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RUNNING HEAD:  Measuring downstream influence of headwater disturbance  

Use of spatially explicit physicochemical data to measure downstream impacts of 

headwater stream disturbance 

B.R. Johnson1*, A. Haas2, and K.M. Fritz1

1 U.S. Environmental Protection Agency, National Exposure Research Laboratory 

(NERL), Ecological Exposure Research Division (EERD), Cincinnati, OH 45268 

2 Computer Sciences Corporation (CSC), Cincinnati, OH 45242 

* = corresponding, johnson.brent@epa.gov, 513-569-7335, FAX 513-569-7609 19

20

21

22

23

1



Abstract24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Regulatory agencies need methods to quantify the influence of headwater streams 

on downstream water quality as a result of litigation surrounding jurisdictional criteria 

and the influence of mountaintop removal coal mining activities.  We collected 

comprehensive, spatially-referenced physicochemical data (pH, dissolved oxygen, 

temperature, and specific conductance) from the partially mined Buckhorn Creek, KY 

watershed in summer 2005 (n = 239 sites) and spring 2006 (n = 494 sites).  We found 

conductivity was >10X higher in mined streams than in forested streams.  

Semivariograms, which quantify the degree of spatial dependence in chemistry values, 

indicated summer temperatures in both mined and unmined portions of the watershed had 

similar lag distances (ca. 5 km).  Data for other parameters and seasons however, violated 

model assumptions because of strong confluence effects in headwaters.  We therefore 

developed a post-hoc predictive model for water physicochemistry downstream of 

confluences using watershed areas as weighting factors.  This weighted-average model 

accurately predicted downstream conductivity (mean absolute error [MAE] = 55.34 µS 

cm-1), pH (MAE = 0.16 units), and temperature (MAE = 0.41°C) for confluences in 

Buckhorn Creek and two additional watersheds with headwater disturbance in WV and 

OH.   Use of semivariograms or predictive confluence models can help regulatory agents 

identify downstream influence of headwater streams and presence of a “significant 

nexus” with downstream waters.

Keywords:  conductivity, geostatistics, mining, ph, temperature, valley fill 
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Headwater streams, both individually and cumulatively, are important 

components of stream networks that can ultimately influence health of downstream 

aquatic ecosystems [Gomi et al., 2002; Meyer and Wallace, 2001; Naiman et al., 1987; 

Vannote et al., 1980; Wipfli and Gregovich, 2002; and see featured collection in Journal

of American Water Resources Association, 2007, Vol. 43(1)].  State and Federal 

regulations however, have traditionally afforded less protection to headwater streams 

than to larger downstream waters because of their abundance on the landscape and more 

variable hydrologic periods. Small headwaters are also not usual direct sources of 

drinking water, commerce, or recreation.  Permits for filling (Clean Water Act [CWA] 

§401 & §404) or discharging to (CWA § 402) intermittent, and particularly ephemeral, 

headwater streams are sometimes not required or, if so, critical reviews by regulatory 

agencies and any mitigation requirements have typically been less than for downstream 

waters [e.g., Department of Defense, 2007].  Such inadequate protection of headwater 

streams and the failure to properly mitigate their loss has been criticized in a recent 

federal court decision [Ohio Valley Environmental Coalition v. United States Army Corps 

of Engineers, et al., No. 03, 05-0784, 2007]. 

Language of the CWA, which often references “navigable waters” or “waters of 

the United States”, also does not clearly indicate the extent of CWA jurisdiction and has 

created confusion among regulatory agencies and the public.  This has resulted in a 

number of Federal court cases that have specifically challenged whether the CWA applies 

to headwater streams and isolated wetlands [see special issues of Wetlands 2003, Vol. 

23(3); Wetlands 2007, Vol. 43(1); and Natural Resources and Environment 2007, Vol. 
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22(1)].  A 2001 Supreme Court decision first questioned whether some headwater 

streams and isolated wetlands could be considered jurisdictional under the Clean Water 

Act [Solid Waste Agency of Northern Cook County (SWANCC)  v. U.S. Army Corps of 

Engineers, 531 U.S. 159, 2001]. A subsequent joint decision then required that non-

navigable waters must be “relatively permanent” or “possess a significant nexus” to 

navigable waters to be considered jurisdictional [John A. Rapanos et al.  v. United States, 

U.S., No. 04-1034, 2005; and June Carabell et al. v. United States Army Corps of 

Engineers and the United States Environmental Protection Agency, U.S., No. 04-1384,

2005].
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As a result of these decisions, regulatory agencies are faced with the challenge of 

accurately measuring hydrologic permanence of headwater streams and their degree of 

influence on the quality of downstream, navigable waters [Leibowitz et al., 2008].  Some 

state and federal agencies have developed tools for both measuring permanence and for 

ecological assessment in headwater streams [Fritz et al., 2006; NCDWQ, 2005; OEPA,

