Temporal Patterns and Sources of Atmospherically Deposited Pesticides 1 in Alpine Lakes of the Sierra Nevada, California, USA 2 3 4 DAVID F. BRADFORD,^{*1} EDWARD M. HEITHMAR,² NITA G. TALLENT-5 HALSELL,¹ GEORGES-MARIE MOMPLAISIR,² CHARLITA G. ROSAL,² KATRINA 6 E. VARNER,² MALIHA S. NASH¹, and LEE A. RIDDICK² 7 8 ¹U.S. Environmental Protection Agency, National Exposure Research Laboratory, 9 Landscape Ecology Branch, P.O. Box 93478, Las Vegas, NV 89193 10 11 12 ²U.S. Environmental Protection Agency, National Exposure Research Laboratory, 13 Environmental Chemistry Branch, P.O. Box 93478, Las Vegas, NV 89193 14 15 *Corresponding Author: 702-798-2681; FAX: 702-798-2208; E-Mail: 16 Bradford.david@epa.gov 17 18 19 **Brief**: Pesticide concentrations in California alpine lakes track pesticide application rates 20 at agricultural sites over 65 km away. 21 22 23 24 Abstract 25 26 Agricultural pesticides are being transported by air large distances to remote 27 mountain areas, and have been implicated as a cause for recent population declines of 28 several amphibian species in such locations. Largely unmeasured, however, are the 29 magnitude and temporal variation of pesticide concentrations in these areas, and the 30 relationship between pesticide use and pesticide appearance in the montane environment. 31 We addressed these topics in the southern Sierra Nevada mountains, California, by 32 sampling water weekly or monthly from four alpine lakes from mid-June to mid-October 33 2003. The lakes were 46-83 km from the nearest pesticide sources in the intensively 34 cultivated San Joaquin Valley. Four of 41 target pesticide analytes were evaluated for 35 temporal patterns: endosulfan, propargite, dacthal, and simazine. Concentrations were

36	very low, approximately 1 ng/L or less, at all times. The temporal patterns in
37	concentrations differed among the four pesticides, whereas the temporal pattern for each
38	pesticide was similar among the four lakes. For the two pesticides applied abundantly in
39	the San Joaquin Valley during the sampling period, endosulfan and propargite, temporal
40	variation in concentrations corresponded strikingly with application rates in the Valley
41	with lag times of 1-2 weeks. A finer-scale analysis suggests that a large fraction of these
42	two pesticides reaching the lakes originated in nearby upwind areas within the Valley.
43	
44	Introduction
45	
46	The Sierra Nevada mountains of California lie downwind from one of the most
47	intensively cultivated areas in the United States, the Central Valley of California.
48	Consequently, ecosystems throughout the mountains, including those in national parks
49	and wilderness areas, have been exposed to airborne pesticides and other pollutants [1].
50	Pesticides from presumed regional sources have been documented in multiple physical
51	and biotic media, including areas up to 3500 m elevation and many tens of kilometers
52	from the nearest sources in the Central Valley [2-9]. Although measured pesticide levels
53	have generally been well below various acute toxicity levels, p,p'-DDE concentrations in
54	fish in two alpine lakes in the southern Sierra recently exceeded a health threshold for
55	kingfishers [7]. There is also concern for ecological effects because most measurements
56	have been made only once and thus do not capture temporal variation, an important
57	consideration for a region where pesticides are applied year round and their use varies
58	tremendously in time and space. Moreover, organisms in the Sierra are exposed to

complex mixtures of pesticides, which may have greater effects than exposure to
individual pesticides [3, 10], and some of these compounds may interact with other
stressors such as disease [11].

62 Of particular concern in the Sierra Nevada/Cascades region of California has been 63 the disappearance in recent decades of numerous populations of at least seven species of 64 native amphibians with few observed changes in habitat or other factors [12-14], 65 although some disease impacts have been documented recently [15]. Most conspicuous 66 of these declines has been the mountain yellow-legged frog complex (Rana muscosa 67 complex, recently split into R. muscosa and R. sierrae; [14]), a taxon formerly the most 68 ubiquitous aquatic vertebrate in lakes and streams at higher elevations in the Sierra 69 Nevada [16]. Atmospherically deposited pesticides have been implicated as a cause for 70 these declines, acting by themselves or in concert with other factors such as fish 71 introductions and disease [5, 17-19]. However, measurements for pesticides in the alpine 72 waters commonly inhabited by these species have been taken in recent decades from only 73 a few locations [5, 6, 8], and almost no data are available for temporal variation in 74 pesticide levels.

