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SUMMARY

Recommended standardized procedures have been developed by task forces of the
European Respiratory Society and the American Thoracic Society for measurement
of exhaled lower respiratory nitric oxide and nasal nitric oxide (NO). These
recommendations have paved the way for measurement of nitric oxide to become a
diagnostic tool for specific clinical applications. It would be desirable to develop
similar guidelines for the sampling of exhaled breath related to other compounds,
especially volatile organic compounds (VOCs) reflective of ongoing metabolism. For
such systemic VOCs, CO,-controlled sampling is recommended to assure reliable
and consistent sample quality for within- and between-subject comparisons. In
addition to consistent sampling protocols, the appropriate storage, pre-concentration,
and analyses of breath samples require standardized methodology, calibration
standards, and laboratory inter-comparisons. There are two basic approaches for
analysing VOCs in breath: real-time analysis and off-line laboratory analysis, each
with its particular advantages. Real-time analysis of exhaled breath is most promising
for reactive compounds and for compounds that change rapidly as a function of
external influence. It is also the best choice when rapid results are of utmost
~importance in assessing health status for immediate intervention. Real-time direct
methods based upon mass-spectrometry, absorption spectrometry using laser
sources, or chemical sensors methods generally do not employ pre-concentration of
analytes and so may not have sufficient sensitivity for all applications. Furthermore,
specificity may suffer as the compounds are not separated prior to entering the
detector. Off-line laboratory analysis of exhaled breath generally employs some form
of pre-concentration of analytes followed by a separation step using high-resolution
gas chromatography and mass spectrometer (GC-MS) based detection. GC-MS
gives the most detailed and specific results for identifying the VOCs contained in
breath, but the processes of sample storage, pre-concentration, injection, and
chromatographic separation may limit the detection of reactive or thermally labile
metabolites. In either case, identification and quantification of analytes should be
performed not only by computer searches of mass spectra, optical spectra, or
chemical response, but also by the specific observed behaviour within the instrument
in comparison to native calibration standards. This article discusses the state of the
art of exhaled breath analyses for clinical/medical applications, presents current

concerns about methods implementation for different instruments and techniques,

2



and provides specific guidance for standardization to introduce non-invasive breath-
based technology into clinical practice.



Introduction

The composition of exhaled breath gives valuable information about biochemical
processes in the body and offers new possibilities for non-invasive medical
diagnostics [1-8]. It is particularly promising because, unlike circulating blood,
exhaled breath represents an elimination pathway and can be non-invasively
sampled as often as desirable. The time frames available for breath sampling and
analysis are essentially limitless. For subsequent off-line laboratory analysis, some
techniques rely on the collection of many liters of exhaled whole breath in sampling
bags or solid adsorbent cartridges [9-13]; other methods have used single alveolar
breaths as collected in small stainless steel canisters [14-17]. Real-time
measurements of breath are also possible using direct breathing ports and
instrumentation such as proton-transfer-reaction mass spectrometry (PTR-MS),
selected ion flow tube mass spectrometry (SIFT-MS), and ion mobility spectrometry
(IMS) as well as other analytical techniques including chemical sensors, and various
forms of laser spectrometers [18-21]. Such real-time measurements can be
performed with high time resolution, e.g., with breath-to-breath resolution [22, 23] or

even with within-breath profile resolution [21, 24].

Exhaled breath contains many different molecular species. Among them are small
inorganic molecules like nitric oxide (NO) [25-30] or carbon monoxide (CO) [31, 32].
Many organic volatile compounds (VOCs) have been detected in exhaled breath: the
highest concentrations of VOCs in breath are observed for acetone [1, 33-36] and
isoprene [1, 37, 38]. Many other VOCs are observed at lower concentration levels
around a few parts-per-billion or even in the part per trillion range (ppb-ppt) [4-6, 13,

17, 34, 39-43].



Some compounds are related to smoking, such as benzene, acetonitrile , 2-methyl
furan, 2,5-dimethyl furan, furan, 1,3-cyclohexadiene, 1,3-cyclopentadiene, 2-methyl-
1-butene and 1,4-pentadiene [4, 9, 44-50]. Toluene is detected in the breath of many
people and shows increased concentrations in smokers [4]. Also exogenous origin of
various molecular species is often observed, e.g., for toluene and benzene [51-59]
halogenated compounds [12, 39, 60-62], and constituents of aircraft, diesel, and
automotive fuels [11, 12, 63-65]. Indoor air in hospitals also contains many different
compounds such as isopropanol, ethanol, isoflurane [66], sevoflurane [67] or p-
xylene. Compounds contained in cleaning agents, such as limonene, may also be

stored in the human body and subsequently released into breath.

The biochemical background of compounds observed in exhaled breath is rarely
known [1, 68]: isoprene is produced as a by-product of cholesterol biosynthesis [69-
71] and acetone can be formed from acetoacetate (see also refs [72-75]) or from
oxidation of isopropanol. Ethane and pentane are produced by lipid peroxidation [13,
76-79]. For other molecules like methylated hydrocarbons [80-82] the origin remains

unknown.

