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NEED FOR CUMULATIVE RISK ASSESSMENTS FOR

N-METHYL CARBAMATE INSECTICIDES

Human exposure to xenobiotics may occur through multiple pathways and routes of entry
punctuated by exposure intervals throughout a work or leisure day. Exposure to a single
environmental chemical along multiple pathways and routes (aggregate exposure) may have an
influence on an organism if the exposure dose is absorbed and distributed to farget tissues.
Exposure to multiple chemicals belonging to a class of similar compounds having a common
mechanism of action may have a cumulative effect on target tissues (cumulative toxicity). Under
this situation, the evaluation of the toxic effect from one chemical is obviously not enough.

Instead, the net effect from all chemicals should be considered. Whenever such scenarios are



encountered, cumulative risk assessment (CRA) is needed in order to evaluate the net cumulative
toxicity caused by the aggregate expoéure from all routes of entry for a single chemical or a

group of chemicals that have a common mechanism of toxicity (U.S. EPA, 2002a).

The application of pesticides for the purpose of insect pest control creates such possible
scenarios, not only in occupational settings but also in the general population. |
Organophosphorus compounds, N-methyl carbamates (NMCs), and pyrethroids are three popular
classes of insecticides widely used in the United States and worldwide. For the general
population, these pesticide residues may enter exposure pathways in food, drinking water,
breathable air, and on residential surfaces where exposure may occur by ingestion, inhalation,
and dermal contact. Recognizing the risk imposed by exposure to multiple chemicals, the Food
Quality Protection Act (FQPA) of 1996 in the United States and Regulation (EC) No. 396/2005
in the European Union both mandate CRAs on human health resulting from exposure to multiple
chemicals that exert their toxicity by a common mechanism of action. The FQPA requires the
U.S. Environmental Protection Agency (U.S. EPA) to consider the cumulative effects to human
health that can result from pesticides and other substances that.have a common mechanism of
toxicity. To know the background and history of regulations regarding CRA, readers are

directed to U.S. EPA (2002b) for the available papers.

As insecticides, N-methyl carbamates (NMCs) share a common chemical structure with thé
general formula ROC(:O)NHCHg for N—Iﬁethylcarbamates and ROC(=0)N(CHs;); for
dimethylcarbamates. The detailed chemical structures of each member in this class can be found
in Table 1. NMCs have a common mechanism of action toward insect pests and unintended

toxicity to non-target organisms including humans; i.e. acetylcholinesterase (AChE) inhibition



by carbamylating the serine hydroxyl group in the active site of the enzyme in the nervous

~ system, leading to the persistent action of the neurotransmitter, acetylcholine, on cholinergic
postsynaptic receptors (O’Brien, 1967; Kuhr and Dorough, 1976; Matsumura, 1985; Baron,
1991; Ecobichon, 1991; Knaak et al., 2008). Therefore, these pesticides are recognized as a
common mechanism group (CMG) (U.S. EPA, 2007). Unlike the organophosphorus
insecticides, inhibition of cholinesterase by NMCs is reversible and the onset and recovery of
inhibition is rapid, with the maximum inhibition occurring between 15 and 45 minutes and

recovery starting from minutes to hours (U.S. EPA, 2007).

METHODOLOGIES FOR PERFORMING CUMULATIVE RISK

ASSESSMENTS FOR N-METHYL CARBAMATES

A CRA begins with the identification of a CMG of chemicals, which exert toxic effects by a
common mechanism of action (U.S. EPA, 1999). After the identification of a CMG, individual
chemicals are seiected based on perceived risk and exposure potential. This subgroup of
chemicals within the CMG is sorted into cumulative assessment groups. Many approaches have
been investigated and used in CRA (Boobis et al., 2008). Basically, there are four
methodologies that include: 1) a toxicological index method, 2) a margin of exposure method, 3)
a relative potency factor (RPF) method, and 4) physiologically based
pharmacokinetic/pharmacodynamic (PBPK/PD) modeling. Algorithms used in the first three

methods are summarized in Table 2.



The index method accounts for cumulative risk by summing all risk indexes calculated as the
ratio of exposure level to the reference value for each individual chemical. This method uses the
basic principle for risk assessment of calculating the Hazard Index, which is the inverse of the
margin of exposure. Readers are referred to the detailed description for various index methods
presented in Boobis et al. (2008). It should be noted that, even though the algorithms are
different, these methods are interchangeable when the evaluation of all chemicals is based on the
same toxicological endpoint and study design, thus the outcome of the assessment is the same

regardless of the method used (Boobis et al., 2008).