The present study was designed to measure pesticide levels at trace (ng/L) or ultatrace (pg/L) levels over time at several sites in the aquatic habitat of *R. muscosa* and *R. sierrae* to characterize the magnitude and temporal variation in pesticide levels. We also evaluated temporal variation of pesticide concentrations as a function of pesticide application in specific areas to identify potential source locations. We focused on high elevation lakes in the southern Sierra Nevada because these two frog species have been extensively studied here [5, 13-15, 19], and the region is located adjacent to the San

82	Joaquin Valley, the southern arm of the Central Valley where pesticide use is greatest
83	(based on California Department of Pesticide Regulation annual pesticide use reports,
84	http://calpip.cdpr.ca.gov).
85	
86	Experimental Section
87	
88	We selected four high-elevation lakes in Sequoia and Kings Canyon National
89	Parks, California: two relatively near the San Joaquin Valley (46-55 km) and two far
90	from the Valley (68-83 km) between 27 and 45 km apart (See Supporting Information for
91	details of site selection and Table S1 and Fig. S1 for location and characteristics of
92	lakes). Water samples were collected weekly at the lake nearest the San Joaquin Valley
93	(Frog Lake), and at 4-week intervals at the other three lakes (Gorge, East Marjorie, and
94	Wright lakes), from mid-June to mid-October 2003. These lakes varied in elevation
95	(3042–3645 m), area (1.3–17.2 ha), maximum depth (3.5–15.1 m), and watershed area
96	(53-197 ha). Water temperature was low (e.g., $< 7^{\circ}$ C) during sampling in lakes that were
97	still largely ice-covered on the first sampling date in June (Frog, Wright, and East
98	Marjorie lakes), and averaged between 12.3 and 16.1°C among the lakes overall.
99	Throughout the sampling period at all lakes, pH was circumneutral and specific
100	conductance was very low. Dissolved oxygen, measured only at Frog Lake, was >85%
101	saturation at all depths throughout the sampling period. Rainfall from local
102	thunderstorms, measured with plastic rain gages near ground level, fell during five
103	weekly intervals at Frog Lake and two of the corresponding monthly intervals at the other
104	three lakes.

105	Precipitation in the study area occurs mainly as snow during the winter months of
106	November through March. Precipitation during these months in 2002-2003 was 89% of
107	the 30-year average at Lodgepole, 8 km west of Frog Lake. We evaluated air flow
108	pathways to Frog Lake by modeling 24-hour back-trajectories every three hours between
109	0600 and 1800 hours PDT from a point on the edge of the San Joaquin Valley that
110	comprises the approximate origin for upslope winds to Frog Lake (see Supporting
111	Information for details). Tracer and meteorological studies show that during a typical
112	summer day surface air from the southeast side of the Valley is transported into the
113	southern Sierra Nevada by diurnal upslope flows, reaching the Frog Lake area by
114	midafternoon [1, 20, 21]. Pesticide application data came from pesticide use reports of
115	the California Department of Pesticide Regulation (http://calpip.cdpr.ca.gov). None of
116	the pesticides detected in the study was applied in the mountains during 2003.
117	Water samples (100 L) were extracted in the field using an on-line
118	filtration/extraction assembly that consisted of a battery-powered ceramic pump, Teflon
119	tubing, glass fiber filter, and a solid phase extraction (SPE) cartridge (see Supporting
120	Information for details of sampling apparatus). Abselut Nexus (Varian Inc., Harbor City,
121	CA) was used as solid phase sorbent. Forty-one compounds (i.e., pesticides and some of
122	their degradation products) were extracted and analyzed using methods developed and
123	optimized for 100-L water samples [22]., except that a less stringent method was used in
124	the present study to calculate estimated method detection limits (MDL; see Supporting
125	Information for MDL calculation method and Table S2 for recoveries and MDL values).
126	The less-stringent calculation method was used to increase the potential to detect a
127	temporal pattern in concentrations and to be more consistent with previous analyses in

128	alpine lake water in the study region [3]. A total of 35 samples (including 4 duplicate			
129	pairs) and 5 field blanks were collected (see Supporting Information for details).			
130	For statistical analysis, concentration values $<$ MDL were replaced with 1/2 of the			
131	MDL. Values for duplicate samples were averaged. Time dependency of pesticide			
132	concentrations between sequential weekly samples at Frog Lake was evaluated by			
133	autocorrelation (correlogram) analysis [23]. Association between the temporal pattern of			
134	pesticide concentrations in Frog Lake and pesticide applications in the San Joaquin			
135	Valley was evaluated by cross-correlation (cross-correlogram) analysis [23]. This			
136	analysis computes a correlation coefficient between the two variables (i.e., pesticide			
137	concentration and weekly application rate) at different lag times (i.e., 0 week, 1 week, 2			
138	weeks, etc.). We evaluated this association at two scales: the entire valley and individual			
139	townships, which are approximately 10 km on side. Cross-correlation analysis was also			
140	used to evaluate association between temporal patterns among the individual pesticides in			
141	Frog Lake.			
142	We used ANOVA to evaluate differences in pesticide concentrations among			
143	lakes. Concordance of temporal patterns in pesticide concentrations among the four lakes			
144	was evaluated by comparing the coincidence of the four inter-sample trend directions for			
145	each chemical (i.e., peaks and valleys occurring at the same times). The probability that			
146	at least three of the four lakes would have the same configuration of peaks and valleys by			

147 chance is 0.0148 (see Supporting Information for calculation details). We used SAS v.

