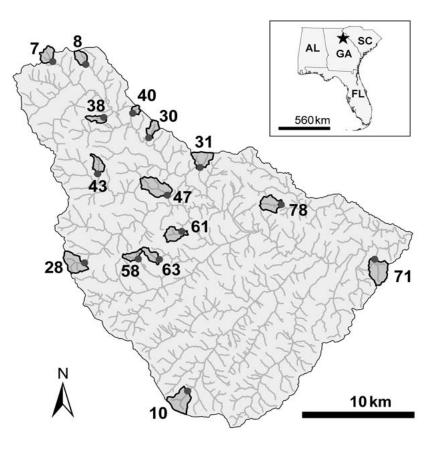
Effects of Land Use on Stable Carbon Isotopic Composition and Concentration of DOC and DIC in Southeastern US Piedmont Headwater Streams

Roger A. Burke USEPA/NERL Presented at the 2010 Joint ASLO/NABS Summer Meeting June 11, 2010


Building a scientific foundation for sound environmental decisions

 Evaluate, and develop simple models to describe, the impact of land use on the concentrations and δ¹³C of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in headwater streams

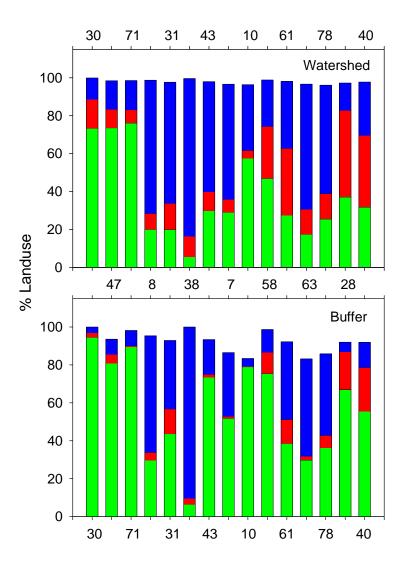
Building a scientific foundation for sound environmental decisions

South Fork Broad River Watershed

Building a scientific foundation for sound environmental decisions

Major Stressors in South Fork Broad River (SFBR), GA Watershed

- Rapidly growing human population with ~ 90% of homes on septic tanks
- Intensive poultry production resulting poultry litter added to mixed bermuda (C₄ grass, δ^{13} C ~ -12 ‰) / fescue (C₃ grass, δ^{13} C ~ -27 ‰) pastures
- Associated cattle production also responsible for organic waste inputs


Building a scientific foundation for sound environmental decisions

- Monthly monitoring in 15 SFBR headwater streams in 2008 2009.
- Watersheds exhibit a wide range of land use and fall along a gradient of organic waste inputs – carbon subsidies range from 2 to 28 %
- In previous study used landscape indicators to describe dissolved organic matter concentrations in these same streams

Building a scientific foundation for sound environmental decisions

2001 National Land Cover Data

Green – forest Blue – pasture Red – developed

Building a scientific foundation for sound environmental decisions

Analysis techniques

- Water samples field-filtered (GF/F) into VOA vials with either teflon (DOC) or butyl (DIC) septa
- Analyses with persulfate-based total carbon analyzer coupled to Delta V IRMS
- Discharge (Q) estimated by current meter method