2002].  However, directly quantifying the influence of headwater streams on downstream 

resources is difficult given the large spatial scale and the mosaic of disturbance that often 

exists among headwater tributaries within branched stream networks.  Determining the 

presence of a “significant nexus” may therefore require stream ecologists to move beyond 

the habitat or reach spatial scales that are typically the focus of stream studies.  Spatially 

explicit studies that incorporate measures from throughout stream networks may be a 

useful strategy for quantifying the downstream influence of headwater streams and to 

help identify presence of a “significant nexus”.
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In the central Appalachians, headwater streams are often buried under fill material 

as a result of coal mining activities.  The largest fills result from mountaintop removal 

mining (MTM) where overburden is placed in adjacent stream valleys, creating valley 

fills (VF).  During a single ten year span (1992-2002), it was estimated that more that 

1,200 miles of headwater streams were impacted by MTM/VF activities [USEPA, 2003].

Though sediment ponds constructed downstream of fills facilitate deposition of fine 

particles, the total dissolved solids (TDS) can remain high downstream because there are 

currently no feasible methods for their removal.  Elevated ion concentrations are 

produced from groundwater leaching the valley fill materials.  Stream conductivity at 

filled sites can be 100X greater than for unmined streams in the region [Bryant et al.,

2003] (i.e., from ca. 50 µS cm-1 to 5,000 µS cm-1) and evidence suggests that conductivity 

can remain high for decades after fill construction [Merricks et al., 2007].

Ionic constituents resulting from valley fills are conserved and therefore 

potentially impact water quality far downstream.  Potential cumulative effects of multiple 

valley fills within a watershed must also be taken into consideration as required by the 

National Environmental Policy Act (NEPA) and other federal permitting programs (e.g., 

CWA Section 404[b][1] 40 CFR §230, Nationwide Permit Program 33 CFR §330).  

However, as with measuring the downstream influence of impaired headwater streams, 

methods for measuring cumulative downstream effects are also lacking.  Measurements 

of cumulative effects are complicated by the large temporal and spatial scales involved 

and the potential interaction of multiple stressors [Reid, 1998].

The study objective was to develop or refine methods that better quantify the 

influence of headwater streams and cumulative effects of headwater disturbance on 
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downstream water quality.  Our efforts focused on, but were not limited to, MTM/VF and 

associated specific conductance (surrogate for TDS) in streams of the central 

Appalachians.  We took multiple approaches that included geostatistical analysis of 

extensive field-collected physiochemical data and development of predictive models for 

water chemistry downstream of confluences.   

2.  Methods 

2.1 Study Areas 

 The Buckhorn Creek (BC) watershed (drainage area 118 km2) is in the Dissected 

Central Appalachian Plateau ecoregion [Level IV (69d); Woods et al., 2002] of eastern 

Kentucky, U.S.A., and lies at the juncture of Breathitt, Knott, and Perry Counties (Figure 

1).  The ecoregion is unglaciated, consisting of steep ridges and narrow valleys and is 

underlain with Pennsylvanian sandstone, shale, siltstone, and coal (Woods et al., 2002).

Robinson Forest (RF) (drainage area 60 km2) lies within the BC watershed and is a 

research forest operated by the University of Kentucky.  The two major subwatersheds 

included in RF are drained by Clemons Fork and Coles Fork, both of which are 

tributaries to the BC mainstem.  Much of the remainder of the Buckhorn watershed has 

been heavily mined for coal, and includes some gas drilling, low density housing, and 

pasture (Figure 1).  Coal mining in the watershed includes presence of multiple MTM/VF 

operations [Wunsch et al., 1999]. 

The BC watershed was sampled during summer 2005 (Sept. 12-14) and spring 

2006 (May 1-4) to cover base and average stream flow conditions, respectively.  Multi-

probe (Hydrolab®) measurements (pH, dissolved oxygen [mg/l], temperature [°C], and 

conductivity [µS cm-1]) and latitude/longitude were recorded at stream sites every 100-
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500 m in both seasons (summer: n = 239; spring: n = 494).  Data were collected from 

origin of surface flow in multiple mined and reference headwater streams downstream to 

the confluences with the mainstem Buckhorn Creek and along the Buckhorn mainstem to 

the confluence with the receiving stream, Troublesome Creek.  Special attention was 

given to stream confluences during data collection to measure any tributary effects on 

receiving streams.  Multi-probe measures were collected ca. 100 m above the confluence 

on each tributary and ca. 100 m above and below the tributary confluence on the 

receiving stream.  Multi-probes were calibrated daily and duplicate measures were 

collected within 10 m for every 25 sampling locations.     

2.2 Geospatial Analysis 

Unlike conventional statistical tests that typically require observations to be 

independent and normally distributed (e.g., ANOVA, t-test, X2), geostatistics refers to a 

set of statistical tools that are specifically used to model the degree of spatial dependence 

among values.  Geostatistics are therefore particularly valuable for describing spatial 

patterns within complex stream networks where site values are often spatially correlated.  

