SUPPORTING INFORMATION

for:

Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

John S. Kinsey, Yuanji Dong, D. Craig Williams, and Russell Logan

This document provides supplemental information and data as cited in the text of the published manuscript.

1. Sampling Probe

During APEX-1, -2, and -3, a single sampling probe located at the centerline of the engine exit plane was used at a distance of 15-, 30-, or 43-m behind the engine. Fig. S-1 shows a photo of the sampling probe used in all three APEX sampling campaigns at the 30-m location.

Fig. S-1. Photo of APEX-1 30-m sampling probe.

2. Measurement Parameters

Both continuous monitoring and time-integrated sampling was conducted during the three APEX sampling campaigns. A complete list of all parameters measured along with the sampling location, type of sample, and specific instruments used is shown in Table S-1 as installed in the Diesel Emissions Aerosol Laboratory (DEAL). The DEAL was used as the sampling platform for all APEX emissions sampling.

3. Test Engines

A total of nine different engine models were tested during the APEX program. Specifications for each engine tested are shown in Table S-2. Note in this table that different models of the same engine family are identified by the alpha-numeric characters behind the dash mark (e.g., the model number is 7B24 for the CFM56-7B24). Table S-2 also provides smoke number data as obtained during new engine certification per International Civil Aviation Organization (ICAO) requirements. Although smoke number was intended to reduce visible emissions, it is also a relative indicator of the PM emissions from the engine.

4. Experimental Matrix

A total of 24 tests were conducted by EPA during the three APEX sampling campaigns. Table S-3 provides the test number, aircraft and engine type, power conditions, and fuel flows evaluated during each test. It should be noted that the fuel flow rate values shown in the table are averages of all the data obtained under the same power (percent rated thrust) condition occurring during a test. In some cases, acceptable data may not be available for all periods at a particular thrust level and thus these values may not match those shown in Fig. 2 of the main paper. Fig. 2 of the main text shows the average fuel flows obtained only from those periods during a particular test that had valid nano-SMPS measurements.

Table S-1.

Measurements performed by the DEAL during APEX-1, -2, and -3.

Parameter	Sampling Location	Measurement Technique	Type of Sample	Instruments and Sampling Media
PM-2.5 mass concentration	Background	Microbalance	Continuous	Rupprecht and Patashnick (now Thermo Electron) Series 1400a TEOM
	Background	Gravimetric analysis	Time-integrated	47-mm Teflon filter with double quartz backup filters for collection of gas-phase "blow off" ^a
	Plume	Microbalance ^h	Continuous	Rupprecht and Patashnick Series 1105a TEOM
	Plume	APEX-2 & -3: QCM ^h	Continuous	SEMTECH Model RPM-100 particulate monitor + diluter
	Plume	Gravimetric analysis	Time-integrated	47-mm Teflon filter with double quartz backup filters ^a
Particle size distribution	Background	Low pressure cascade impactor (aerodynamic diameter)	Continuous / time-integrated	Dekati ELPI
	Background	Electrical mobility classifier/condensation nuclei counter (electrical mobility diameter)	Continuous	APEX-1: TSI Model 3934 SMPS, Model 3071 A classifier, Model 3010 CPC
				APEX-2 & -3: TSI Model 3936 SMPS (long), Model 3080 classifier, Model 3025a CPC, Model 3081 DMA
	Plume	Low-pressure cascade impactor (aerodynamic diameter)	Continuous / time-integrated	Dekati ELPI
	Plume	Electrical mobility classifier/condensation nuclei counter (electrical mobility counter)	Continuous	TSI Model 3936 SMPS (Nano). Model 3080 classifier, Model 3025a CPC, Model 3085 DMA
	Plume	APEX-1: electrical mobility classifier/condensation nuclei counter (electrical mobility counter)	Continuous	APEX-1: TSI Model 3936 SMPS (long), Model 3080 classifier, Model 3025 CPC, Model 3081 DMA
		APEX-2 & -3: electrical mobility classifier/electrometers (electrical mobility counter)		APEX-2 & -3: TSI Model 3090 EEPS + diluter
PM-2.5 number concentration ^c	Background	Condensation nuclei counter	Continuous	Model 3025a CPC
	Plume	Condensation nuclei counter	Continuous	Model 3025a CPC + diluter
Elemental carbon/organic carbon	Background	Thermo-optical analysis (NIOSH Method 5040)	Time-integrated	Prefired 47 mm quartz filter
(EC/OC)	Plume	Thermo-optical analysis (NIOSH Method 5040)	Time-integrated	Prefired 47 mm quartz filter
	Plume	Optical attenuation/UV absorption (black carbon)	Continuous	TSI 3302a Diluter +Magee Model AE-2 Aethalometer ^d
PM semivolatile organic	Background	GC/MS	Time-integrated	Prefired 47 mm quartz filter with 4 backup PUF plugs. ^a
compounds (SVOCs)	Background	Low-pressure cascade impactor	Time-integrated	12 aluminum foil ELPI stages + prefired quartz back-up filter ^b
	Plume	GC/MS	Time-integrated	Prefired 47 mm quartz filter with 4 backup PUF plugs. ^a
	Plume	Low-pressure cascade impactor	Time-integrated	12 aluminum foil ELPI stages + prefired quartz back-up filter ^b
	Plume	UV analyzer (particle surface PAHs)	Continuous	EcoChem Model PAS 2000
Total volatile PM + EC/OC	Plume	Gravimetric/thermo-optical analysis	Time-integrated	Dekati Model EKA-111 thermal denuder with parallel Teflon and double prefired quartz filters
PM inorganic water-soluble ions	Background	Ion chromatography	Time-integrated	Teflon filter
	Plume	Ion chromatography	Time-integrated	Teflon filter