The RPF and PBPK/PD modeling methods will be described further in the following sections
with particular emphasis on the PBPK/PD modeling approach. The use of PBPK modeling for
the CRA of pesticides has been discussed or performed by Lowit ez al. (2004), Conolly et al.
(2005); and Zhang et al. (2008). The U.S. EPA has issued a report providing guidance for using

the PBPK method in risk assessment (U.S. EPA, 2006a).
Relative Potency Factor Approach Using an Index Chemical

The U.S. EPA developed the RPF approach which uses an index chemical to carry out the CRA
for organophosphorus insecticides (U.S. EPA, 2006b) and NMCs (U.S. EPA, 2007), and has
released guidance for performing CRAs for aggregate exposures involving multiple routes for a

single chemical (aggregate risk) (U.S. EPA, 2001) and for a CMG which incurs cumulative risk

(U.S. EPA, 2002a).



Briefly, an index chemical is selected based on the completeness and representativeness of
available data, and is used as the point of reference for comparing the absorbed dose for the rest
of the chemicals in the cumulative assessment group. The doses for the other CMG chemicals
are converted into the equivalent dose of the inde}; chemical so that the aggregate exposure can

then be lumped together as the equivalent dose of the index chemical.

The cumulative risk is then evaluated by comparing the level of exposure against the point of
departure (PoD) on the dose response curve of the index chemical. The PoD is defined as a
dose-response point that marks the beginning of a low dose extrapolation from laboratory
animals to humans. Under most situations, the PoD is based on an external exposure or
administered dose that leads to the observed responses. The selected PoD is used to depart from
the observed range of empirical response data for extrapolating risk in laboratory animals to the
exposure anticipated in the human population (U.S. EPA, 2002a). The PoD that is usually used
is either a no-observed-adverse-effect level (NOAEL), lowest-observed-adverse-effect level
(LOAEL), or benchmark dose (BMD) of the index chemical. The U.S. EPA prefers the use of

BMD rather than NOAEL or LOAEL (U.S. EPA, 2007).

For the NMCs, the endpoint of relative potency is brain AChE inhibition meé.sured at peak
inhibition following oral gavage exposures in Long Evans rats (Padilla et al., 2006) and studies
submitted by the registrants. The central estimate of 10% brain AChE inhibition (BMD1o) is
used as the response level to develop RPFs. In the family of NMCs, oxamyl is used as the index
chemical because of the availability of high-quality dose response data for various routes. Brain

AChE activity was selected as the endpoint to calculate RPFs from the PoDs (U.S. EPA, 2007).



Based on the available brain AChE activity data in the rat, an empirical dose-time-response
exponential model was developed for each NMC and the central estimate of the BMD; is used
to determine the relative potency. The lower confidence limit of the BMDy (i.e., BMDL;p) for
the index chemiéal, oxamyl, is used as the PoD. The mathematical equations describing the
dose-time-response exponential model can be found in U.S. EPA (2007). An RPF is defined as
the ratio of the BMD; of oxamyl divided by the BMD;q of each NMC. With this algorithm, the
RPFs for all ten NMCs range from 0.02 (pirimicarb) to 4 (aldicarb) with the RPF of the index
chemical as 1. The exposure doses are then converted to an equivalent dose of oxamyl by
multiplying the estimated dose of each NMC with its RPF to calculate the Index Eqﬁivalent
Residue (used in Equation 1). The aggregate exposure is then summed together to obtain the
total exposure of oxamyl as indicated in the denominator in Equation 1. After further uncertainty
factors are applied, the PoD is adjusted to extrapolate the exposure dose for humans. The
targeted acceptable margin of exposure (as calculated in Equation 1) for the NMC CRA is larger

than 10.

Equation (1) Vi PODindex

2 Residuei x PFix RPF:

where MOE is the margin of exposure and PF refers to the chemical-specific processing factor.

The RPF method is based on several assumptlons First, the dose of each chemical is assumed to
be additive; i.e. there is no synergism or competitive interaction from all AChE inhibitors in the

process of AChE inhibition. This assumption is based on a multi-NMC mixture study (Padilla et



al., 2007) in which interactions among NMCs were not observed. Second, the RPF method
largely depends on the availability and quality of the toxicological database on the index

chemical. Consequently, any uncertainty or incompleteness in this database would be

assumed to occur as a single time event rather than a series of events, and not as discrete or
punctuated events which can actually happen in reality. Lastly, subject differences (age, gender,
and metabolic polymorphism) are not considered. Therefore, the RPF method cannot reflect the
variation in the targeted human population. With the advances in PBPK modeling described in

the next section, however, these assumptions can be tested.
Advances in the PBPK/PD Modeling Approach

Theoretically, PBPK models can be r;agarded as the “electronic copy” of the laboratory animal or
human test system. “Exposure” can be simulated in silico and tissue dosimetry can be estimated
or predicted prior to further (focused) animal testing. Mathematically, a PBPK model is a group
of mass balance differential equations describing the rate of change of xenobiotics and
metabolites in a simulated organism that includes the basic or more detailed physiological
structures (Reddy et al., 2005). Toxic effects can be studied with a linked pharmacodynamic

module to examine dose-response relationships in a computer-generated environment.