A promising method to get information about the biochemical background of
compounds relies on headspace investigations of cell cultures [83-86]. Such
investigations could be done using ®C-labelled precursors, observing the
subsequent release of volatile compounds showing a higher than usual content in

13C.

Collection of breath samples

For those analytical methods, that are not fast enough to realize breath-to-breath

sampling and analysis, additional effort is necessary to provide well defined and
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reproducible composition of breath samples. Substances in exhaled breath may be
blood borne and originate from the alveoli, others, such as NO and CO, are also
generated in the airways and still other substances represent contaminants from
ambient air. Hence, a thoroughly controlled sampling is a key requirement for reliable

analysis of breath biomarkers.

Specific guidance notes have been developed for measurement of exhaled lower
respiratory nitric oxide and nasal nitric oxide (NO) [87, 88]. These specific sampling
guidelines paved the way for the use of NO concentrations in clinical applications [89-
92]. The basic issue for reliable measurement of NO was that its concentrations in

the nasal cavity and the paranasal sinuses are much larger than in the lungs.

For compounds other than NO, guidelines for sampling could be equally useful, but

have not yet been generally accepted (or even fully developed).

Several confounding factors may impact onto the composition of breath samples and
on concentrations of volatile organic biomarkers in exhaled air and, should therefore,

be taken into account:

Dilution and contamination of the sample

Sampling of single or multiple breaths

Direct analysis or sampling for storage

Physiological parameters such as respiratory rate or cardiac output.

As substance concentrations of organic compounds found in exhaled air fall in the
range from pmol/l to fmol/l, analytical results are easily affected by impurities from
inspired air or by dilution with dead space air. Therefore, sampling procedures may

have significant impact onto results of breath analysis [93].
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For the ease of its use whole breath samples (“mixed expiratory air) or a part of
exhalation sampled after a certain time (“time controlled sampling”) are often used in
practice. Sampling without controlled identification of the respiratory phases bears
the risks of dilution by dead space gas in the case of mixed expiratory sampling or
shows large variations in the case of time controlled sampling (due to wide variations
of individual dead space volumes and different breathing manoeuvres). Alveolar (end
tidal) samples show highest concentrations of systemic and lowest concentration of
exogenous substances [94, 95]. Controlled alveolar sampling e.g. by means of
expired CO; concentrations therefore is the method of choice if blood borne volatile

biomarkers are to be assessed.

Exogenous contamination may as well originate from the oral cavity. Examples for
compounds released from the oral cavity are ammonia [96] and sulfur-containing
compounds like H,S, methyl sulfide or mercaptans. Often these compounds are
produced by bacteria from different niches of the oral cavity, e.g., from an anaerobic
layer at the bottom of the tongue [97-101]. Controlled alveolar sampling cannot solve

this problem but may help to limit the effects of such contaminations.

Breath sampling can be performed for a single breath or for multiple breath cycles.
Sampling of single breath is easier to perform and may be advantageous in rapidly
changing situations. On the other hand, the composition of single breaths may
considerably vary from each other due to different modes and depth of breathing. For
setups such as “screening for biomarker” studies where absolute concentrations and
reproducible breath sample composition play an important role sampling of multiple

breaths may be preferable.

Direct analysis or sampling for storage



If real-time analysis of volatile compounds in exhaled air is fast enough to achieve
breath-to-breath resolution, sampling can be done in the way that whole breath is
analyzed and alveolar (or any other) concentrations can be derived from the data
measured during expiration. The time resolution typically necessary for that purpose
is less than 60ms. Technical details of this kind'of sampling strongly depend on the

devices used (e.g. Laser spectroscopy, SIFT-MS, PTR-MS).

Direct sampling is preferably used for direct analysis like with I-aser spectroscopy, ion
mobility or direct MS methods. Typical problems like decompostition of the sample or
loss of certain compounds (e.g. through decomposition of labile compounds or water
loss in Tedlar bags) may be avoided or reduced if direct sampling is applied.
Nevertheless, the general recommendations for sampling procedures (see above)
have to be respected for direct breath measurements, too. This is especially true, if
the time resolution of the direct analytical method is not high enough (< 60 ms) to
actually resolve the breath cycle. In this case, additional control of sampling has to be

applied e.g. by separating the alveolar phase from the rest of the breath cycle.

A disadvantage of direct sampling is that detection limits cannot be improved by

additional pre-concentration of the breath samples.

Indirect sampling can be applied at the bedside for a single breath or a certain
volume/ time without use of hyphenated (analytical) techniques. Storage and
transport of samples bear the risk of decomposition/ loss of compounds (see below) if
recipients or pre-concentration methods applied are not suited for the selected
analytes. On the other hand transport or storage may be inevitable e.g. if
measurements are done in the laboratory or if different clinical centers have to use
the same instrumentation. Indirect sampling has the advantage that the collected

breath samples can be pre-concentrated, e.g. by means of sorbent traps or solid



phase microextraction (SPME). Sensitivity of the analytical assay applied may be
improved, if sample volumes are increased. In addition, instruments applied with

indirect sampling need not be approved for use at the bedside.