Parameter	Sampling Location	Measurement Technique	Type of Sample	Instruments and Sampling Media
PM elemental composition	Background	XRF	Time-integrated	Teflon filter
	Plume	XRF	Time-integrated	Teflon filter
APEX-1 CO, CO ₂ , total VOCs	Background	IR absorption	Integrated bage	Brüel & Kjær Model 1302 Photoacoustic Analyzer
	Plume	IR absorption	Continuous	Brüel & Kjær Model 1302 Photoacoustic Analyzer
APEX-2 & -3 CO ₂	Background	IR absorption	Continuous	Milton-Roy (CA Analytical) Model 5300A
	Plume	IR absorption	Continuous	Milton-Roy (CA Analytical) Model 5300A
Gas-phase NMOCs	Background	GC/MS/FID	Time-integrated	SUMMA-passivated canister
	Plume	GC/MS/FID	Time-integrated	SUMMA-passivated canister
Gas-phase carbonyl compounds	Background	HPLC	Time-integrated	DNPH impregnated silica gel cartridges with KI ozone scrubber cartridge
	Plume	HPLC	Time-integrated	DNPH impregnated silica gel cartridges with KI ozone scrubber cartridge
Sample temperature ^f	Plume tunnel	Thermocouple	Continuous	K-Type thermocouples; T-Type only on APEX-2 sampling probes
APEX-2 plume temperature	Plume	Thermocouples	Continuous	Multiple T-type thermocouples
APEX-2 plume velocity	Plume	Pitot tube	Continuous	Standard pitot tube plus differential pressure cell
APEX-2 meteorological parameters ^g	Background	Propeller anemometer & wind vane	Continuous	Vaisala MAWS weather station

^a Filter holder design per Federal Test Procedure (FTP) published in 40 Code of Federal Regulations (CFR), Part 86. "Blow off" are gas-phase semivolatile species that have been released from the particulate deposited on the primary filter by the air flow passing through the medium.

. ~

^b Aluminum foil substrates from the ELPI were not analyzed due to insufficient mass.

^c These measurements were redundant and the data were not used.

^d The aethalometer measures "black" carbon which approximates elemental carbon content as determined from diesel engine testing at West Virginia University (Kinsey et al., 2006).

^e Post-test analysis of time-integrated Tedlar bag sample collected over the entire test period.

^f Temperature was not monitored in sampling lines.

^g Meteorological data provided by collaborators during APEX-1 and -3.

^h Data from these instruments are generally of low reliability and thus not reported in this paper.

CPC = Condensation Particle Counter	NMOC = Nonmethane Organic Compound
DMA = Differential Mobility Analyzer	NIOSH = National Institute for Occupational Safety and Health
DNPH = 2,4-Dinitrophenylhydrazine	PAH = Polycyclic Aromatic Hydrocarbon
EEPS = Engine Exhaust Particle Sizer	PUF = Polyurethane Foam
ELPI = Electrical Low Pressure Impactor	QCM = Quartz Crystal Microbalance
FID = Flame Ionization Detector	SMPS = Scanning Mobility Particle Sizer
GC/MS = Gas Chromatography/ Mass Spectrometry	TEOM = Tapered Element Oscillating Microbalance
HPLC = High Performance Liquid Chromatography	UV = Untraviolet
IR = Infrared	XRF = X-ray Fluorescence

Table S-2.