148 9.1 (SAS Institute Inc., Cary, NC) for statistical analyses and Surfer 8 (Golden Software,

149 Inc., Golden, CO) for kriging distributions of pesticide application.

150

Results and Discussion

153	Pesticides Found. Eight of the 41 pesticide analytes were detected at least once
154	among the four lakes (see Supporting Information, Table S3). Four of the eight were
155	found frequently, allowing us to evaluate temporal patterns: endosulfan I (an insecticide
156	and acaricide), propargite (an acaricide), and dacthal and simazine (herbicides).
157	Endosulfan II was also found in a number of samples, but less frequently and usually in
158	much lower concentrations than endosulfan I; the two forms were combined for analysis.
159	Concentrations of these pesticides were very low in all four lakes, generally less than 1
160	ng/L for endosulfan I+II, propargite, and dacthal, and only slightly higher for simazine
161	(Figs. 1 and 2). Endosulfan I or II, dacthal, and simazine were detected in all four lakes,
162	whereas propargite was detected only in Frog Lake (Fig. 2 and Supporting Information
163	Fig. S2). Concentrations for three less frequently detected pesticides, chlorothalonil,
164	trifluralin, and chlorpyrifos, were also very low (< 0.07 ng/L in all cases; see Supporting
165	Information, Table S3).
166	These findings are consistent with concentrations for the few other lake-water
167	samples from the vicinity, as well as for snowpack samples. Within 4 km of Frog Lake,
168	similar concentrations were found for endosulfan in two lakes in 1997 [5], for endosulfan
169	and dacthal in two other lakes in 2003 [8], and for endosulfan and dacthal in the
170	cumulative snowpack [6]. Relatively low concentrations for endosulfan and dacthal have
171	also been found in other media in the vicinity in 2003 or 2005, including air (B-
172	endosulfan , ~10 pg/m ³), sediment, vegetation, fish, and tadpoles [8, 9].

173 As discussed below, it appears unlikely that concentrations for the four recurring 174 pesticides would have been substantially greater at other times of the year than our 175 observed levels. The maximum concentrations observed for the four pesticides were 176 three to eight orders of magnitude lower than benchmarks for effects on aquatic life, 177 except for endosulfan, which was lower by a factor of 37 [24, 25]. Among the four 178 pesticides, toxicity data for amphibians are available only for endosulfan. The maximum 179 concentration of endosulfan observed in the present study ($\sim 1 \text{ ng/L}$) was lower than the 180 lowest-observed-effect concentration among nine anuran tadpoles exposed for 8 d (2000 181 to 60,000 ng/L [26]), the concentration inducing sublethal effects in Bufo bufo tadpoles 182 after 43 d (10,000 ng/L [27]), and the 96-h LC₅₀ for tadpoles of Rana boylii (550 ng/L 183 [28]) and Hypsiboas pulchellus (130 ng/L [29]).

184 **Temporal Patterns of Pesticide Concentrations.** The temporal patterns of 185 concentrations for the four pesticides were largely independent of each other. For Frog 186 Lake, concentrations at weekly intervals were not significantly related to each other 187 (cross-correlation analysis for pairwise combinations of pesticides; Fig. 1). Endosulfan 188 showed a sharp peak in concentration in mid-September, propargite showed a sharp peak 189 in late July, dacthal showed a variable plateau from late July to early October, and 190 simazine showed multiple peaks. Such apparent independence in temporal patterns 191 among pesticides was also evident for monthly sampling for the three pesticides represented at all four lakes. Specifically, endosulfan showed a peak in September or 192 193 October, dacthal showed a valley in July and a peak in September or October, and 194 simazine showed a valley in July, August, or September (Fig. 2 A, C, and D).

195 Sampling at 1-week frequency in Frog Lake generally captured the temporal 196 variation of three of the four pesticides (endosulfan I+II, propargite, and dacthal; Fig. 1A, 197 B, and C). That is, autocorrelation analysis indicated that samples one week apart were 198 significantly correlated with each other (p < 0.05), indicating that the value at a given 199 time was partially dependent on the value for the previous week. For simazine, however, 200 there was no significant time dependency among samples, although it appears that this 201 lack of significance can be attributed largely to the highly variable concentrations during 202 the first half of the sampling period (Fig. 1D).