Modeling spatial dependence can provide ecologically meaningful information about 

many aspects of stream network dynamics and have been successfully used to describe 

spatial patterns in stream physiochemistry parameters [Dent and Grimm, 1999; Gardner

et al., 2003] as well as cutthroat trout distribution [Ganio et al., 2005].

Geospatial methods use some measure of statistical distance to model the degree 

of spatial dependence between sites within the spatial domain.  Following recent 

development of GIS tools, stream researchers have made increasing use of hydrologic, or 

in-stream, distance measures when exploring spatial patterns in stream networks [e.g., 
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Gardner et al., 2003; Peterson et al., 2007; Ver Hoef et al., 2006]. Hydrologic distance is 

the shortest distance between points within the stream channel network and it may be 

further divided into either symmetric or asymmetric by incorporating a directional 

component.  Symmetric stream distance is simply the distance between any two points 

along the stream network, regardless of flow direction, so that all sites within the network 

can be connected.  For asymmetric stream distance, two sites within the stream network 

can only form a distance pair if one site is either contributing to or receiving flow from 

the other.  Asymmetric distance is thus limited to either the upstream or downstream 

direction [Peterson et al., 2007].  Since our primary objective was aimed at longitudinal 

changes in water chemistry, we used unweighted, asymmetric (downstream) stream 

distance when calculating spatial dependence.   
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A semivariogram is a geostatistical tool that quantifies the change of spatial 

dependence with increasing distance among observations, or how site pairs covary with 

separation distance.  Data points that are closer together are expected to be more similar 

than those that are farther apart.  All observations from the stream network are binned by 

distance and semivariance is calculated as half the average, squared difference between 

pairs of points located a given distance apart: 
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where (h) is the estimated variogram value for distance h; z(x) is the value of a variable 

at location xi; z(xi+h) is the value of the same variable some distance away; and  N(h) is 

the number of pairs of observations separated by h.  Semivariograms plot (h) as a 

function of distance h [Liebhold et al., 1993; Rossi et al., 1992] and are typically 

�

�

�

�

8



interpreted by fitting theoretical models [e.g., Dent and Grimm, 1999; Peterson et al.,

2007; Schlesinger et al., 1996].  The nugget refers to the semivariance value at lag 

distance zero and is usually >0 because of fine scale sampling variability (or variability at 

distances smaller than the minimum sampling distance) or measurement error.  Error 

increases with increasing lag distance on the x-axis because the number of observations 

used for semivariance calculation declines. For the spherical semivariogram model, the 

point where semivariance levels off is referred to as the sill and the lag distance where the 

sill occurs is the range.  The range indicates the average distance over which values are 

spatially correlated, or average “patch size” [Dent and Grimm, 1999].  At least 30 pairs of 

points should be included for each separation distance when plotting semivariograms 

[Cressie, 1993].  Also implicit in semivariogram models is the assumption of stationarity, 

which states that spatial dependence must be the product only of distance between two 

points in the spatial domain and not their specific locations within the domain [Cressie,

1993].
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 The National Hydrologic Database (NHD) underestimated total stream coverage 

for BC, resulting in many observations that were not associated with mapped stream 

channels.  A new stream network was therefore generated for the watershed using the 

ArcHydro 9 toolset for ArcGIS 9.1.  The stream network was constructed using a 30 m 

Digital Elevation Model (DEM) available from the Seamless Data Distribution System of 

the USGS.  Flow direction and flow accumulation grids were then created from the DEM.  

The new stream network was then generated using a minimum threshold of 35 cells 

flowing into the destination cell for initiation of a stream channel.  Observations were 

snapped to the new ArcHydro stream network and distances between observations were 
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calculated with the Fast Network Shortest Path extension for ArcView 3.2.  Distance 

pairs that were not flow connected were manually removed. Multi-probe values were 

then merged with the distance dataset.  Empirical semivariograms were estimated with a 

function developed for R statistical software [R Development Core Team, 2009] using the 

Cressie-Hawkins robust estimator.  Spherical semivariogram models were then fitted 

with the variofit function in geoR [Ribeiro and Diggle, 2001] using weighted least 

squares and Cressie’s weights.