Parameters needed to build PBPK/PD models - The procedure for developing a PBPK model is
a dynamic process where model structure can inclucie a variety of physiological, biophysical,
biochemical, and pharmacodynamic parameters as illustrated in Figure 1. Physiological
parameters refer to blood flow, compartment volume, cardiac output, and so on. Values and
plausible ranges for many parameters can be found in ]javies and Morris (1993), Brown et al.

(1997), and U.S. EPA (2006a) and the references cited therein.

Biophysical parameters mainly include partition coefficients for parent compounds and
metabolites. For the convenience of building PBPK models for pesticides, the partition
coefficients in various tissues or organs in the rat and human have been predicted with
computational models (Poulin and Krishnan, 1995a, 1995b, 19962, 1996b, 1998, and 1999;
Poulin et al., 1999; Knaak et al., 2004, 2008, and 2009). For NMCs, their partition coefficients
were predicted without consideration of protein binding and reported in Knaak et al., 2008. The
main biochemical.parameters refer to metabolic and excretionary parameters, such as Vpax and
K, when the metabolism and excretion are modeled as saturable Michaelis-Menten kinetics
(Belfore, 2005; Krishnan and Andersen, 2008). Usually these metabolic parameter values come
from the in vitro studies and more recently the in vitro data predicted with Quantitative
Structure-Activity Relationship (QSAR) models provide modelers at least initial values for their

model construction in the expectation of saving much intensive lab work.

For risk assessment purposes, AChE inhibition is the toxicological endpoint for
organophosphorus insecticides and NMCs. The investigation of AChE activity in the brain or

red blood cells consists of the pharmacodynamic module in an intact PBPK/PD model. This



toxicological event is modeled as a bimolecular enzyme inhibition process by NMCs (Knaak et
al., 2008; Zhang et al., 2007). The most important parameter is th(;, bimolecular enzyme
inhibition rate constant (k;), which describes the inhibition capability of an inhibitor toward the
enzyme. Experimentally, AChE inhibition (the k; values for 55 insecticides) haﬁ_been measured
in electric eel and bovine erythrocytes (Herzsprung ef al., 1992). These reported k; values can be
used as the initial values to start a draft model. A complete review of the k; values for
organophosphorus insecticides can be found in Knaak et al. (2004) and for the NMCs in Knaak

et al. (2008).

Application of the Exposure-Related Dose Estimating Model - The U.S. EPA’s National
Exposure Research Laboratory has developed the Exposure-Related Dose Estiinating Model
(ERDEM) for PBPK/PD modeling of exposure and dose resulting from environmental chemicals
(U.S. EPA, 2006¢; Blancato et al., 2006). The differential mass balance equations describing the
disposition and toxicity of chemicals in the body can be found in Blancato et al. (2006). The
intact package is downloadable for free from the EPA website (U.S. EPA, 2006¢). The most
recent downloadable version of ERDEM is Version 5.1. ERDEM exports particular model
specifications, which are input into a graphical user interface (GUI), into an advanced continuous
simulation language (ACSL) command file to conduct a PBPK/PD model simulation. The
ERDEM modeling framework.has the tools to handle a wide variety of model parameters and
perform studies using both simple and complex model structures. Typically, the model has been
used as a flow-limited construct. ERDEM is a robust modeling platform that allows specific

simulation of mass transport and internal doses within the human body. One example of a



detailed PBPK model structure with full gastrointestinal (GI) compartments is shown in Figure 2,

which has been used in a rat model for carbofuran (Zhang et al., 2007).