203 Consistency of Temporal Patterns Among Lakes. The four lakes showed 204 similar temporal patterns for the three pesticides that were found in all four lakes (i.e., 205 endosulfan, dacthal, and simazine; Fig. 2A, C, and D). For endosulfan and dacthal, trend 206 reversals (i.e., peaks and valleys) occurred at identical times for three of the four lakes for 207 each chemical (i.e., Frog, E. Marjorie, and Gorge lakes). The probability of this or more 208 extreme concordance occurring by chance was 0.0148 for each chemical. Thus, the 209 processes that determine the temporal patterns of individual pesticides appear to be very 210 similar among lakes. The temporal patterns in Wright Lake, however, differed somewhat 211 from the other three lakes (Fig. 2A, C, and D). These differences may be because Wright 212 Lake is in the Kern watershed, which contrasts from the other two watersheds in the 213 study (Kaweah and Kings) by having a north-south orientation rather than an east-west 214 one (see Supporting Information, Fig. S1). Air within the upper Kern watershed during 215 summer is thought to consist largely of air moving upslope/downslope within the 216 watershed and air mixed in from the Kaweah watershed along the ridgeline separating the 217 two watersheds [20].

218 Differences in Pesticide Concentrations Among Lakes. The four lakes differed 219 from one another in pesticide concentrations in a consistent manner throughout the study. 220 Frog Lake invariably had the highest concentration for each sampling time for three of 221 the four pesticides (endosulfan I+II, propargite, and simazine) during those times when 222 the pesticide was detected at any lake. This finding is evident in Fig. 2, but a better 223 comparison among the lakes is achieved by normalizing the concentrations relative to the 224 maximum concentrations among the four lakes for each sampling time (see Supporting 225 Information Fig. S3). The resultant relative concentrations for the above three pesticides 226 were significantly higher in Frog Lake than in the other three lakes (ANOVA, p < 0.005227 for each of the three pesticides), whereas the values in the other three lakes were not 228 significantly different from each other. Relative concentrations for the fourth pesticide, 229 dacthal, did not differ significantly among the lakes.

230 These differences among lakes were not obviously related to lake characteristics 231 such as lake depth, lake surface area/volume ratio, watershed area, drainage orientation or 232 other factors (See Supporting Information, Table S1). These differences were apparently 233 also not related to time of spring overturn, which occurred around the time of the first 234 monthly sampling in Frog, East Marjorie, and Wright Lakes, but occurred prior to first 235 sampling in Gorge Lake. Cold condensation processes were also apparently not involved 236 in determining concentration differences among lakes because elevation showed no 237 relationship to concentration (see Supporting Information, Table S1) However, the 238 finding that the lake closest to the San Joaquin Valley (Frog Lake) had the highest 239 concentrations (Fig. 2 and Supporting Information Fig. S3) is consistent with the 240 prediction that contaminant exposure decreases with distance from the Valley [5, 19].

Inconsistent with this prediction, though, was that Gorge Lake (the second closest lake to the Valley) was significantly lower in pesticide concentrations than Frog Lake and not significantly different from either of the two more distant lakes. Moreover, Bradford et al. [9] did not find a consistent association with distance for pesticides in air, sediment, or tadpoles among high-elevation sites in the southern Sierra Nevada.

246 Source Locations for Endosulfan and Propargite. Tens to hundreds of metric 247 tonnes of endosulfan and propargite were applied to crops in the San Joaquin Valley 248 during the sampling period (See Supporting Information, Fig. S4). Application rates 249 (kg/wk) varied during this period, and corresponded with temporal variation in 250 concentrations in Frog Lake. For endosulfan (Fig. 1A), the highest significant cross-251 correlation coefficient (0.780) was for lag 1 (i.e., concentration in Frog Lake lagged 252 application by one week). This lag is most evident by comparing the peak in application 253 rate in early September with the peak in concentration in lake water a week later. For 254 propargite (Fig. 1B), the match between the temporal patterns for application rate and 255 concentration in lake water was more striking, with the highest significant cross-256 correlation coefficient (0.841) occurring at lag 2 (i.e., concentration in Frog Lake lagged 257 application by two weeks).

While it is possible that such concordance resulted from mixing of pesticides in air from throughout the San Joaquin Valley, it is also possible that the pesticides reaching Frog Lake came predominantly from subareas within the Valley. If we assume the latter and that the source subareas encompass multiple townships, then we would expect high cross-correlation coefficients between concentrations in Frog Lake and pesticide application rates for the townships within such clusters. For both endosulfan and

264 propargite, cross-correlation analysis at the township scale showed significant 265 correlations for many townships in the San Joaquin Valley (Fig. 3A and B). For both 266 pesticides, the largest cluster of adjacent townships with high correlation coefficients was 267 relatively close to Frog Lake within the Valley. For endosulfan (Fig. 3A), the center of 268 this cluster of 6 townships was about 20 km west-northwest of the approximate origin for 269 diurnal upslope winds to Frog Lake (and 68 km from Frog Lake); for propargite (Fig. 270 3B), the approximate center of the cluster of 15 townships was about 70 km northwest of 271 this point (and 105 km from Frog Lake; see Fig. 1A and B legend for application rates for 272 these township clusters). Interestingly, endosulfan application was low within the cluster 273 relative to elsewhere in the valley, as indicated by contour lines in Fig. 3A.