Building a scientific foundation for sound environmental decisions

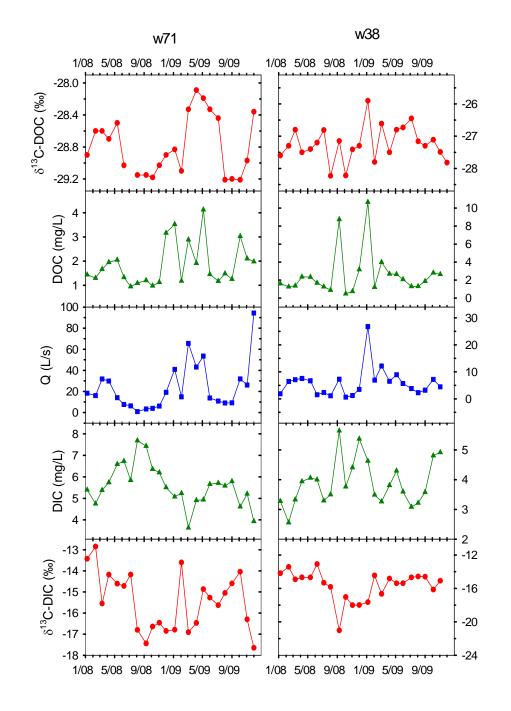
Landscape Analysis Results

- Pasture land cover (Wpas and Bpas) positively correlated with DOC concentration and $\delta^{13}\text{C-DOC}$
- Watershed open water (Wwat) positively correlated with DOC and DIC concentrations and negatively correlated with δ^{13} C-DOC
- Watershed developed land cover (Wdev) negatively correlated with $\delta^{13}\text{C-DIC}$

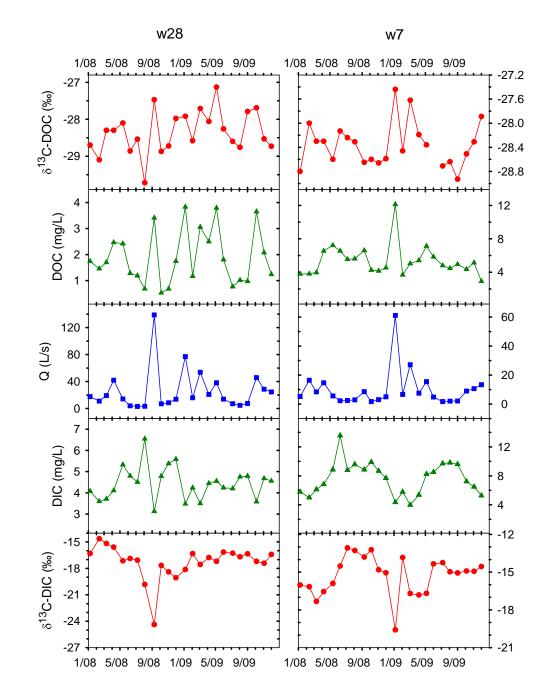
Building a scientific foundation for sound environmental decisions

Best Robust Linear Regression Models

DV	IVs	adj R ²
DOC (02)*	Bpas (+)	0.86
	Bwet (+)	
DOC	Wpas (+)	0.53
(08-09)	Wwat (+)	
DIC	Wwat (+)	0.36
$δ^{13}$ C-DOC	Wpas (+)	0.66
	Wwat (-)	
δ ¹³ C-DIC	Wdev (-)	0.53


* from Molinero & Burke (2009) Hydrobiol. 635: 289 - 308

Building a scientific foundation for sound environmental decisions


Stream Monitoring Results

- Discharge pulses generally associated with elevated concentrations of relatively ¹³C-rich DOC
- DIC discharge relationship seems more complex; in some cases flow pulses are associated with lower concentrations of relatively ¹³Cdepleted DIC but not in others

Building a scientific foundation for sound environmental decisions

Building a scientific foundation for sound environmental decisions

Building a scientific foundation for sound environmental decisions • Potential sources of ¹³C-enriched DOC

sample	δ ¹³ C (‰)
Water-extracted cattle waste	-22.1 (sd = 2.0)
Rainfall simulator runoff (mixed C_4 and C_3 grasses)*	-25.2 (sd = 1.7)

* No grazing or wastes added for several years prior to runs

Building a scientific foundation for sound environmental decisions

Discussion

- Input of ¹³C-rich organic waste and/or C₄ pasture grass C appears responsible for: **1**) positive correlation of pasture land use with DOC concentration and δ¹³C; and **2**) increased DOC concentrations and δ¹³C associated with discharge pulses
- Increased C cycling in farm ponds most likely responsible for positive correlation of Wwat with DOC and DIC concentrations and inverse correlation with δ^{13} C-DOC

Building a scientific foundation for sound environmental decisions

Discussion

- Enhanced weathering rates most likely responsible for inverse correlation between Wdev and $\delta^{13}\text{C-DIC}$
- Land use change in intervening six years responsible for changed relationship between DOC concentration and landscape indicators?

Building a scientific foundation for sound environmental decisions

Disclaimer

 Although this work was reviewed by EPA and approved for presentation, it may not necessarily reflect official Agency policy.