Model calibration/validation - One important concept that is usually ﬁscd by modelers is dose
metrics. This refers to the target tissue dose that is closely related to ensuing adverse responses
in an organism (U.S. EPA, 2006b). In the PBPK/PD modeling process, it is the point of interest
that the niodelers are trying to simulate or predict, e.g., the toxic moiety concentration in the
blood or brain AChE activity in the toxicity study of NMCs. With the model structure
determined and metabolic reactions/metabolites selected, the next step is to find out the values
for various model parameters. It is always a challenge to find the experimental evidence or, in a
better situation, there are some experimentally measured values available, but they cannot be
used directly in the model. A complete literature search is necessary to reveal the variation of
parameter values. Moreover, the diverse experimental data sets can be identified for possible use
in model calibration and validation. With the initial values and experimental pharmacokinetic or
pharmacodynamic data available, the draft model will run against the dose metrics reported in
the literature. It is worth mentioning that sometimes raw data values are not directly reported in
the references while only plots and curves are available. Special digitizing software, such as
Digitizelt (Sharelt!, Cologne, Germany), is needed to digitize the plots into numerical time-
course values. In other situations, the mathematical units need to be converted from the in vitro
data into in vivo data that can be further used in the model construction. In vitro metabolic
studies are one of the typical examples that the unit conversion needs to be considered. Based on
the results of the initial fitting, the preliminary simulation may not be satisfactory; consequently,

some model parameter values may be deemed necessary for consideration of adjustment within a

10



reasonable range. This adjustment of parameter values is referred to as the process of parameter
value optimization. The optimization process is usually iterative and the process is repeated until
the best available fit to the experimental measurements is seen. The above procedures to derive

a finalized PBPK model are summarized in Figure 1.

Under most situations, the model-predicted dose metrics cannot fit to all of the data sets from |
different studies closely and concurrently, or the dose metrics may be good for just part of the
time history data. Therefore, not surprisingly, the more experimental dose metrics that are
included in the simulation, the more likely it will be that discrepancies will be seen since
uncertainties exist both in the model itself as well as in the experimental data sets from different
studies. However, a model constructed With as many diversified data sets as possible will be
more dependable, and will have less uncertainty when extrapolations are performed than a model
constructed with fewer experimental data sets. A PBPK/PD model for carbofuran in the
Sprague-Dawley (SD) rat was built with diverse data sets including different exposure routes and
doses (Zhang et al., 2007). For the purpose of evaluating goodness-of-fit, traditional statistical
procedures aimed to analyze whether the underlying distributions of the two data sets are similar
or not, such as t-, Mann-Whitney, two-sample >, and two sample Kolmogrov tests, are not
appl.icable (U.S. EPA, 2006a). Recognizing the difficulty of regular statistical approaches, so far
the most convenient and still acceptable way to judge fhe goodness-of-fit is by visual inspection
to evaluate how close the simulated curves are to the data points (U.S. EPA, 2006a). Readers are
reminded that visual judgment is affected by how the simulated curves are presented. For
“example, a logarithmic scale of the dose metrics will visually reduce the discrepancy between the

simulated curve and the experimental data points.
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Traditional one- and two-compartment kinetic models are useful in describing the kinetics of a
chemical for any available data set, but these models cannot be used for extrapolating beyond the
data used to develop the model (U.S. EPA, 2006a). A good and useful PBPK model is one that,
theoretically, can simulate an independent da_ta set from a different group of researchers or any
independent exposure scenarios that have never been used in the model parameter optimization
process. The models that are useful in risk assessment should have the capabilities that
concurrently integrate diverse pharmacokinetic data under various exposure routes and are able
to make prediction on tissue dosimetry or toxicity beyond the data sets used for model
optimization. Since these data sets are not used for model parameter optimization, simulated
results running against these data will provide strong evidence of the predictability of the model.
Such models are valuable for risk assessment since they are capable of predicting the in vivo
pharmﬁcokinetic profiles at very low exposure levels which are applicable to human
environmental exposures (U.S. EPA, 2006a). Whether a constructed model is useful or not is
also decided by general model behavior. A dependable model should take into account the
important pharmacokinetic characteristics of a chemical, such as the overall half-life,
bioavailability, percentage of dose excreted through kidneys and bile, and dose eliminated in

feces. Such an effort had been implemented in the carbofuran model construction for the SD rat

(Zhang et al., 2007)

Post-Model Construction Analysis - It should be noted that the calibrated and validated PBPK
model represents the average individual in laboratory animal or human populations. The model

parameter values stands for the population mean and do not reflect population variability. Thus,
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compared with the probabilistic approach, the constructed model is deterministic. Sometimes, it
is called a baseline model by some modelers (Zhang et al., 2007). After a model has been
completed with a fit to all the available experimental data as satisfactorily as possible, modelers
may further perform extra analyses on the finished model. These analyses are generalized here
as post-model construction analysis, which includes sensitivity analysis for input model
parameters, variability analysis for model output predictions, and uncertainty analysis for input
model parameters. The concepts and methodologies of these analyses will be briefly discussed
here. Readers can find more discussion on these topics in Chiu et al. (200’7.). Sensitivity analysis
is meant to find out how model input parameter values influence the estimates of the dose
metrics or model predictions. When only one parameter varies at a time, it is named as local (or
functional) sensitivity analysis, while global sensitivity analysis refers to all parameters being
varied simultaneously. Parameters that have the greatest impact on the model outputs of interest
can then be studied in future efforts to reduce the uncertainty of these key players. For detailed
methodology to perform sensitivity analysis, readers are referred to U.S. EPA (2006a) for
principles and Zhang et al. (2007) for an example of sensitivity analysis in which only one
parameter value was perturbed at one time while all the others were held constant (local

sensitivity analysis).