2.3 Predictive Model Development 

Initial analysis of empirical semivariograms revealed the stationarity assumption 

was often violated for measured parameters because of strong tributary influences, 

primarily in the headwaters.  As a result of these model violations in the semivariogram 

approach, a post hoc deterministic model was developed using only a weighting factor 

and chemistry data from three locations at each stream confluence.  Watershed area was 

used as the weighting factor for tributary influence, both because of the known 

correlation between watershed area and stream discharge [e.g., Knighton, 1998] and the 

relative ease of drainage area measurement.  Such a deterministic model may be used to 

predict water chemistry values below confluences within the watershed, regardless of 

location or degree of spatial dependency.  The weighted average model simply 

incorporates watershed area and parameter values from two confluent tributaries: 

)()( jijjjiiiij ddxdddxdy ������225

226

227

228

where: y = downstream water chemistry value, i and j = contributing tributaries, xi = 

water chemistry measurement on tributary i, di = drainage area of tributary i, xj = water 

chemistry measurement on tributary j, dj = drainage area of tributary j.
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 Model performance was first evaluated by the average difference between 

observed (O) and predicted (P) values using the root mean square error (RMSE): 

RMSE = 	 

5.0
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Additionally, mean absolute error (MAE) was calculated because it is less sensitive to 

extreme values than RMSE [Willmott, 1982] and provides a more intuitive measure of 

model error: 
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Both of these difference measures are preferred over use of the correlation coefficient (r) 

or coefficient of determination (R2) because such measures of significance are not 

consistently related to accuracy of model prediction [Willmott, 1982].  Furthermore, 

confluence site locations were not random and thus violate assumptions of conventional 

tests for significance. 

The deterministic model was first developed with data collected at confluences 

within the BC watershed in both spring (n = 78 cofluences) and summer (n = 22 

confluences).  The model was then tested with additional confluence data collected from 

watersheds in two other states using the same sampling methods, but only at confluence 

locations.  Confluences from an urbanizing watershed (Little Miami River) in Clermont 

Co., OH were sampled in Sept. 2006 (n = 37 confluences) (Fig. 2).  Clermont County lies 

in the Pre-Wisconsinan Drift Plains of the Eastern Corn Belt Plains ecoregion [Level IV 

(55d), Woods et al., 1998] and is underlain by pre-Wisconsinan glacial till and thin loess.

An additional watershed with multiple valley fills was also sampled in southern WV 

(Twentymile Creek watershed, Nicholas Co., WV [n = 14 confluences]) in May 2007 
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(Figure 2).  The Twentymile Creek watershed lies within the same Central Appalachian 

Plateau ecoregion as the BC watershed, but differs by having a trellised drainage basin 

rather than the dendritic pattern found in BC. 

3.  Results 

3.1 Water Chemistry 

 There were strong hydrologic differences between the two sampling seasons in 

the BC watershed.  Summer discharge of the BC mainstem, measured near its confluence 

with Troublesome Creek, dropped to < 20% of spring discharge, from 0.95 m3 s-1 in 

spring to only 0.18 m3 s-1 in summer.  Less than half (48%) the number of locations were 

sampled during the summer dry period (n = 239 locations) than in spring (n = 494 

locations) due to this contraction of the stream network.   

Water chemistry results often revealed distinct patterns, both seasonally and 

longitudinally, and indicated differences between RF and the remainder of the BC 

watershed (Table 1, Figures 3-5).  Since our sampling design was aimed at testing for 

spatial dependency and the sites do not constitute a random sample, comparisons of water 

chemistry values between seasons and between mined and unmined portions of the 

watershed are for descriptive purposes only.  The most obvious differences were apparent 

for stream conductivity in both spring and summer (Table 1, Figure 3).  In both seasons, 

conductivity values within the RF averaged ca. 100 µS cm-1, whereas outside of RF, 

values averaged >1000 µS cm-1 and >2500 µS cm-1 in spring and summer, respectively.

Within RF, three small tributaries draining to Clemons Fork (CF) from the north 

(Millseat Branch, Rich Hollow, and Maple Hollow) had springtime conductivities 

ranging from 200-800 µS cm-1, whereas other CF tributaries typically ranged from 40-70 
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µS cm-1.  In the upper and lower portions of the BC watershed, as in RF, small headwater 

tributaries that were forested generally had conductivity values <100 µS cm-1 and were 

typically dry in summer.  Spring conductivities in the entire BC watershed (excluding 

RF) ranged from 32-3190 µS cm-1, whereas during the summer dry period, values ranged 

from 93-11810 µS cm-1 (Table 1).  In summer, three measurements in one upper BC 

tributary, Eli Fork, were >11,000 µS cm-1, but the majority of measures (82%) were 

between 2000-3000 µS cm-1.
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Differences between RF and the rest of the BC watershed (upper and lower BC) 

were less apparent for other parameters.  Stream temperatures generally displayed the 

expected longitudinal and seasonal trends, with warmer temperatures in summer and 

cooler temperatures in headwaters (Table 1, Figure 4).  Average stream temperatures 

were slightly cooler in RF than in the surrounding watershed for both seasons.  Outside of 

RF, headwater temperatures were also often higher than both the RF headwaters and 

locations much farther downstream.  Dissolved oxygen and pH measures generally 

followed a spatial pattern similar to temperature.  Values for pH were circumneutral (6.5-

7.5) and were consistent between seasons.  Average pH values were ca. 0.5 units lower in 

RF than in the surrounding portion of the BC watershed in both seasons (Table 1, Figure 

5).  Dissolved oxygen (D.O.) was the most variable parameter, as expected, and was 

influenced by stream temperature, canopy cover, and hour of collection.  Dissolved 

oxygen concentrations were therefore not mapped or modeled as other parameters.  