An estimate of sampling quality may be obtained by comparing end tidal PCO; during
sampling and PCO; in the samples. Whenever samples have to be stored prior to

analysis one has to be aware of the following

e Breath samples are saturated with water vapor and condensation effects may
affect concentrations of polar substances (alcohols, aldehydes). Condensation
effects depending on vessel materials (glass, Tedlar, nalophan) should be

taken into account.

e Substances having different physicochemical properties (e.g. boiling points,
polarity) will be affected by condensation on vessel walls, losses due to

septum materials, quenching reactions in completely different ways.

e Standardization and normalization (of sampling procedures) cannot be

achieved using one single parameter or internal standard.

If blood borne endogenous compounds are to be assessed, alveolar sampling has to
be applied in any case and documentation of all relevant physiological parameters

during sampling is mandatory.

Physiological parameters like cardiac output and ventilation flow may have a
considerable influence on the concentrations of volatile compounds in exhaled
breath. Fig 1 shows a schematic presentation of an experimental setup that is aimed
at investigating the concentration patterns of volatile compounds in exhaled breath
under different ergometer challenges. A typical challenge would be 75 W. Fig 2
shows the amounts of isoprene, acetone and carbon dioxide (CO,) excreted per
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minute during three periods of challenge, interrupted by rest phases of 12 min and 3
min, respectively [18, 102]. Acetone and CO, show similar behavior, whereas
isoprene shows a huge peak at the start of the first ergometer challenge, a moderate
peak at the start of the second challenge and no peak at all at the start of the third
challenge. The influence of cardiac output and ventilation flow in such experiments
can be modelled [18]: the higher the cardiac output, the higher the supply of systemic
volatile compounds; the higher the ventilation flow the lower the actual concentration

of systemic compounds in exhaled breath (by dilution).

Experiments such as shown in Figs 1 and 2 demonstrate clearly the need of a
standardized sampling procedure for exhaled breath. Naturally, different standardized
sampling procedures could be developed depending on the origin of the compounds
of interest (systemic compounds supplied through blood flow or compounds released
in the upper airways or released from the oral cavity). Here we focus on the situation
where systemic compounds are supplied through blood flow, diffusing into the alveoli
and then being excreted through exhaled breath. To sample such systemic

compounds, a CO,-controlled sampling method is most appropriate [93-95].

Different approaches have been chosen to apply CO, controlled methods for breath
sampling. Manual sampling (of small volumes) can be performed by use of fast CO,
mainstream monitors and (silanized) glas syringes [Birken 2006]. CO, controlled
sampling of larger volumes can be performed by CO, triggered automated safnpling

devices.

Such a device may be used for direct adsorption onto sorbent traps [94'] or as an
active interface for different methods such as direct measurement by sensors or
direct MS techniques or as collection device (e.g. in a conditioned sampling loop with

variable volume), see Fig 3 [103]. Given its versatile setup the device works for
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spontaneous breathing individuals as well as mechanically ventilated patients. Due to
software control of the trigger values different portions of breath (e.g. end tidal phase,
dead space, whole breath, inspiration), a single breath or a larger number of
exhalations or a fixed volume may be sampled. As a further advantage all sampling
parameters such as CO, content during sampling, sampling flow and sampling time
are continuously recorded during sampling. Fig 3 shows a schematic drawing of such
an automatic breath gas sampling device consisting of two CO. mainstream
monitors, a mainstream T-piece, a mass flow controller and a CO, triggered rotary
vane pump drawing breath into a (heated) sampling loop or a sorbent trap or filling a
bag.

In general all sampling procedures applied in a clinical setting should be approved
for patient use and all parts of the sampling device that come into direct contact with
the patient must be sterilized and conditioned before use. Direct sampling - to certain
analytical devices (e.g. sensors, lasers, direct MS) or to sorbent traps - is preferable
since storage of breath samples (in different recipients) may cause further problems

(see below).

Fig 4 shows a breath sampling device developed at Innsbruck Medical University and
at the Breath Research Institute of the Austrian Academy of Sciences, that samples
breath into a Tedlar bag in a CO,-controlled manner. Only during the end-tidal phase
of an exhalation (corresponding to high CO,-concentration) breath is sampled. This is
achieved by an electronically opened and closed Teflon valve, based on information
from an IRMA COs-sensor (Phasein, Sweden). The threshold of CO,, above which
sampling of exhaled breath occurs, can be freely chosen in the menu of the device.
This breath sampler is still a prototype and could be refined and improved in various
ways. Incidentally, it could also be used to sample dead-space air (i.e., at low CO»-

concentrations before the end-tidal exhalation phase). The device actually also
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indicates the exhalation flow (in arbitrary units), and the patient or volunteer is asked

to exhale at a constant flow without hyperventilating.