The next step is variability analysis which is meant to evaluate the impact of the variability of
model input parameters on the variability of the model output (dose metrics). The model
calibrated with experimental data represents only the average individual of an animal or human
population. By considering the fluctuation of input model parameter values in a population, the

population range or variability of the dose metrics needs to be known. For this purpose, Monte
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Carlo sampling techniques based on the distributions of input parameters have been used.
Readers can go to U.S. EPA (2006a) for further details and can find the examples in the cited
references therein. In performing the Monte Carlo simulations, it should be noted that
dependency among some model parameters should be considered whenever a parameter value is
perturbed in sensitivity and variability analysis. The rest of the dependent parameters will also
need to change their values in order to keep the mass balance. For example, the fractional blood
flows and compartment volume should be summed to 100%. No matter what value will be
selected to perturb for any parameter, the rest of the parameter values need to be updated in order

to keep the total as 100%. An example with such a consideration can be found in Zhang et al.

(2007).

Uncertainty analysis for PBPK models will evaluate the impact of lack of information about
either the numerical values of model parameters or model structure on model predicted dose
metrics (U.S. EPA, 2006a). Uncertainty analysis is particularly useful when a PBPK model does
not simulate the experimental data well enough. Quantitative uncertainty analyses can be
performed by using a traditional Monte Carlo approach, a Bayesian Markov chain Monte Carlo
analysis, a stochastic response surface method, and a fuzzy simulation approach (U.S. EPA,
20062 and the references therein). In general, sensitivity, variability, and uncertainty analyses
can improve the credibility of PBPK models and can also help prioritize research needs to reduce
uncertainties in the developed model used in risk assessment. So far such analyses may not be

required for all PBPK models for the purpose of risk assessment (U.S. EPA, 2006a).

APPLICATION OF THE CONSTRUCTED PBPK/PD MODEL

14



Toxicity Study of Carbofuran

that of the human and compensating for the lower oxidation of carbofuran. The physiological
structure included arterial blood, brain, skin, fat, Gl-tract, kidney, liver, rapidly perfused tissue,
slowly perfused tissue, static lung, portal blood, and venous blood. Non-perfused tissue was not
modeled as a separate compartmeﬁt. A full GI compartment model including stomach,
duodenum, lower small intestine, and colon was utilized to better describe carbofuran GI
absorption, biliary circulation, and fecal elimination with considerable elaboration (Figure 2).
Both the parent and its oxidized metabolite, 3-hydroxy carbofuran, are ACﬁE inhibitors
(Herzsprung et al., 1992 and Knaak et al., 2008). With this consideration, a complete metabolic
pathway for carbofuran was incorporated into the model for SD rats (Zhang et al., 2007). The
AChE inhibition process was modeled as bimolecular inhibition process (Hetnarski and O’Brien,

1975) using a bimolecular enzyme inhibition rate constant (k;) as indicated in Figure 3A.

Once going through all the necessary procedures mentioned above, the constructed PBPK/PD
model can be further used for various applications. With the cabofuran model in the SD rat
available (Zhang et al., 2007), the dose-response relationship by oral exposure in the rat was
studied by simulating a series of exposure doses using ERDEM. These results are not published
anywhere else and they are presented here only for the purpose of demonstrating the