274 Back-trajectory analysis from the approximate origin for diurnal upslope winds to 275 Frog Lake (Fig. 3C) showed predominantly northwest air flows, a direction expected for 276 the season [30, 31]. Typically, the 24-hour back trajectories originated in the northern 277 end of the San Joaquin Valley, and frequently passed through the clusters of townships 278 identified above for endosulfan and propargite. Thus, it is plausible that a large fraction 279 of these two pesticides in Frog Lake originated within these clusters. The difference in 280 location of the two clusters may be because only small amounts of endosulfan were 281 applied northwest of the township cluster for endosulfan (as indicated by contours in Fig. 282 3A), whereas propargite application in this portion of the Valley was widespread (Fig. 283 3B).

The temporal patterns for endosulfan and propargite concentrations in lake water throughout the year are likely driven primarily by the application of these pesticides at upwind agricultural sites in the San Joaquin Valley. For endosulfan, winter and spring

287 application showed a low peak during February-March (see Supporting Information, Fig. 288 S4), and an average of 1.4 ng/L total endosulfan (i.e., endosulfan I, II, and sulfate) was 289 found in the cumulative snowpack around April 1, 2003 at two sites 2.8 and 3.7 km SW 290 of Frog Lake [6]. Thus, some endosulfan likely entered Frog Lake and the other lakes 291 during the primary snowmelt period (April through June). However, no endosulfan I or 292 II was detected in any lake during the latter portion of this period (i.e., mid-June; Figs. 293 1A and 2A). Subsequently, endosulfan appeared in Frog Lake and the levels were 294 significantly correlated with application rates in the San Joaquin Valley. For propargite, 295 winter application was virtually none (see Supporting Information, Fig. S4), and it was 296 not detected in Frog Lake in June or early July. Subsequently, however, it appeared in 297 Frog Lake and its levels closely tracked application rates in the San Joaquin Valley. The 298 low concentrations observed for propargite, relative to its high application rates (Figure 299 1) are likely at least partly due to strong soil and sediment adsorption. Propargite has the 300 highest K_{oc} and K_{ow} of the four pesticides [32].

301

302 Source Locations for Dacthal and Simazine. In contrast to endosulfan and 303 propargite, application of dacthal and simazine was very low in the San Joaquin Valley 304 during the sampling period; however, dacthal was applied abundantly in the central 305 coastal region of California (See Supporting Information, Fig. S4). Cross-correlation 306 analyses between the concentrations in Frog Lake and application rates in the San 307 Joaquin Valley or coastal California were not significant for these two pesticides, and 308 there was no suggestion that peaks of concentration in Frog Lake followed peaks in 309 application (Fig. 1C and D).

310 Thus, the source locations and factors determining the temporal pattern of 311 concentrations for dacthal and simazine in the lakes are not clear. Hageman et al. [6] 312 predicted that nearly 100% of the dacthal in the snowpack in the vicinity of our study 313 lakes comes from regional sources. Winter storms in the Sierra typically pass across the 314 central coast, where dacthal is applied abundantly year round, and the San Joaquin 315 Valley, where simazine is applied abundantly in winter (See Supporting Information, Fig. 316 S4). Hageman et al. [6] reported dacthal concentrations averaging 4.6 ng/L in the 317 snowpack at the end of the snow accumulation period in 2003 at two high-elevation sites 318 approximately 3 km southwest of Frog Lake. A large fraction of dacthal in the snowpack 319 would likely enter the lakes through snowmelt water [33], and the same outcome could 320 be expected for simazine because it is relatively polar like dacthal. Indeed, dacthal and 321 simazine were present in 3-4 lakes during the first week of the study when snowmelt 322 runoff was still pronounced. Thereafter, the temporal patterns of concentrations in the 323 lakes may reflect atmospheric inputs from areas sprayed months previously, persistence 324 of the pesticides in the lake ecosystems, or complex pathways for airborne transport from 325 source to lake.

Mechanism of Pesticide Deposition. The concordance between the temporal patterns of application rates and concentrations of endosulfan and propargite in Frog Lake strongly suggests that at least these two pesticides were transported by air during the study period and deposited on the lake or its watershed. However, it is not possible to determine the relative contributions of dry deposition to the lake surface, wet deposition to the lake surface, and rainfall washing dry-deposited material into the lake. Dry deposition to the lake surface is presumably involved because the concentration patterns