Median D.O. values were nearly identical for RF and the other BC tributaries in spring 

(ca. 9.5 mg/l), but RF values were slightly lower than BC in summer (5.5 mg/l and 8.0 

mg/l, respectively) (Table 1).   
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3.2 Geospatial Analysis 297
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 Summer temperatures in the upper BC watershed fit the spherical semivariogram 

model (Figure 6).  Sites within RF were placed in 100 m bins, whereas sites from the rest 

of the BC watershed were placed in 200 m bins to ensure a minimum of 30 distance pairs 

in each bin.  The nugget, sill, and range for RF were 0.59, 1.40, and 5152.78, respectively 

(Figure 6a).  Corresponding nugget, sill, and range values for upper BC were 0, 3.74, and 

5250.00 (Figure 6b).  The sill of the Buckhorn semivariogram was thus 2.7X greater the 

sill for CF, indicating greater temperature variation in the mined portion of the watershed.  

No nugget was fit to the mined model, suggesting that all spatial dependency was 

captured by the model.  Despite these differences in variation and nugget effect, the range 

for both CF and BC was ca. 5200 m, indicating that temperature is spatially dependent 

over this stream length.      

 Violations of the stationarity assumption prevented fitting conductivity, pH, and 

spring temperature data to semivariogram models because of strong confluence effects 

that often occurred between adjacent sampling locations.  For example, covariance 

between two points 300 meters apart with an intervening tributary was not the same as 

covariance for two points 300 meters apart without an intervening tributary.

Conductivity in the headwaters of BC showed higher semivariance at shorter lag 

distances resulting from high variability in headwater tributary values (e.g., < 100 µS cm-

1 to >3,000 µS cm-1).  Thus, spatial dependence between points was conditional on their 

locations within the stream network.  Non-stationarity even occurred in RF because of the 

tributary influences associated with the few streams that had locally elevated 

conductivity.  The confluence effect was most evident in the abrupt changes in 
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conductivity along the BC mainstem, where major forested tributaries lowered 

conductivity and mined tributaries increased it in both spring (Figure 7a) and summer 

(Figure 7b).  The magnitude of change in BC conductivity was directly related to the 

discharge and conductivity of the contributing stream.  

3.3 Predictive Modeling 

 Despite the large difference in stream discharge between seasons, the confluence 

model showed a strong ability to predict downstream conductivity, pH, and temperature 

in the BC watershed in both spring and summer (Table 2).  Model error for conductivity 

was greater than for pH and temperature in both seasons, largely because of the much 

greater range of observed values within the watershed (Table 2).  Model error for 

conductivity showed a general increase with increasing conductivity.  RMSE and MAE 

were therefore greater during the summer low flow period and in the mined portion of the 

watershed than during higher flows and for unmined areas.  Model average error in 

summer was 158.18 µS cm-1, whereas error dropped to 34.56 µS cm-1 in spring.  Error 

associated with the predicted pH values was stable between seasons, averaging 0.18 units 

in both spring and summer.  Predicted temperature values however, had higher error in 

summer (MAE = 0.68) than in spring (MAE = 0.43) (Table 2), but average model error 

for the year was only ca. 0.5° C.

 Confluence data from the additional watersheds in WV and OH followed similar 

trends, indicating the model predictions for conductivity, temperature, and pH were 

robust across different landuse types and geologic regions (Table 3).  Conductivity values 

were generally lower in the urbanizing Little Miami River, OH (LMR) watershed than in 

the Twentymile Creek, WV (TMC) watershed where extensive coal mining has taken 
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place (Table 3).  Model error for conductivity was again higher in each of these 

watersheds than for other chemistry variables.  Futhermore, model error for TMC 

confluences was more than 4 times higher than that of the LMR.  Average model error 

(MAE) was 98.20 µS cm-1 and 21.79 µS cm-1 for the TMC and LMR confluences, 

respectively (Table 3).  Temperature regimes were similar between the two watersheds 

and MAE was ca. 0.25° C for each.  There was a greater range of pH values in TMC than 

LMR, and MAE was correspondingly higher for TMC (0.19 pH units) than for LMR 

(0.11 pH units) confluences (Table 3). 

 Given the strong predictive performance across seasons and geographic locations, 

data from all confluences in the BC, LMR, and TMC watersheds were thus combined and 

model errors were recalculated.  The resulting full model MAE was 55.34 µS cm-1 for

conductivity (RMSE = 103.03)(Figure 7a), 0.16 pH units (RMSE = 0.29) (Figure 7b), 

and 0.41°C for temperature (RMSE = 0.66) (Figure 7c).  The conductivity model 

predictions had greater error when observed values were >1,500 µS cm-1 so error terms 

were also calculated for confluences above and below this threshold value.  When 

including only confluences where observed values were <1,500 µS cm-1 (n = 114 

confluences), MAE and RMSE decreased to only 19.58 µS cm-1 and 39.57, respectively.

