Laboratory Investigations of Mechanisms for 1,4-Dioxane Destruction by Ozone in Water

Ann Louise Sumner (Battelle, Columbus, Ohio, USA)

Michelle Simon (U.S. EPA, Cincinnati, Ohio, USA)

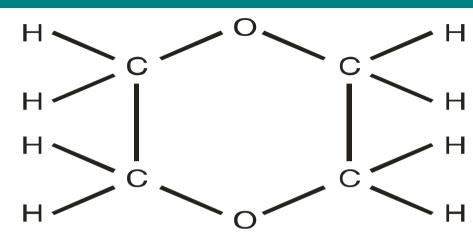
Chlorinated and Recalcitrant Compound Conference Monterey, California

May 25, 2010

Outline of Presentation

- Introduction of oxidation for 1,4-Dioxane
- Cooper Drum Field Project and Results
- Laboratory studies to investigate results
- Experimental Methods
- Summary and Conclusion

Previous Presentations 2006 Battelle Monterey Conference


- Sadeghi VM, Gruber DJ, Yunker E, Simon M, Gustafson D. 2006a. In Situ Oxidation of 1,4-Dioxane with Ozone and Hydrogen Peroxide. Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22-25, Paper D-31.
- Schreier CG, Sadeghi VM, Gruber DJ, Brackin J, Simon M, Yunker E. 2006b. In-Situ Oxidation of 1,4-Dioxane. Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22-25, Paper D-21.

Site Background

- Cooper Drum Company Superfund Site
- Located in South Gate, Los Angeles County
- Chlorinated ethenes (TCE; PCE; 1,2-DCE; 1,1-DCE; VC)
- Chlorinated ethanes (1,1-DCA; 1,2-DCA)
- Benzene
- 1,4-dioxane (more recent discovery: April 2004)

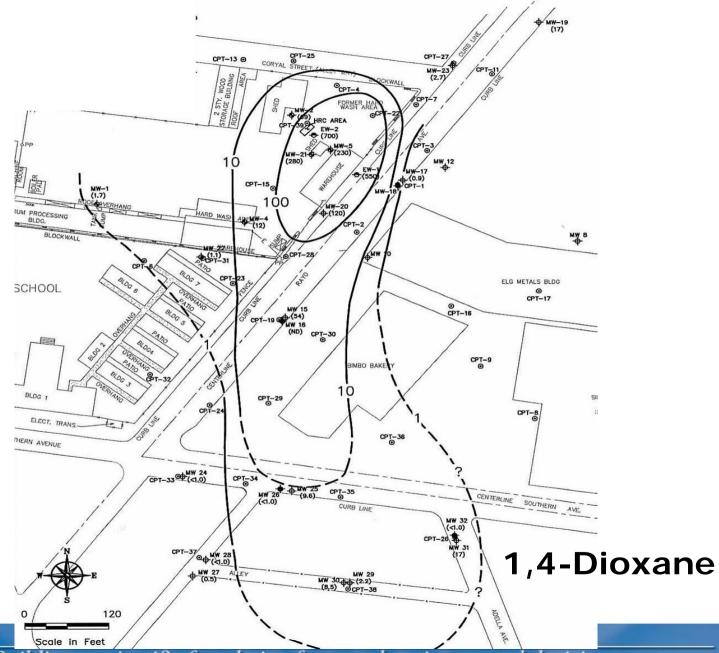
1,4-Dioxane

Stable Chemical Structure

Air Stripping?

Low volatility

Separation/Adsorption?


High solubility in water

From Sadeghi et al. 2006

Bioremediation?

Not easily biodegradable

Oxidant Strengths

Oxidant	Oxidation Potential (Volts)	
Hydroxyl radical (OH°)	2.8	
Sulfate radical (SO ₄ ⁻ °)	2.5	
Ozone	2.1	
Sodium persulfate	2.0	
Hydrogen peroxide	1.8	
Permanganate	1.7	
Chlorine	1.4	
Oxygen	1.2	

Mechanisms for Oxidation With Ozone

Direct Ozone Reaction with Alkenes and Formation of an Ozonide

$$O_3 + RC = CR \rightarrow RCOCR + O_2$$

Ozone Reaction with Hydroxide Ion can form the Hydroxyl Radical

$$O_3 + OH^- \rightarrow O_2 + 2OH^\circ$$

Radical formation may occur in presence of organic soil compounds (soil humics, carboxylic acids, alcohols, etc.)