Another much simpler technique is buffered end-tidal (BET) sampling [104]. This is
based on work by Haldane and Priestley [105] which demonstrated the geometrical
separation of different breath phases via exhalation through a rubber tube about 1
inch in diameter and 4 feet long, with the portion closest to the inlet resembling the
end-tidal breath fraction. Incidentally, Haldane and Priestley used this technique to
show that the partial pressure of CO; in exhaled breath remains almost the same in
environments with very different partial pressure of oxygen, such as at the Ben Nevis
summit (4406 feet above sea-level) or at the bottom of Dolcoath Mine in Cornwall
(2240 feet below sea-level). To use buffered end-tidal sampling for analysis of
different volatile compounds, direct mass spectrometric methods (such as proton-
transfer—reéction mass spectrometry [104]) are recommended due to the possibility of

real-time analysis.

If systemic (blood-borne) volatile biomarkers are to be analyzed, controlled alveolar
sampling is mandatory. In addition, important physiological parameters such as
respiratory rate, heart rate (a surrogate for cardiac output), end tidal CO, and

(sampling) flow must be monitored and documented.

Storage and stability of breath samples

Apart from the sampling process, appropriate storage of exhaled breath is also an
issue. This is particularly true when direct (bedside) or real-time analysis is not

possible or if instruments are not approved for use with patients.

Exhaled breath can be stored in different ways [1], typical examples being:
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e transparent or black Tedlar bags (consisting of PTFE - polytetrafluoro

ethylene)

e Flex Foil bags (PET/NY/AL/ICPE - polyethylene terephthalate / nylon /
aluminium foil / chlorinated polyethylene)

« Nalophan bags (PET - polyethylene terephthalate)

o Glass vials (e.g. for analysis with solid phase microextraction, SPME, possibly
silanized)

e Thermal desorption tubes (containing different adsorbents such as porous
polymer resins based on 2,6-diphenylene oxide, carbon molecular sieves or
graphitized carbon blacks)

e Micropacked sorbent traps [106, 107]
e Metal canisters (possibly silanized or electropolished) [14-16, 61, 108].

Depending on the specific molecular species, the loss during storage may be very
different. Examples of particularly sensitive substances are biogenic amines like
dimethylamine or trimethylamine [109] and sulfur-containing compounds [110]. Very
good storage behaviour is achieved using silanized metal canisters or thermal
desorption tubes. Many compounds can be stored in them during months of even

years. Their disadvantage is the comparatively high price.

Direct adsorption onto sorbent traps or micro-sorbent traps is preferable, especially if
stability of certain compounds is an issue. There are, in particular, publications that
report the collection of breath directly onto thermal desorption tubes containing three
different adsorbent beds [11, 66, 111-115]. Since solid phase extraction (SPE)
sorbent traps typically require volumes between 100 and 3000 ml this kind of pre-
concentration is time consuming and not appropriate for clinical setting at the
bedside. New approaches, therefore, chose micro—adsorption techniques allowing
stable storage of labile compounds (such as aldehydes) with much smaller volumes

(5-50ml) and improved limits of detection [106].
13



The stabilities of compounds in polymer bags have been investigated by Beauchamp
et al. [116] and Mochalski et al. [117]: Water and some polar compounds diffuse
rather quickly through Tedlar bag walls, but other compounds are surprisingly stable.
Methanol and benzene, for example, have a recovery rate of 99% after 10 h.
Isoprene, an important hydrocarbon in exhaled breath, showed a recovery rate of
81% after 10 h. Acetonitrile and 1-hexanal are at the lower end with recovery rates of
67% and 65% after 10 h. Tedlar bags, on the other hand, are not suitable for storage

of biogenic amines like dimethylamine and trimethylamine [109].

Background contaminants and inspired air
An important issue in analysis of exhaled breath are:

e the contaminants in indoor air (e.g. isopropanol, ethanol, isoflurane,

sevoflurane and p-xylene in hospital indoor air)

e compounds related to smoking (such as acetonitrile and benzene),

e compounds originating from flavorings, fragrances, cosmetics, cleaning agents

and dry cleaning

¢ BTEX-compounds (benzene, toluene, ethyl-benzene, xylene) appearing in
gasoline; BTEX compounds are ubiquitous due to the contamination of soil
and groundwater with these compounds.

In addition, the storage or analysis method may have an impact on breath samples:

e Tedlar bags may release N,N-dimethylacetamide and phenol,

o septa often release carbon disulfide (CS;) and sometimes other compounds
like 3-methyl-pentane,

e GCMS column bleed releases various compounds, e.g. silicone-containing

molecular species,
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e plasticizers from tubings and valves may contaminate exhaled breath samples
(e.g., 2,2,4-"trimethyl-1,3-pentanediol diisobutyrate" or "pentanoic acid, 2,2,4-
trimethyl-3- carboxyisopropyl, isobutyl ester").