methodology. The simulations were based on the scenario reported by Ferguson et al. (1984)
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which was used as the major data set for model construction. The NOAEL was then selected
from the dose-response curve by targeting a 10% AChE inhibition in the blood (BMDj). A dose
range from 1 to 5000 pg/kg was simulated at the needed increment from 5 to 1000 ug/kg by oral
exposure to the SD rat. Time, carbofuran dosage, and AChE activity (% of control) was plotted
in a 3-D curve (Figure 4). Without considering the time to reach the minimum activity (or
maximum inhibition), the minimum AChE activity under each dosage was plotted against the
exposed dosages. This minimum AChE curve is actually the bottom (the blade) of the 3-D
valley-shaped sheet. For convenience of presentation, this bottom curve was plotted in a
logarithmic time-course change shown as an S-shaped curve in Figure 5. The toxicological
endpoint, such as NOAEL or BMD, could be determined from this curve. As a result,a NOAEL
or BMD; value (central estimation) of 10 pg/kg was determined by targeting 90% of control
ACHhE activity (10% inhibition) in red blood cells (RBC) as the endpoint. This BMD;q value was
actually the same as what was used for the critical toxicity endpoint in the risk characterization
for carbofuran in the California Environmental Protection Agency (Cal/ EPA) report (Cal/EPA,
2006) in which an acute regulatory LEDys value (the lower bound on the effective dose at the
95% confidence limit) of 0.01 mg/kg was assigned. The advantage that can be seen here is that
the application of the constructed PBPK/PD model enables the dose-response study and the
toxicological endpoints to be estimated in silico, something which cannot be easily achieved by
regular bench work. But readers are reminded again that only when a well-calibrated and

validated PBPK/PD model is constructed would these computerized study findings be useful.

Construction and Application of a Cumulative PBPK/PD Model of Three NMCs
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When multiple chemicals of a CMG are studied for cumulative toxicity, a model will be
developed that includes all parent chemicals plus corresponding metabolites and associated
metabolic pathways. Furthermore, when multiple exposure pathways are to be examined, the
cumulative model should also include multiple routes of entry. Therefore, a cumulative
PBPK/PD model is one that simulates concurrent multiple chemical exposures and includes all
related routes of entry. Such a PBPK/PD model for a mixture has no formal nomenclature. The
term, cumulative model, is used here for convenience. A cumulative model is built by
combining the individual PBPK/PD models for each chemical together into one system. These
individual models must have gone through the model construction procedures including model
parameter optimization, model calibration/validation, and post-model construction analysis in

addition to quality assurance so that confidence on using these models can be established.

A PBPK/PD model for the binary mixture of chlorpyrifos and diazinon in the rat has been built
(Timchalk and Poet, 2008). .Similarly, a cumulative model for three NMC insecticides (carbaryl,
carbofuran, and aldicarb) has been constructed (Zhang et al., 2008, 20092, and 2009b). For
simplification, the completed individual model for each éxposed chemical may not necessarily
be entirely included into the cumulative model. For example, metabolites which are not used as
biomarkers can be removed from the individual mode. Only those aspects which are related to
the dose metrics of interest or toxicities are needed while the same physiological structures are
kept. The simplified individua;l models have a reduced number of parameters which lessens the
burden of computer simulation for the assembled cumulative model. In the cumulative model of
three NMCs, the interactions from the mixture of AChE inhibitors, e.g., the competitive

interaction from all enzyme inhibitors, are not considered in the model. This individual action
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toward AChE activity was shown in Figure 3B. However, if there is strong evidence to show a
competitive interaction, such és competition for the metabolic enzymes (e.g., cytochrome E_’450)
among metabolic substrates, then the competition for the enzymes by various substrates should
be considered. If the exposure level is very low such that the tissue concentration of one
substrate is far less than its corresponding K; value (I<<K;), then the competition for the
metabolic enzyme by this substrate would be ignored. This rule can be verified in the equation
of competitive action toward the metabolic enzyme shown in Equation (2), when the mechanism

is described by the competitive Michaelis-Menten kinetics.

Equation (2) Vv, [E{]}
K (1+5h4+(s
a+ 7 )+[S]
where V is the reaction rate; V. is the maximum reaction rate for one substrate; Ky, is its

Michaelis constant; [S] is its concentration; [I] is the concentration of the competitor; and K; is

the Michaelis constant of the competitor.

Exposure Assessment as Input for the Cumulative Model - To use the cumulative model in risk
assessment forwardly (compared to using it for exposure reconstruction), the model required
exposure input that describes the potential chemical exposure at the time of contact with human
body. The methodology is briefly summarized in Figure 6. For pesticide exposure, the major
sources include food and drinking water ingestion, contact with residues in breathable air, and

dermal contact with surfaces (U.S. EPA, 2002a).
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The cumulative PBPK/PD model simulated aggregate exposure to three NMC insecticides: 1)
carbaryl from food intake, 2) aldicarb in drinking water via drinking water ingestion, and 3)
carbofuran in food via dietary ingestion. Exposure inputs for the three NMCs via the oral
pathway were taken from outputs from the Stochastic Human Exposure Dose Simulation
(SHEDS) model (Zartarian et al., 2007). SHEDS as developed by the U.S. EPA National
Exposure Research Laboratory is a probabilistic model that predicts longitudinal 1-year exposure
profiles for pesticide exposure assessment (U.S. EPA, 2007; Zartarian et al., 2000). The