Ozone Reaction with Hydrogen Peroxide can form the Hydroxyl Radical

$$2 O_3 + H_2O_2 \rightarrow 2OH^{\circ} + 3O_2$$

From Sadeghi et al. 2006

O₃ versus *OH

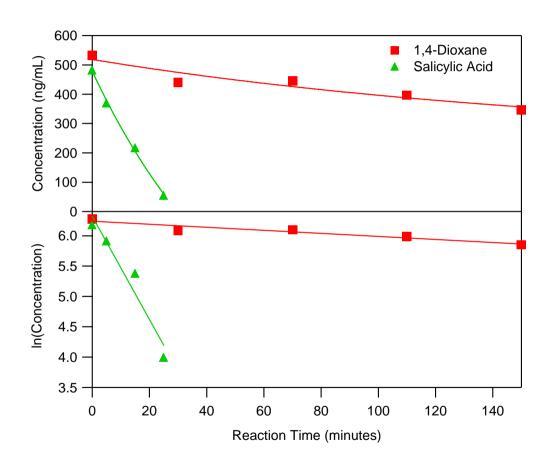
- Literature implies that ozone is too slow to be effective in 1,4D destruction on its own
- AOP use hydrogen peroxide to increase concentration of hydroxyl radical
- But it is hard to get H₂O₂ and O₃ to mix in porous media and then degrade COC

- Hard to measure *OH directly
 - Short half life
 - Analytical limitations
- Use chemical probe
 - any compound that reacts readily with *OH
 - at a known rate
 - easily measured
 - salicylic acid (SA) was selected as the chemical probe. Salicylic acid (SA) reacts readily with *OH radicals to produce the stable products 2,3-dihydroxybenzoic acid (DHBA), 2,5-DHBA, and catechol.

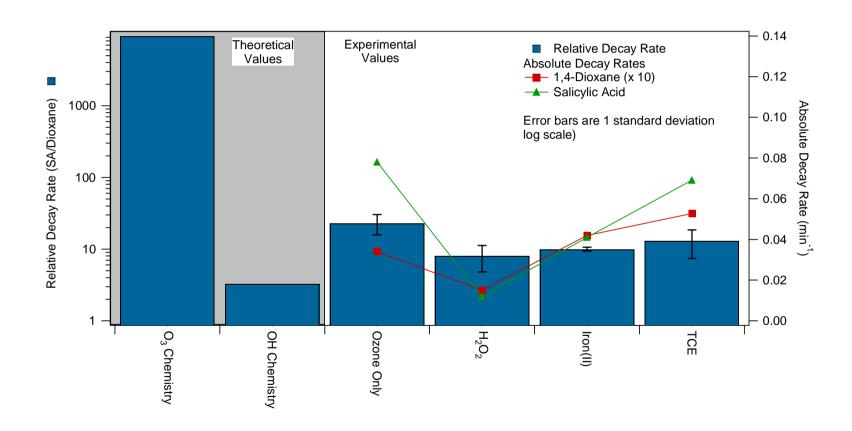
TABLE 1. Expected reactions, reported rates, and relative decay rates

Reaction Number	Reaction	Rate Constant, k (M ⁻¹ s ⁻¹)	Relative Decay Rates (k _{SA} /k _{1,4D})	Reference
1	°OH + SA	5 x 10 ⁹	2.1 - 4.5	Karnik et al., 2007
2	°OH + 1,4D	1.1 x 10 ⁹ 2.4 x 10 ⁹		Anbar et al.,1996 Thomas, 1966
3	O ₃ + SA	3.1 x 10 ³	9.4 x 10 ³	Hoigne and Bader, 1983 (II)
4	O ₃ + 1,4D	0.32 (at pH 2)		Hoigne and Bader, 1983 (I)

Laboratory Apparatus



SPME GC/MS



HPLC MS/MS

Results

Conclusions

- *OH chemistry plays a significant role in the destruction of 1,4-dioxane by treatment with O3,
 - even in deionized water
 - in the absence of potential catalysts
- Future Work
 - Perform in porous media

Acknowledgements & Disclaimer

- Funding for this study was provided by the U.S. EPA National Risk Management Research Laboratory under Contract # EPC05057, Task Order 32, Work Assignment 2. The authors acknowledge the expertise of Raj Mangaraj and A.J. Savage who performed the HPLC/MS/MS analyses.
- The extended abstract summarizes recent research and does not present U.S. EPA policy.

THANK YOU! QUESTIONS?