Table 1 presents a list of volatile compounds that might be of exogenous origin (cf.

ref [5]) and should therefore be treated with great care.

Particular attention should be paid to very lipophilic compounds, which may be
inhaled and stored in the fat compartments of the human body [39, 61, 64, 108, 118-
123]. As an example undecane Cq;Hz4 has a Henry constant ~5.5x10™ M/atm [124],
which corresponds to ~0.0135 (mol/Lit)/(mol/Lit). The octanol/water partition
coefficient of undecane is ~10%%= 2.9x107 [125]. Consequently the air/octanol
partition coefficient is ~2.1x107° (mol/Lit)/(mol/Lit). This implies that a concentration of
1 ppb of undecane in breath (= 3.9x10™"" mol/Lit) in equilibrium state corresponds to
~1.8x10° mol/Lit of undecane in the fat compartment. Hence compounds that are
very lipophilic should always be treated with great care. The appearance of such
compounds in exhaled breath might indicate an earlier exposure of the respective
person to this compound (or to other compounds that were subsequently metabolized

to the compound observed).

In general, inspired substance concentrations (e.g. originating from room air or
ventilation systems) must be determined and have to be taken into account. High
inspired substance concentrations may also impact on concentrations of endogenous
compounds. As inspired substance concentrations increase, the correlations between

blood and breath levels will be decreased [126].

Analytical methods for analysis of exhaled breath
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Apart from collection of breath, its analysis is also an important methodological issue

[127]. Typical measurement techniques for exhaled breath are:

e gas chromatography with different preconcentration and detection methods
(GC-MS) [4, 5,7, 8, 11, 16, 42, 62, 66, 80-82, 93, 111-115, 126, 128-136]

¢ direct mass spectrometry with different ionisation processes (PTR-MS and
SIFT-MS) [5, 18-20, 35, 37, 38, 48, 50, 104, 137-146]

o absorption spectrometry using laser sources [21, 23, 68, 147-150]
e ion mobility spectrometry (IMS) [151-154]
¢ photoacoustic spectroscopy [155, 156] and

e chemical and semiconductor sensors or sensor arrays [92, 157-161].

PTR-MS and SIFT-MS are direct mass spectrometric methods that do not use pre-
concentration or chromatographic separation. These analytical techniques allow real-
time measurement [18, 20, 35, 37, 104, 139-141, 144, 145] of a number of
compounds. Due to the chemical ionisation process, not all compounds are
detectable (or detectable in the required concentration range) e.g. small
hydrocarbons cannot be detected due to their low proton affinity. In addition the
proper identification of compounds is difficult with these techniques, since multiple
molecular species as well as fragment ions may appear at a particular mass-to-
charge ratio. In SIFT-MS this problem is addressed by the use of different reactant
ions (HsO", O," and NO") exhibiting different ion-molecule reactions. Due to the
different precursor ion generation, éensitivity of SIFT-MS is lower than PTR-MS.
PTR-MS has recently been developed as a time-of-flight (TOF) instrument [139, 141]
that has attractive features:

e the mass resolution is improved from 1 amu (in the PTR-quadrupole
instrument) to 1/5000 (in the PTR-TOF),

e the time needed for measurement of compounds at "all" mass-to-charge ratios
is reduced from about 5 min (in the PTR-quadrupole instrument) to ~10 sec,
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o the sensitivity at higher mass-to-charge ratios (>150) is rapidly decreasing in
the PTR-quadrupol instrument whereas it remains good in the PTR-TOF
instrument.

In addition, PTR-instruments are available with "switchable reagent ions" (SRI), such
as O," and NO' in addition to the typical primary reactant ion H;O". The greatly
improved mass resolution of the PTR-TOF now allows separation of isobaric

compounds such as methyl-vinyl-ketone and 2-methyl-1-butene on m/z 71.

Gas chromatography with mass spectrometric detection (GCMS) provides inherently
much more information than the direct mass spectrometric methods since the data
have a temporal resolution due to chromatographic separation. Due to the high
capacity of commercially available capillary columns up to some 1000 compounds
may be separated prior to detection. In addition, fragmentation of the compounds
generates a mass spectrometric fingerprint and therefore — in combination with large
spectral libraries like NIST and consideration of retention time — allows unequivocal

identification of the detected compounds.

Recent developments such as GCMS-TOF (time-of-flight mass spectrometer), or
GCxGC-techniques coupled to fast MS have greatly improved the analytical
possibilities of GCMS technology. Instead of a few spectra per second (with a
quadrupole MS) now around 500 spectra/sec are possible, and offer the possibility of
a reduction in analysis time. A GCMS investigation may give information on hundreds

or even thousands of different compounds.