333	in lake water for endosulfan and propargite generally followed the application rates
334	pattern regardless of rainfall events (Fig. 1A and B). Nevertheless, input via rainfall is
335	suggested by the initial peaks in endosulfan and dacthal in Frog Lake on July 24 that
336	coincided with the onset of a period of rainfall (Fig. 1A and C). During the previous
337	week, which lacked rainfall, concentrations changed very little.
338	
339	Acknowledgements
340	
341	We are very grateful to Andi Heard and Sarah Graber of Sequoia and Kings
342	Canyon National Parks (SEKI) for meticulously conducting much of the field sampling,
343	and to Harold Werner, Danny Boiano, and Annie Esperanza also of SEKI for facilitating
344	the project in many ways. We also thank Daniel Jaffe for guiding our efforts with back-
345	trajectory calculations, and acknowledge the NOAA Air Resources Laboratory for the
346	HYSPLIT transport and dispersion model. We are also grateful to Roland Knapp,
347	Hassan Basagic, Nellie Dujua, Beth Gentry, Chad Cross, Dan Heggem, and Carrie
348	Vernon and other members of the SEKI helicopter crew for considerable help. James
349	Seiber, Thomas Cahill, Walter Jarman, and Lara Hansen kindly reviewed the research
350	plan for the project, and Paula Allen, Carlos Davidson, Staci Simonich, and Kerri
351	Stanley, provided comments on the draft manuscript. The U.S. Environmental Protection
352	Agency (EPA), through its Office of Research and Development, conducted this project.
353	The document has been approved by EPA for publication.
354	
355	Supporting Information Available

357	Details of methods are provided for site selection, water sampling, extraction and
358	analysis of pesticides, environmental measurements, calculation of probabilities for
359	coincidence of pesticide temporal pattern among lakes, and calculation of air flow back
360	trajectories. Also provided are tables for characteristics of study sites, target analytes and
361	their method detection limits, and sample results, and figures showing site locations,
362	frequency of pesticide occurrence in each lake, relative concentrations of each pesticide
363	among the four lakes, and pesticide amounts applied by month throughout California.

364	Literature Cited		
365			
366			
367	1.	Daly, G. L.; Wania, F. Organic contaminants in mountains. Environ. Sci. Technol.	
368		2005 , <i>39</i> , 385-398.	
369	2.	Cory, L.; Fjeld, P.; Serat, W. Distribution patterns of DDT residues in the Sierra	
370		Nevada mountains. Pestic. Monit. J. 1970, 3, 204-211.	
371	3.	LeNoir, J. S.; McConnell, L. L.; Fellers, G. M.; Cahill, T. M.; Seiber, J. N.	
372		Summertime transport of current-use pesticides from California's Central Valley to	
373		the Sierra Nevada mountain range, USA. Environ. Toxicol. Chem. 1999, 18, 2715-	
374		2722.	
375	4.	Angermann, J. E.; Fellers, G. M.; Matsumura, F. Polychlorinated biphenyls and	
376		toxaphene in Pacific tree frog tadpoles (Hyla regilla) from the California Sierra	
377		Nevada, USA. Environ. Toxicol. Chem. 2002, 21, 2209-2215.	
378	5.	Fellers, G. M.; McConnell, L. L.; Pratt, D.; Datta, S. Pesticides in mountain yellow-	
379		legged frogs (Rana muscosa) from the Sierra Nevada mountains of California,	
380		USA. Environ. Toxicol. Chem. 2004, 23, 2170-2177.	
381	6.	Hageman, K. J.; Simonich, S. L.; Campbell, D. H.; Wilson, G. R.; Landers, D. H.	
382		Atmospheric deposition of current-use and historic-use pesticides in snow at	
383		national parks in the western United States. Environ. Sci. Technol. 2006, 40, (10),	
384		3174-3180.	
385	7.	Ackerman, L. K.; Schwindt, A. R.; Simonich, S. L. M.; Koch, D. C.; Blett, T. F.;	
386		Schreck, C. B.; Kent, M. L.; Landers, D. H. Atmospherically deposited PBDEs,	
387		pesticides, PCBs, and PAHs in western U.S. National Park fish: Concentrations and	
388		consumption guidelines. Environ. Sci. Technol. 2008, 42, 2334-2341.	
389	8.	Landers, D. H.; Simonich, S. L.; Jaffe, D. A.; Geiser, L. H.; Campbell, D. H.;	
390		Schwindt, A. R.; Schreck, C. B.; Kent, M. L.; Hafner, W. D.; Taylor, H. E.;	
391		Hageman, K. J.; Usenko, S.; Ackerman, L. K.; Schrlau, J. E.; Rose, N. L.; Blett, T.	
392		F.; Erway, M. M. The fate, transport, and ecological impacts of airborne	
393		contaminants in western national parks (USA); EPA/600/R-07/138; U.S.	
394		Environmental Protection Agency, Office of Research and Development: Corvallis,	
395		Oregon, USA, 2008.	
396	9.	Bradford, D. F.; Stanley, K.; McConnell, L. L.; Tallent-Halsell, N. G.; Nash, M. S.;	
397		Simonich, S. M. Spatial patterns of atmospherically deposited organic contaminants	
398		at high-elevation in the southern Sierra Nevada mountains, California. Environ.	
399		<i>Toxicol. Chem.</i> 2010 , <i>29</i> , 1056-1066.	
400	10.	Relyea, R. A. A cocktail of contaminants: how mixtures of pesticides at low	
401		concentrations affect aquatic communities. Oecologia 2009, 159, 363-376.	
402	11.	Davidson, C.; Benard, M. F.; Shaffer, H. B.; Parker, J. M.; O'Leary, C.; Conlon, J.	
403		M.; Rollins-Smith, L. A. Effects of chytrid and carbaryl exposure on survival,	
404		growth and skin peptide defenses in foothill yellow-legged frogs. Environ. Sci.	
405		<i>Technol.</i> 2007 , <i>41</i> , 1771-1776.	
406	12.	Davidson, C.; Shaffer, H. B.; Jennings, M. R. Spatial tests of the pesticide drift,	
407		habitat destruction, UV-B, and climate-change hypotheses for California amphibian	
408		declines. Conserv. Biol. 2002, 16, 1588-1601.	