However, when observed confluence values were >1,500 µS cm-1 (n = 37 confluences), 

MAE and RMSE increased to 165.54 µS cm-1 and 253.32, respectively.

4.  Discussion 

4.1 Water Chemistry 

Conductivity measures downstream of fills in both BC and TMC were typically 

>1,000 µS cm-1, which is consistent with other coal mining studies from the eastern 
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United States [Fulk et al., 2003; Hartman et al., 2005; Howard et al., 2001; Kennedy et 

al., 2003; Kennedy et al., 2004; Merricks et al., 2007; Pond, 2004; Pond et al., 2008].

Furthermore, these values were from 10-25X greater than forested streams in RF and 

>2X levels associated with the loss of sensitive Ephemeroptera taxa [Howard et al.,

2000; Pond, 2004; Pond et al., 2008].  Elevated conductivity in BC is primarily attributed 

to conservative ions such as sulfate, calcium, manganese, magnesium, and iron.  As these 

ions are transported downstream there is little biological uptake or physical adsorption, so 

they tend to accumulate in the downstream direction where multiple fills are located in 

the same watersheds.  At the headwaters of the BC watershed, Eli Fork conductivity was 

nearly ¼ that of seawater during summer sampling (>11,000 µS cm-1).  The unusually 

high conductivity we measured on Eli Fork in summer had however, returned to ca. 100 

µS cm-1 the following spring.  The frequency of such transient events and the associated 

potential acute toxicity effects in small streams of the Appalachian region remain poorly 

understood.
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As in previous mining studies [Howard et al., 2001], filled headwater streams in 

BC also had slightly higher pH and temperature when compared to nearby forested 

streams.  Increased temperatures were likely caused by the numerous ponds located 

downstream of fills and by a general reduction in canopy cover compared to RF.  

Elevated pH possibly resulted from increased buffering capacity of fill materials.  Mining 

companies also frequently add chemicals to the sediment ponds downstream of fills to 

regulate pH and facilitate deposition of potentially harmful metals [Skousen et al., 1998].   

4.2 Geospatial Analysis 

17



Semivariograms provide a relatively simple tool for quantifying the degree of 

spatial dependence for water physicochemical values within stream networks [e.g., Dent 

and Grimm, 1999; Ganio et al., 2005], from small headwaters to large downstream rivers.  

Our semivariograms for summer temperature in RF and upper BC watersheds both had a 

similar range of ca. 5 km, indicating temperature measures are significantly related to 

each other over this stream length.  This 5 km distance thus represents a quantifiable 

linkage in temperature from headwaters to downstream (or between any two points <5 

km apart within these watersheds).  Temperatures were slightly higher in the upper BC 

watershed, likely due to effects multiple ponds below valley fills and less canopy cover 

than in RF.  The absence of strong confluence effects for summer temperature may have 

been due to the low flows and greater influence of ambient air temperature along the 

continuum.   
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The semivariogram approach, however, failed for the spring season and other 

water quality parameters because of high semivariance at shorter lag distances that 

resulted from the strong differences in water chemistry, especially conductivity, between 

some small mined and forested tributaries.  Likens and Buso [2006] found similar 

tributary effects downstream of human disturbances on the lower Hubbard Brook 

mainstem.  Other researchers have also noted potential non-stationarity when applying 

geostatistics to data from stream networks [e.g., Ganio et al., 2005] and have discussed 

alternative distance measures and weighting factors that may better address the issue 

[e.g., Gardner et al., 2003; Peterson et al., 2006; Peterson et al., 2007; Ver Hoef et al.,

2006].

4.3 Predictive Modeling 
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As a result of non-stationarity and confluence effects, we developed a post-hoc 

deterministic model that used only a single weighting factor, watershed area, along with 

water chemistry values from only stream confluences.  Errors associated with model 

predictions were small relative to observed range of values in the BC watershed.

Furthermore, the model showed strong predictive ability for watersheds in two adjacent 

states.  The TMC and BC watersheds are located within the same ecoregion and have 

been subject to similar disturbances from mountaintop removal mining and valley filling 

and gas well drilling.  The glaciated LMR watershed in southern OH, however, has very 

different geologic and topographic features compared to the Central Appalachian BC and 

TMC watersheds and has been subject to heavy suburban development.  Yet the model 

again showed strong predictive ability for conductivity, pH, and temperature in this 

watershed, indicating model predictions are robust across varying geographic areas and 

disturbance types.  Though the confluence measurements used in the model were 

collected in the near vicinity (~ 100 m) of tributary junctions, the downstream predictive 

ability is not diminished because mainstem conductivity changed little between tributary 

junctions in the BC watershed (see Figures 3 and 7).  Some watersheds however, may 

have greater groundwater influx that would contribute to model error. 