PBPK/PD model for aldicarb was developed parallel to carbaryl and carbofuran models (Zhang

recommended that readers focus on the process rather than emphasizing the results or making

any conclusions. The resulting exposure event timeline scenarios were run to predict the
outcome using the cumulative NMC PBPK/PD model (Zhang ef al., 2008). The simulation
results were then projected to the U.S. population (Table 3). Distributions of AChE activities in
RBCs and brain, and urine biomarker concentrations were evaluated. The model prediction of
the minimum AChE activities in the blood and brain were above 99.99% of control level for all
age and gender groups at the 95th percentile (Table 3). These findings were expected to be
consistent with levels of the urinary biomarkers for carbaryl and carbofuran in the same general

population (Zhang et al., 2008). Conceptually, model predictions of elimination are expected to
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agree with biomonitoring findings for the same or similar human populations. Substantial or
significant differences between model predictions and biomonitoring results might indicate
model deficiencies or unaccounted pathways and routes of exposure when biomonitoring results

are greater than modeling outcomes.

To evaluate how close these predictions were to reality, the modeling outcomes were compared
with the National Health and Nutrition Examination Survey (NHANES) biomonitoring results
reported by the U.S. Centers for Disease Control and Prevention (CDC)’s National Center for
Health Statistics (CDC, 2005). NHANES assesses the exposure of the U.S. population to
environmental chemicals using biomonitoring in which chemicals or their metabolites were
measured in blood and urine samples. In one example (carbaryl), the modeled cumulative
elimination of 1-napthol was significantly lower than the measured concentrations at the 90" and
95" percentiles for groups in the national population sorted by age and gender (Table 4). This
disparity might be attributed to the commonality of 1-napthol as a biomarker for other chemicals
or the incompleteness of the exposure that might involve additional unrepresented pathways and

routes in the model simulation for carbaryl. This is one of the weaknesses that the readers should

be aware of in using the PBPK method for CRA. The reliability of using the PBPK model

approach will be limited if the exposure inputs to the model are only partial.

Related to carbofuran, carbofuran phenol was measured as the biomarker of carbofuran
exposure. The model simulated biomarker levels were in trace level and close to what had been
detected (Zhang ef al., 2008). Even though this comparison did not use any statistical procedure

due to the lack of information on both sampled populations, it shows that the application of the
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cumulative model demonstrates a plausible method for in silico human population risk

assessment. However, results from NHANES will be the final gold standard for comparison.

ADVAN TAGES AND WEAKNESSES OF THE CUMULATIVE PBPK/PD STRATEGY

activity and urinary biomarker levels could be studied directly at any time without uncertainty
factors. Therefore, a PBPK/PD model approach permits the CRA to be performed with more
realistic assumptions, which provides a more realistic risk assessment by closely simulating the
exposure scenarios and making fewer assumptions. But in the SHEDS simulations, the
cumulative model for the three NMCs considered only body weight as the individual difference.
Population variations such as compartment \Ifolumcs, blood flows, and metabolic polymorphisms
were not included (Zhang et al., 2008) even though they were technically plausible. This study
demonstrated that the use of a composite PBPK/PD model linked to an exposure model, such as
SHEDS, .for pesticide residues in humans may provide a promising way to do in silico human

population risk assessment.

The method of using PBPK/PD modeling in CRA has been regarded as one of the approaches,
but only when a highly refined assessment is needed (Boobis ef al., 2008). It should be noted
that not all PBPK models are useful for risk assessment applications. If the ultimate goal of

developing a model is for this purpose, the requirements for the quality of the model should be
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higher. Therefore, this data intensive task will require experimental studies to be developed
specifically for modeling purposes. Experimental pharmacokinetic data targeted for laboratory
animal PBPK model construction are needed. Meanwhile, a complete set of standardized
pharmacokinetic data should be performed, preferably by the same group of researchers. But for
human models, it is always a challenge to have any data related to the dose metrics concerned in
risk assessment. Alternatively, a human model must be built by extrapolation from an animal
model. Therefore, thé uncertainty during the model extrapolation may be carried down to the
human model. * As mentioned previously, PBPK modeling provides the foundation for the study
of dose metrics in a targeted human population by the stochastic technique. To do so, the model
parameters need to reflect the population variability and distribution in order for the Monte Carlo
sampling technique to be impl.emented. This information is still a challenge to all modelers. To
demonstrate model reliability, which is especially important for regulatory decision making,

formal

possible for every risk assessor. Even though the range and distribution have been determined
for those physiological parameters (U.S. EPA, 2006a), the parameters such as partition
coefficients, metabolic parameters, and even pharmacodynamic parameters still need more