A very important issue in GCMS-measurements is the appropriate substance
identification. In GCMS spectral library identification of a chromatographic peak
(using the NIST spectral library, for example) a list of different compounds is

suggested to be the (one) compound represented by the peak. The best validation
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consists in the preparation of calibration samples for the expected compounds with
subsequent comparison of the retention times of the peaks in the breath sample and
the calibration sample. If the spectrum and the retention time coincide (comparing the
unknown sample with the calibration sample), then the identification is sound. This
sort of identification check using calibration samples has been, for example,
performed in refs. [4, 5] using about 250 pure compounds which were commercially

available.

Besides GCMS, PTR-MS and SIFT-MS, there are other very promising techniques
available for analysis of exhaled breath samples. lon mobility spectrometry [151-154],
absorption spectroscopy using laser sources [21, 23, 68, 147-150, 162] and
photoacoustic spectroscopy [155, 156] are most promising, not only because of their

sensitivity for certain compounds but also their great potential for miniaturization.

Since all analytical techniques may be affected by confounding variables, calibration
and validation with respect to measurement conditions and general GLP
requirements is mandatory. It is important to use calibration samples with varying

humidity and CO,-content, testing

¢ the linear range of the method,
o limit of detection (LOD) and limit of quantification (LOQ),

e confounding effects through high humidity and CO,-content (as is the case in
breath samples)

¢ potentially confounding constituents of the breath sample such as high
concentrations of drugs (e.g. anaesthetic drugs) disinfectants or environmental
contaminations

« reliability and reproducibility of analytical methods applied

o cross-sensitivities (e.g., for sensors or sensor arrays) between different
compounds.
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Guidelines should include a definition for the way the results of breath analysis are
expressed [163]. These guidelines will allow intra-subject and inter-subject breath
analyses to be compared and contrasted. Breath analysis could be expressed in
terms of concentration units that are dimensionless (i.e., parts-per-million, etc) or in
terms of moles per unit volume (pmol/l). Alternately, breath analyses could be
normalized to a physiological based parameter such as carbon dioxide production
(i.e., pmol/ml of CO,) or oxygen consumption (i.e., pmol/ml of O,). Normalization to
carbon dioxide or oxygen allows breath analysis data for subjects with widely
different body masses to be compared. This latter method of data expression should

definitely be used for reporting analysis of breath collected after breath holding [164].

Data handling and statistical methods

Data handling and statistical evaluation is a very important topic in analytical

sciences. The issues are:

i. choice of group sizes of patients or volunteers, which are sufficiently large
to give statistically valid results,

ii. consideration of different control groups (not only healthy volunteers, but
also related diseases and also hospital persohnel)

ii. appropriate dealing with inspired concentrations (the difference of expired
and inspired concentrations does not always make sense),

iv. use of logarithmic scale for concentrations (of some compound) before
applying statistical comparisons between different groups of patients and

volunteers,

v. careful choice of statistical tests (e.g., tests not requiring normal distribution

of concentrations),

vi. consideration of errors not only in the response variable of a regression
analysis, but also in the predictor variables.
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The use of hospital personnel as an additional control group (ii) can often help to
avoid misinterpretations due to inspired indoor air components. Such
misinterpretations could, for example, arise for compounds like isopropanol, ethanol,

anesthetic gases, or p-xylene which are common in hospital indoor air.

~The use of concentrations differences (concentrationexpiratory = concentrationinspiatory)
between exhaled breath and indoor air can sometimes be misleading (iii). This is
particularly an issue for compounds behaving like carbon dioxide: the concentration
of CO, in exhaled (whole) air is about 4% and in exhaled alveolar air about 5.3%, but
is observed to be independent of the CO, concentration in inhaled air (0.03% to 2%
in indoor air) [105, 165). Only the exhaled concentration of CO, (and not the
difference of concentrations in exhaled breath and indoor air) refers to the

physiological state of the human body.

The concentrations of any particular compound in a group of healthy volunteers may
be influenced "in a multiplicative way" by different influential factors. This implies that
the distribution of these concentrations is not Gaussian (as would be the case if
different additive influential factors would be involved). Therefore it is expected and
often observed [38, 166], that concentrations of certain compounds are log-normally
distributed (i.e., the logarithms of the concentrations are normally distributed) in a
group of healthy volunteers. Before applying statistical tests to the concentrations of
two different groups (e.g., patients and volunteers), it is therefore advisable to take
the logarithm of the observed concentrations. However, log-normal distribution may
not always be the correct assumption when the normal distribution fails. For example,
important subgroups may appear creating a bimodal distribution, such as with
compounds influenced by smoking behaviour. A histogram (distribution graph) of

acetonitrile concentration may exhibit two peaks within the group of all healthy
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volunteers corresponding to the subgroups of smokers and non-smokers,

respectively [5].

