetation, or
biological interactions within those forested areas by lack of inputs. Further
investigation of the effects of riparian vegetatmm the amelioration of bacteriological
contaminant in rivers and streams of the Ozarkeéled to verify these models.

8

Figure 4. Demonstration of the coefficient3)( and relative importance [variable
influence of projection (VIP)] values for the 3htiscape variables in the PLS model.
Number of significant factors = 1; Minimum root nme&®RESS = 0.4123; Percent
variation accounted for by Partial Least Squardofacfor the dependent variable =
89.1%. Coefficient estimated for centered and scale data.
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The significant role of the landscape variables imtediction ofE. coli can be assessed

by their confidence intervals (Figure 6). While ural, forest, stream length and AgSI3
(agriculture on slopes greater than 3 percentjcefidence interval does not cross zero)
negatively associated with the level of surfaceewt coli, the presence of humans in

10 4

Predicted E. Coli (Ln)

0 2 4 6 8 10
Observed E. Coli (Ln)

Figure 5: The observed. coli vs. the predicted boot-strapped mean (red open circle),
median (star), and the 5th and 95th percentilesspect with the 1:1 relationships.
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Figure 6: The estimated value for the coefficient of eaclkedmtor and its 95%
confidence interval from bootstrap method. Rightaxys is for stream length.
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the landscape is a likely contributor to an inceeas E. coli counts. Urban and
agriculture metrics are crossing the zero valueyotieg their non-significance. The
effect of agriculture oif. coli counts is higher within closer proximities to sedavater,
i.e., decreases with greater distances from aguieul

B 19-25
| | 26-45
. |46-116
T 117-5250
B 5251 - 18945

Figure 7: The level of agreement between the predicted guuly and observed (closed
circle) E. coli. The synchronization of the color of the polygorihwthat of the closed
circle denotes the level of agreement.

However, urban has an enhancing rolé&ircoli with an uncertainty range that is wider

and overlapping all of the remaining metrics. Aligh the urban confidence intervals are
crossing the zero value, they are overlapping othedscape metric’'s confidence

intervals, indicating that there are confoundingrielation) relationships between them.

The prediction of surface watét. coli counts from PLS and proximity to observed
values are presented as a map (Figure 7), shoWwagdreement between the predicted
value (color of the polygon) with that of the pqaint.

PLS analyses offer a number of advantages ovemtire traditionally used regression
analyses. PLS offers a valid statistical model whige number of samples is small,
compared to the number of variables, and when tieeee high degree of collinearity
between predictors as well as responses. Additigntide prediction error in PLS is
smaller than in other multivariate methods. Theaati@ges of PLS makes it an attractive
statistical tool for development of landscape egplmodels. Available real-world data
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sets for the Ozarks provided a realistic ecologiedh set to initially develop this tool for
such studies. These data sets contain all of théalions that hinder use of other
multivariate statistics, i.e., small number of séngp sites, large number of variables,
several different types of field-collected surfagater data and remote sensing derived
landscape characteristics data. Currently, we tadyisg other approaches (e.g., Morris,
2009) in determining the confidence intervals fa@ predicted response variable.
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