investigation. Therefore a true meaningful population model simulation will require more

research

FUTURE NEEDS FOR THE APPLICATION OF PBPK MODELING

IN RISK ASSESSMENT
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First of all, the use of PBPK modeling in risk assessment has been increasingly regarded as an
important component of chemical risk assessment. Obviously, uncertainties still exist in the
developed PBPK models in the aspects of model structure, parameter values, or even
experimental data used for parameter optimization. But should the existence of these
uncertainties be an obstacle for the use of the PBPK models in risk assessment? Frontier
application of computqtional technique will serve as light guiding us walking through the “dark
room” of risk assessment. “Better judgments are made as result of the light, even a dim one”
(Blancato, 2009). More investigations aiming to reduce the uncertainties are needed. Second,
the model structures and the parameters used to describe the absorption, distribution,
metabolism, excretion, and toxicity (ADMET) need international harmonization so that models
from different researchers can be convertible or even “cloned” into another system. Different
modelers may use different model parameters to describe the same biological process. For
example, to describe GI absorptiqn, the absorption rate constant (K,, h'l) has been used for
chlorpyrifos (Timchalk et al., 2002) and carbofuran (Zhang et al., 2007), while the oral
absorption fraction (f abs-ora1) Was used in a malathion model (Bouchard et al., 2003). A
standardized or recommended set of model parameters needs to be available for use by modelers.
In addition, there needs to be an effort to perform experiments and standardize the measurement
of parameter values. Thirdly, Good Modeling Practice (GMP) for PBPK model development,
characterization, documentation, and evaluation has been proposed (Loizou et al., 2008). The
development and implementation of GMP for PBPK modeling will increase the transparency of
model development and model documentation. These efforts will make the work of quality
assurance and quality control more efficient and can increase the credibility of a constructed

model so that the developed PBPK model can be used for risk assessment with more confidence.
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Although this work was reviewed by the U.S. EPA and approved for publication, it does not
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Table 1
General Information on the Carbamate Insecticides®

Common Name  N-methyl Molecular CAS No. Chemical Structure
Carbamate Weight
Class

Aldicarb oxime 190.26 116-06-3 | 0

Carbaryl aryl 201.20 63-25-2 |
HN e}
Y
Carbofuran aryl 221.25 1563-66-2 m
Q. e}
e
Formentanate aryl 221.26 22259-30-9 ”Lﬁ
I
“\Fﬁ”
}-N_‘\
Methiocarb aryl 225.31 2032-65-7 I
HN, (o]
\f
Q
s~
Methomyl oxime 162.21 30558-22-0 0
| ﬁ)Lﬁ/
Y“
Oxamyl oxime 219.26 23235-22-0 ¢
|
_ K
Pirimicarb aryl 238.29 23103-98-2 e
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Propoxur aryl 209.24

Thiodicarb oxime 354.47

114-26-1 |

HN, [s]

\f
e
3919618-4 e

o

£ AN
¥

“Revised from Knaak ef al. (2008)
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Figure 1 Procedures for the construction of PBPK/PD models. Dashed arrows indicate the
need for parameter value adjustment within a reasonable range.
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Figure 2 ERDEM PBPK/PD model structure in the rat for the exposure scenario of bolus oral
ingestion of carbofuran. A full gastrointestinal compartment including enterohepatic circulation
of glucuronic acid conjugates was implemented (Zhang et al., 2007) (cited with permission).
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Figure 3 Pharmacodynamic model for AChE inhibition by carbofuran and its metabolite, 3-
hydroxycarbofuran (A) (Zhang et al., 2007) (cited with permission), and the model in the cumulative
PBPK/PD model for NMCs (B). There is no interaction among the members of NMCs and neither is
there competition from the NMCs with AChE. I = Inhibitor; ks = resynthesis rate constant of
enzyme; kq = degradation rate constant of the inhibited enzyme; k; - regeneration rate constant of the
inhibited enzyme; k; = enzyme inhibition rate constant; k,;, k.;, and k. were not modeled.
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Figure 4 Three-dimensional plotting of the time course of AChE activity in the blood
simulated by the model at different dosages administered orally to the rat. A= front view.
B = back view. The dots represent the experimental data reported by Ferguson et al. (1984).
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Figure 5 Minimum AChE activity (% of control) in the blood plotted with logarithmic change
of different dosages after carbofuran oral exposure to the rat.
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Aggregate exposure C
' PBPK/PD

Figure 6 Aggregate exposures are used as the exposure input for cumulative PBPK/PD models
so that the dose metrics (biomarker level in this example) and their population variability can be
predicted.
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