Conductivity had the largest error of the three parameters modeled, due largely to 

the extensive range of observed values at tributary junctions. There was no apparent 

trend in direction of conductivity error, either high or low, among predicted values.  Error 

tended to be greater for mined confluences where conductivity measures were >1,000 µS 

cm-1, or >10X higher than that of adjacent forested tributaries.  For the mined tributaries, 

error in the discharge to watershed area relationship may also have contributed to error in 
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predicted conductivity values. Stream discharge is highly correlated with watershed area 

[e.g., Gordon et al., 1995], however during mountaintop removal mining the landscape 

and topography are so drastically altered that contributing areas often change and are 

difficult to delineate.  Watershed areas used in our model were based on pre-mine 

topographic coverages because the disturbance was relatively recent (<10 years old) and 

updated maps were unavailable.  The hydrologic effects of the fills themselves and 

associated sediment ponds may also have contributed to model errors.  Hydrologic 

studies by the U.S. Geological Survey have shown that valley-filled streams have higher 

flows when compared to unmined streams in West Virginia [Messinger and Paybins,

2003; Wiley et al., 2001].  The greater discharge from filled streams has been attributed to 

reduced evapotranspiration due to loss of vegetation and soils during mining [Messinger 

and Paybins, 2003].  These findings were supported by our observations during the 

summer dry period in BC, when many forested tributaries were dry, or nearly so, yet 

valley filled streams of similar size often continued to flow.  Given the difficulty in 

delineating source areas and potential fill effects on hydrology, use of an alternative 

weighting factor, such as mean annual discharge, would likely reduce model error.  These 

small streams are rarely gauged however, so reliable discharge data are typically 

unavailable.

4.4 Applications

The value of our deterministic model is in its simplicity and potential ease of use 

for regulatory agents.  The model requires no special software or programming skills, yet 

can be easily used to estimate potential downstream impacts of disturbance from a 

proposed permit action.  For example, regulators of CWA §401 & 404 (i.e., “dredge and 
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fill” activities) could use the model to evaluate valley fill permit applications based on the 

potential increase in conductivity and potential degradation of aquatic life downstream of 

proposed permit locations.  This would only require a conservative estimate of the 

conductivity increase associated with a proposed valley fill, information that could be 

easily gathered from similar existing fills in the watershed or ecoregion or use of existing 

data sources.  In this manner, the effects of elevated TDS (i.e., conductivity) from a 

single valley fill at the head of a watershed, or cumulative effects of multiple fills within 

a watershed, could be conservatively estimated several kilometers downstream without 

need for extensive data collection or modeling efforts.  Conductivity measures are easily 

collected in situ with affordable sondes or multi-probes and data from the streams where 

impacts are proposed and the surrounding watersheds could potentially be required along 

with CWA §401/404 permit applications.   

As an example of how the predictive model could be used by regulators, we 

modeled downstream effects on stream conductivity if valley fills were proposed for the 

undisturbed Clemons Fork watershed within RF (Figure 9).  For simplicity, we assumed 

placement of a valley fill would increase conductivity to 2,000 µS cm-1 (the approximate 

annual mean of actual filled streams in the greater BC watershed) immediately 

downstream of hypothetical fills.  Observed springtime baseflow conductivity values 

were used elsewhere for “non-filled” tributary streams.  We modeled placement of 1-4 

fills separately to evaluate potential cumulative effects.  Results indicated that, with 

placement of a single fill, conductivity of the immediate receiving streams were elevated 

to >500 µS cm-1, but the majority of the CF watershed remained safely below this 

threshold (Figure 9a).  Placement of a second fill, however, elevated conductivity such 
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that the majority of the CF mainstem was near or above 500 µS cm-1.  With addition of a 

3rd and 4th fill, conductivity of the entire CF mainstem increased to >700 µS cm-1 and 

actually increased conductivity of the larger receiving stream, BC, as well (Figure 9c and 

9d).
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Given the documented accumulation of ions downstream and resulting adverse 

biological effects, valley filled headwater streams may have a detrimental cumulative 

downstream effect that outweighs their individual size and relative discharge regime.  

The conservative nature of the dissolved ions downstream of fills and absence of 

appropriate and viable treatment technologies suggests that the only way to mitigate for 

elevated conductivity may be dilution from undisturbed forested tributaries.  The 

importance of dilution was evident in our hypothetical CF example, where placement of a 

single fill had relatively small effects compared to those of multiple fills. The effect of 

dilution, and the absence thereof, is also evidenced by the difference in conductivity of 

the Buckhorn mainstem between seasons.  During the spring wet period, forested 

tributaries effectively reduced mainstem conductivity such that BC conductivity near the 

mouth was 838 µS cm-1, whereas in summer when most forested headwater streams were 

dry, conductivity at the BC mouth was ca. 2510 µS cm-1.