409	13.	Jennings, M. R., Status of amphibians. In Sierra Nevada Ecosystem Project: Final
410		Report to Congress, Vol. II, University of California, Centers for Water and
411		Wildland Resources: Davis, CA, USA: 1996; pp 921-944.
412	14.	Vredenburg, V. T.; Bingham, R.; Knapp, R.; Morgan, J. A. T.; Moritz, C.; Wake, D.
413		Concordant molecular and phenotypic data delineate new taxonomy and
414		conservation priorities for the endangered mountain yellow-legged frog. J. Zool.
415		2007, <i>271</i> , 361-374.
416	15.	Rachowicz, L. J.; Knapp, R. A.; Morgan, J. A. T.; Stice, M. J.; Vredenburg, V. T.;
417		Parker, J. M.; Briggs, C. J. Emerging infectious disease as a proximate cause of
418		amphibian mass mortality. <i>Ecology</i> 2006, 87, 1671-1683.
419	16.	Grinnell, J.; Storer, T. Animal life in the Yosemite. University of California Press:
420		Berkeley, CA, USA, 1924.
421	17.	Sparling, D. W.; Fellers, G. M.; McConnell, L. L. Pesticides and amphibian
422		population declines in California, USA. Environ. Toxicol. Chem. 2001, 20, 1591-
423		1595.
424	18.	Davidson, C. Declining downwind: Amphibian declines in California and historic
425		pesticide use. Ecol. Appl. 2004, 14, 1892-1902.
426	19.	Davidson, C.; Knapp, R. A. Multiple stressors and amphibian declines: dual
427		impacts of pesticides and fish on yellow-legged frogs. Ecol. Appl. 2007, 17, 587-
428		597.
429	20.	Shair, F. H. Atmospheric tracer experiments aimed at characterizing
430		upslope/downslope flows along the southwestern region of the Sierra Nevada
431		mountains; Final Report Contract No. A4-126-32. California Air Resources Board:
432		Sacramento, CA, USA, 1987.
433	21.	Ewell, D. M.; Flocchini, R. G.; Myrup, L. O.; Cahill, T. M. Aerosol transport in the
434		southern Sierra Nevada. J. Appl. Meteorol. 1989, 28, 112-125.
435	22.	Momplaisir, GM.; Rosal, C. G.; Heithmar, E. M.; Varner, K. E.; Riddick, L. A.;
436		Bradford, D. F.; Tallent-Halsell, N. G. Development of a solid phase extraction
437		method for agricultural pesticides in large-volume water samples. <i>Talanta</i> 2010 ;
438		DOI:10.1016/j.talanta.2010.02.038.
439	23.	Davis, J. C. Statistics and data analysis in geology. John Wiley & Sons: New York,
440		1973.
441	24.	US EPA. Aquatic life benchmark table.
442		http://www.epa.gov/oppefed1/ecorisk_ders/aquatic_life_benchmark.htm (7 March
443		2008),
444	25.	US EPA. Current national recommended water quality criteria.
445		http://www.epa.gov/waterscience/criteria/wqcriteria.html (7 March 2008),
446	26.	Jones, D. K.; Hammond, J. I.; Relyea, R. A. Very highly toxic effects of endosulfan
447		across nine species of tadpoles: Lag effects and family-level sensitivity.
448	a -	Environmetnal Toxicology and Chemistry 2009, 28, 1939-1945.
449	27.	Brunelli, E.; Bernabo, I.; Berg, C.; Lundstedt-Enkel, K.; Bonacci, A.; Tripepi, S.
450		Environmnentally relevant concentrations of endosultan impair development,
451		metamorphosis and behaviour in <i>Bufo bufo</i> tadpoles. <i>Aquat. Toxicol.</i> 2009 , <i>91</i> , 135-
452		142.