(vi): When performing calibration measurements for a particular compound (using
different concentrations of the prepared calibration samples), there does not only
appear an error in the response variable (= measurement error), but also an error in
the predictor variable (= concentrations of the prepared calibration mixtures). Both
types of errors have to be taken into account. This is actually clearly stated in the
International Norm ISO 6143:2001(E) "Gas analysis — Comparison methods for
determining and checking the composition of calibration gas mixtures". Note that the
usual formula for computing the slope in a linear regression depends on the
assumption that the errors of the response variable have equal variance. If this
assumption is not fulfilled, weighted linear regression has to be used [167]. This is
again part of the 1ISO 6143:2001(E). A typical situation where this assumption of
equal variance is not fulfilled is the situation where the measurements are based on
measured counts (which are Poisson distributed, and where the standard deviation is

equal to the square root of counts).

Conclusions

Analysis of volatile organic compounds in human breath bears an enormous potential
for new diagnostic and environmental tests and enlargement of basic physiological
knowledge. The biochemical background of many of the compounds appearing in
exhaled breath still remains unknown. Some of the compounds may result from
earlier exposure and storage in the human body. This possibility should, in particular,
be taken into consideration for strongly lipophilic compounds. In addition, volatile

compounds may be produced by bacteria in the gut, transported to and excreted by
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the lungs. As a consequence, increased (or decreased) concentrations of certain
compounds in a patient group as compared to a group of healthy volunteers should
not be over interpreted. Taking into account a group of hospital personnel or a group
of patients with some other disease can be helpful in avoiding misinterpretations. In
any case inspired substance concentrations have to be determined and taken into

account when data are interpreted in terms of biomarker recognition.

Even though breath analysis has been performed for some decades [34, 168], it is
still a young field of research. Many of the modern analytical methods have been
developed (or considerably improved in terms of sensitivity and reliability) during the
last decade. We are still just observing results, and not so much understanding them.
Even though these results are interesting and open up fascinating possibilities, many
potential applications (e.g. in cancer research) are far from the stage of clinical

usefulness.

In vitro investigation of cell cultures [84-86] or bacterial cultures [169] as well as in
vivo data from well defined settings in animals [129, 170] or controlled settings in
humans (e.g. with ergometer tests [18]) may be helpful in the future to get a better
insight into the biochemical background of some of the compounds observed in
exhaled breath. Also '*C-labelling of precursors for cell cultures or microorganisms
and observation of the changes in headspace of the respective cells may give
additional information on the specific metabolic pathways involved and into their

kinetics.

Breath analysis is a young field of research with great future potential for clinical
application and therapeutic monitoring. The analytical methods used in the field have

been developed (or greatly improved) in the last decade.
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Exhaled breath is sampled with different techniques: as a consequence results from
different laboratories (often also achieved using different analytical devices) cannot
easily be compared. There is a need and strong desire for standardized sampling
and inter-laboratory comparability. CO.-controlled sampling and a thorough
documentation of physiological parémeters is recommended for systemic
compounds, which are transported to and excreted by the lungs. Since both sampling
and sample storage may impact onto results, effects of these procedures have to be
carefully taken into account and adapted to the problem under investigation. Real-
time analysis of exhaled breath without preconcentration can be performed by direct
mass-spectrometric methods (PTR-MS and SIFT-MS), as well as sensors and
absorption spectrometry using laser sources. Gas chromatographic analysis (GCMS)
still gives the most detailed information on the different volatile compounds contained
in breath. Identification of compounds should be done in GCMS not only by spectral
library match, but also by comparison of retention times based on native calibration
standards. Time-of-flight (TOF) mass spectrometry has greatly improved the quality
of data obtained by PTR-MS and GCMS. Since all analytical techniques may be
affected by various confounding variables, e.g. through sampling and storage
procedures, meticulous calibration and validation of all analytical methods applied is

mandatory.

Further improvement of analytical techniques and a generally accepted
standardization of sampling and analytical processes will help to enhance the

potential of breath biomarker analysis.
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Fig 1: Experimental setting which allows to test the influence of different physiological parameters like cardiac output or
lung minute volume. Exhaled breath from a volunteer — sitting on an ergometer — is collected through a mask and
analyzed in real-time by proton-transfer-reaction mass spectrometry (PTR-MS). This figure from ref [18] is reproduced
with permission of the Institute of Physics (IOP Publishing, Bristol).

38



500 , T , . — 7 5
| = = =molar flow isoprene [nmol/min]
s Lt == = = = molar flow acetone [a.u.] 44
o ;
'y CO,, output [I/min]
8 boms ; ]
i ‘: 5 L1
_ 300 B . ; b | 43
€ iy i ' i |
i | i - i
5 o ; i ' ! | §
£ I : Ly - . >
2w S, A L2
i J B .: 5 ' T i ! ' '
b oA s PR e
! N ”} . .-‘- {'f_J :l_‘-é::\‘“i: CEs :‘,’V}
g o * S " 1 & 1|
100F i i, i '*l‘-,,.\,..:! : r,,-,,‘_:\ 11
] . v g
‘I‘ ?f i{. p rl w bt h\
’.. i ! Q\ a : 1 \.: :
o ¥ e S N T
D! 1 ¥ 1
0 20 40 60
[min]