Regulatory agencies may therefore need to implement a watershed based 

management strategy that would preserve forested streams within mined watersheds to 

provide appropriate dilution and prevent downstream degradation of aquatic ecosystems.  

Such a holistic approach to CWA §401 and §404 permitting is one option for mitigating 

potential cumulative effects of increased ion loads downstream of valley fills.  Our 

deterministic model is one tool that could be used to estimate dilution provided from 
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forested watersheds to reach a targeted conductivity range that is protective of aquatic 

life.  Elevated TDS that result from valley fillings is however, only one potential adverse 

impact and should be considered in concert with other environmental, human health, and 

socioeconomic factors.  

5. Conclusion 

In the future, the deterministic model will continue to be tested across other 

geographic areas and disturbance types.  Furthermore, additional water chemistry 

parameters such as nitrate, ammonia, or orthophosphate may be used for testing model 

predictions at stream confluences.  However, model error may be greater for these 

nutrients because they are more bioreactive than the more conserved physiochemical 

parameters used here.  Dent and Grimm [1999] however, successfully modeled spatial 

dependence of nutrient concentrations in a desert stream over a 3 km lag distance using 

semivariograms.  Strager et al. [2009] also used a spatially explicit, GIS-based watershed 

model to evaluate downstream effects of acid mine drainage in West Virginia.  This 

demonstrates that no single geostatistical or modeling approach may accurately 

characterize downstream influence for all variables or stressors at all spatial scales within 

stream networks.  Use of such methods, however, requires that investigators expand 

beyond the stream reach spatial scales commonly used in lotic research.  Choice of the 

best modeling approach can also provide unique insight into underlying spatial scale 

variation and ecological processes operating in the watershed.   Others have studied 

spatial variation in streamwater chemistry [e.g., Dent and Grimm 1999; Likens and Buso,

2006] and have noted the need for understanding ecological patterns at these larger 

spatial scales when assessing anthropogenic impacts [Likens and Buso, 2006].  Though 
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“significant nexus” was not clearly defined in Rapanos and Carabell v. United States 

[2006], if use of quantitative tools such as those presented here demonstrate spatial 

dependence or substantial influence on downstream water quality, this would likely 

constitute a “nexus” and therefore meet the intended criterion.   
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Table 2.  Root mean square error (RMSE) and mean absolute error (MAE) for predictive 

model results from the Buckhorn Creek, KY watershed, combined data from spring (May 

2006) and summer (Sept. 2005). 

Summer Spring

Parameter RMSE MAE RMSE MAE

Conductivity ( µS cm-1) 267.05 158.18 74.62 34.56

pH      0.28     0.18   0.33   0.18 

Temperature (°C)      1.03     0.68   0.63   0.43 
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Figure 1.  Location and course landuse map of the Buckhorn Creek, KY watershed. 

Figure 2.  Location and course landuse map of the Little Miami River, OH and the 

Twentymile Creek, WV watersheds. 

Figure 3.  Map of stream conductivity (µS cm-1) values for all sites sampled in (a) 

Summer 2005 (n = 239 sites) and (b) Spring 2006 (n = 439) in the Buckhorn Creek, KY 

watershed.  Delineated area = Robinson Forest boundary (unmined). 

Figure 4.  Map of stream temperature (°C)  values for all sites sampled in (a) Summer 

2005 (n = 239 sites) and (b) Spring 2006 (n = 439) in the Buckhorn Creek, KY 

watershed.  Delineated area = Robinson Forest boundary (unmined). 

Figure 5.  Map of stream pH values for all sites sampled in (a) Summer 2005 (n = 239 

sites) and (b) Spring 2006 (n = 439) in the Buckhorn Creek, KY watershed.  Delineated 

area = Robinson Forest boundary (unmined). 

Figure 6.  Empirical semivariograms for summer temperature in the (a) Clemons Fork 

(Robinson Forest) and (a) Buckhorn Creek watersheds. 

Figure 7.  Influence of major mined (dashed arrows) and unmined (solid arrows) 

tributaries on stream conductivity (µS cm-1) along the mainstem Buckhorn Creek, KY in 

(a) Spring 2006 and (a) Summer 2005. 

Figure 8.  Predictive results for full model (a) Conductivity (µS cm-1), (b) pH, and (c) 

Temperature (°C) at confluences from Buckhorn Creek, KY (BC) in Summer 2005 and 

Spring 2006, Twentymile Creek, WV (TMC), and the Little Miami River (LMR) 

watershed.
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Figure 9. Predicted conductivity values (µS cm-1) downstream of confluences in the 

forested Clemons Fork Watershed, Robinson Forest, KY, with hypothetical valley filling 

of one (a), two (b), three (c), and four (d) headwater stream tributaries.
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