453	28.	Sparling, D. W.; Fellers, G. M. Toxicity of two insecticides to California, USA,
454		anurans and its relevance to declining amphibian populations. <i>Environ. Toxicol.</i>
455		<i>Chem.</i> 2009 , <i>28</i> , 1696-1703.
456	29.	Agostini, M. G.; Natale, G. S.; Ronco, A. E. Impact of endosulphan and
457		cypermethrin mixture on amphibians under field use for biotech soya bean
458		production. International Journal of Environment and Health 2009, 3, 379-389.
459	30.	Hayes, T. P.; Kinney, J. J. R.; Wheeler, N. J. M. California surface wind
460		climatology; California Air Resources Board: Sacramento, CA, 1984.
461	31.	Tracer Technologies. Transport of acidic air pollutants to forests and alpine
462		regions of the Sierra Nevada; Final Report for California Air Resources Board:
463		Sacramento, CA, 1992.
464	32.	Hazardous Substances Data Bank (HSDB) TOXNET, sponsored by the National Institute
465		of Health's National Library of Medicine. Available on the Internet at:
466		http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. 2004.
467	33.	Stocker, J.; Scheringer, M.; Wegmann, F.; Hungerbuhler, K. Modeling the effect of
468		snow and ice on the global environmental fate and long-range transport potential of
469		semivolatile organic compounds. Environ. Sci. Technol. 2007, 41, 6192-6198.
470		
471		

472 Figure Legends

473 Figure 1. Concentrations of pesticides in Frog Lake, sampled weekly from June 474 17 to October 9, 2003 (solid blue line), and corresponding weekly pesticide application 475 rates in the San Joaquin Valley. Non-detection of a pesticide is shown as 1/2 of MDL 476 (0.017 ng/L for endosulfan I+II and 0.029 ng/L for propargite). The concentrations in 477 Frog Lake on August 14 were interpolated. Application rate for each date is the amount 478 of active ingredient applied during the previous 7 days, expressed as a percentage of the 479 maximum 7-day rate during the study period. Application is represented for the entire 480 San Joaquin Valley (SJV; red long-dashed line) and for the largest cluster of adjacent 481 townships with high cross-correlation coefficients in the analysis for concordance of 482 temporal patterns (green short-dashed line; endosulfan and propargite only). Asterisks 483 indicate five inter-sample intervals when rainfall occurred at Frog Lake (4.06, 3.30, 0.94, 484 1.40, and 0.64 cm, in chronological order). A. Endosulfan. Maximum application rate 485 was 4698 kg/wk for the San Joaquin Valley and 695 kg/wk for the cluster of 6 adjacent 486 townships with high cross-correlation coefficients southwest of Frog Lake (Fig. 3A). B. 487 Propargite. Maximum application rate was 65,030 kg/week for the San Joaquin Valley 488 and 6888 kg/wk for the cluster of 15 adjacent townships with high cross-correlation 489 coefficients west of Frog Lake (Fig. 3B). C. Dacthal. Maximum application rate for the 490 San Joaquin Valley was 215 kg/week. D. Simazine. Maximum application rate for the 491 San Joaquin Valley was 713 kg/week. 492 Figure 2. Concentrations of four pesticides in surface water of the four lakes,

493 sampled at 4-week intervals from mid-June to mid-October 2003. Values for Frog Lake

on August 14 were interpolated from values measured 7 days before and after this date.
Non-detection of a pesticide is shown as 1/2 of MDL (as in Fig. 1 for endosulfan and
propargite; 0.021 ng/L for simazine). Computation of P-values is described in text.
Measurable rainfall occurred at all four lakes during the intervals ending on the August
and September sampling dates.

499 Figure 3. Comparison between the temporal patterns of pesticide application in 500 individual townships in the San Joaquin Valley and pesticide concentrations in Frog Lake 501 (star), and air flow back-trajectories. A. Endosulfan. Gray cells indicate townships with 502 any endosulfan application during the period June 11 – October 9, 2003. Red cells 503 indicate townships with high and significant cross-correlation coefficients (i.e., r > 0.6) 504 for the comparison of lake concentration to application rate within the township. Blue contour lines indicate pesticide loading in 3 kg/km² increments for the above time period 505 506 derived by kriging loading values for the centroid of each township. Heavy line indicates 507 approximate boundary between mountainous terrain and San Joaquin Valley. Dark 508 polygons indicate Sequoia and Kings Canyon National Parks, and light green lines 509 indicate county boundaries. Arrow indicates approximate pathway of diurnal upslope 510 winds during summer from valley edge to Frog Lake area [20, 21]. B. Propargite. 511 Features same as in A, except contour increments are 8 kg/km², and green cells indicate 512 townships with cross-correlation coefficients >0.75. C. Twenty-four hour back-513 trajectories starting at the approximate origin for upslope winds to Frog Lake. Each dot 514 is the hourly location of a back-trajectory. The largest cluster of adjacent townships with 515 high cross-correlation coefficients for endosulfan and propargite, identified from A and B 516 above, are indicated. Other features as in A.

Figure 1

Figure 3