Fig 2: Amounts of isoprene, acetone and carbon dioxide excreted per minute through the lungs for a healthy volunteer
pedalling at an ergometer (with a workload of 75 W). Three different phases of pedalling are interrupted by pauses of 12
min and 3 min, respectively. Acetone (shown in arbirary units) parallels the ouput of COz, whereas isoprene shows
characteristic peaks at the beginning of the first two ergometer challenges. This figure from ref [18] is reproduced with
permission of the Institute of Physics (IOP Publishing, Bristol).
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Fig 3: Schematic drawing of the automatic breath gas sampling device [103]. M = mass flow controller; L = sampling
loop; PC = computer with A/D-D/A board; T = sorbent trap (optional); P = pump; S1,2= CO; sensors; V = Valve; Syoc =
Adapter for Syringe or Sensor; B = tedlar bag (optional). Simple arrows describe electrical or electronic pathways. Double
contoured arrows described the passage of gas through the device.
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Fig 4: Breath sampling device developed at Innsbruck Medical University and at the Breath Research Institute of the
Austrian Academy of Sciences. Exhaled breath is collected in a CO;-controlled manner into a Tedlar bag. Only during the
end-tidal phase of an exhalation (corresponding to high CO-concentration) breath is sampled. This is achieved by an
electronically opened and closed Teflon valve. The threshold of CO;, above which sampling of exhaled breath occurs,
can be freely chosen in the menu of the device.
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Table 1: List of compounds with possible exogenous origin (indoor air, candies, toothpaste, foodstuff and cleaning agents), some
being related to smoking behavior. Specific attention is necessary for compounds released by Tedlar bags such as N,N-dimethyl-
acetamide and phenol. Carbon disulfide (CS;) is often released by GCMS-septa. Some compounds need a more detailed
investigation, such as the ester methyl acetate. This compound might appear in exhaled breath of healthy volunteers at low
concentrations (ca. 1 ppb), and has been demonstrated to increase in concentration with increasing cardiac output (in one volunteer,
only, results not shown). Other compounds like -methyl pentane and 3-methy! pentane are potentially interesting for cancer screening,
but might be released from certain types of GCMS-septa. The list given here is far from being complete.

compound name comment

’ used as a refrigerant, hence an exogenous origin is
1,1-difluoroethane possible
1,3-cyclohexadiene related to smoking behavior
1,3-cyclopentadiene related to smoking behavior
1.4-pentadiene related to smoking behavior
1-butene, 2-methyl- related to smoking behavior
2-propanol indoor air component in hospital rooms
2-propanol, 1,1.1-trichloro-2-methyl- |exogencus origin ?
acetamide, N,N-dimethyl- is released by Tedlar bags
acetonitrile related to smoking behavior
benzene related to smoking behavior

potentially interesting compound, but one of the
volatile BTEX-compounds (= benzene, toluene,
ethyl-benzene, xylene) appearing in gasoline; BTEX
compounds are ubiquitous due to the contamination

benzene, ethyl- of soil and groundwater with these compounds
carbon disulfide is rel d by GCMS septa
cineole used in flavorings, fragrances, and cosmetics

suspected to be an indoor air component in hospital
diethyl ether rooms
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lethanol

could be of exogenous origin

ethylene, tetrachloro-

used in dry cleaning, hence an exogenous origin is
ossible

formamide, N,N -dimethyl-

suspected to be an indoor air component in hospital
rooms

[furan

related to smoking behavior

lfuran, 2,5-dimethyl-

related to smoking behavior

furan, 2-methyl-

related to smoking behavior

isobutane lexogenous origin (propellant)

lexogenous origin (is used in food manufacturing,
limonene cosmetics and cleansing agents)

is contained in essential oils (e.g., in cumin and
p-cymene thyme)

misidentification possible (mix-up with natural isomer
m-cymene p-cymene)

menthol mix of isomers

might be contained in candies, toothpaste or
foodstuff

methyl acetate

is observed in healthy volunteers in low
concentration (ca. 1 ppb), and increases with
increased cardiac output

n-hexane

here is an ubiquitous pollution with n-hexane in the
environment

p-xylene

indoor air component in hospital rooms

potentially interesting compound, but might be

pentane, 2-methyl-

rel d by GCMS septa

pentane, 3-methyl-

potentially interesting compound, but might be
released by GCMS septa

phenol

rel d by Tedlar bags

silicon-containing compounds (e.g.,

with CAS-number 910614-28-7)

benzoic acid, 4-methyl-2-trimethylsilyloxy-, trimethylsilyl ester|

may origin from GCMS column bleeding
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styrene is sometimes added to the BTEX-

compounds (see ethyl-benzene above), making it
styrene BTEXS
[totuene related to smoking behavior
richloroethylene=TCE, groundwater contamination
)' by TCE is an important environmental concern,
richloroethylene hence an exogenous origin is possible
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