Engine Model ^a	Airframe	Bypass Datia ^b	Rated	IC	CAO Smol	ke Number	Test Campaign/Test Number		
		Kano	(kN)	T/O	C/O	App	Idle		
CFMI CFM56-2C1	Boeing DC-8	6	97.86	6.0	3.0	2.6	2.2	APEX 1 / All Tests	
CFMI CFM56-7B24 Boeing 737-700		5.2	107.7	12.6 ^d	NA	NA	NA	APEX 2 / Test # 1 and 4	
CFMI CFM56-3B1	Boeing 737-300	5.1	89.41 4.0		2.5	2.5	2.2	APEX 2 / Test # 2; APEX 3 / Test # 1 and 11	
CFMI CFM56-3B2	Boeing 737-300	5.1	98.30	6.0	3.0	2.5	2.2	APEX 2 / Test # 3	
General Electric CJ610- 8ATJ (Turbojet) Starboard	Lear Model 25	na	13.12	NA	NA	NA	NA	APEX 3 / Test # 2 and 5	
Rolls Royce Embra AE3007A1E Starboard ^e ERJ14:		4.8	33.70	1.0	0	0	0	APEX 3 / Test # 3 and 4	
Pratt & Whitney 4158 Starboard	Airbus A300	4.6	258.0 8.1 ^d NA M		NA	NA	APEX 3 / Test # 6 & Test #7		
Rolls Royce RB211-Boeing535E4B Starboarde757-324		4.1	191.7	7.3 ^d	NA	NA	NA	APEX 3 / Test # 8 and 9	
Rolls Royce AE3007A1/1 Starboard ^e	Embraer ERJ145	4.8	34.74	1.0	0	0	0	APEX 3 / Test # 10	

Engines Tested in APEX-1, -2 and -3

^a All engines are turbofan except as noted.

^b Civil Turbojet/Turbofan Specifications <u>http://www.jet-engine.net/civtfspec.html</u> or International Civil Aviation Organization (ICAO) Databank Issue 15-C.

^c New engine certification data taken from ICAO Engine Emissions Databank Issue 15-C. T/O = take-off; C/O = climb-out; App = approach; NA = not available.

^d Maximum SN; no power specified.

^e These are internally mixed-flow turbofan engines.

Table S-3.

Summary of Fuel Flow Rates Measured at Different Engine Power Levels for Each Test Conducted

ADEV	Test No. ^a	Aircraft	Engine	Fuel Type	Engine	ngine Fuel Flow (kg h ⁻¹) at Percent Rated Thrust ^c														
APEA					Conditions	4	5.5	7	8.4	15	30	40	45	60	65	70	76	80	85	100
1	EPA-1 EPA-2 NASA-1 NASA-1a	DC-8	CFM56-2C1	Base		350 336	386	436 425 427		560	992 1023 1012	1252		1922	1998 2098	2252			2819 2860 2406 2898	2969 3181 2906 3127
	EPA-3 NASA-2 NASA-3			High sulfur		345 347	381 382	438 413 405		543 538	964 955 986	1235 1255		1855 1846	2046 2053	2191 220	2424		2840 2727 2758	3116 2984 3051
	NASA-4			High aromatic		345	381	401		545	960	1220		1850	2023	2157			2708	2978
2^{d}	NASA-5 T4	B737-700	CFM56-7B24	Fleet fuel	Cold ^b	345 336	395	410 418		545	989 1180	1292 1544		1930	2131 2497	2247			2894 4131	3176
	T2	B737-300	CFM56-3B1	Fleet fuel	Warm Average Cold Warm	313 325 341 345		381 400 422 418			1135 1158 1099 1067	1498 1521 1403 1367			2497 2497 2193 2184				4086 4109 3528 3559	
	T3	B737-300	CFM56-3B2	Fleet fuel	Average Cold Warm Average	343 372 368 370		420 440 422 431			1083 1130 1108 1119	1385 1444 1412 1428			2188 2252 2261 2256				3543 3677 3650 3664	
3	T1	B737-300	CFM56-3B1	Fleet fuel	Cold Warm Average	300 300 300		397 397 397		654 654 654	1119 1136 1136 1136	1420	1618 1618 1618		2260 2260 2260				2903 2903 2903	3385 3385 3385
	T11 T2	B737-300 NASA Lear Model 25	CFM56-3B1 CJ610-8ATJ (turbojet)	Fleet fuel Fleet fuel	Cold Cold Warm Average	381		431 182 182 182		622 304 304 304	1090 452 454 453		1530 568 568 568		2179 760 763 762				2815 999 999	3564 1226 1226 1226
	T5	NASA Lear Model 25	CJ610-8ATJ (turbojet)	Fleet fuel	Cold Warm Average			227 227 227 227		303 303	452 452 452		567 567 567		763 763 763				1009 1009 1009	1226 1226 1226 1226
	T3	Embraer ERJ 145	AE3007A1E	Fleet fuel	Cold Warm				174 173	238 235	389 392		555 563		805 810				1082 1088	1286 1299
	T4	Embraer ERJ 145	AE3007A1E	Fleet fuel	Average Cold				173 168	237 239	391 385		559 547		807 788				1085 1050	1293 1253
					Warm Average				167 167	231 235	384 385		549 548		786 787				1052 1051	1252 1252
	T10	Embraer ERJ 145	AE3007A1/1	Fleet fuel	Cold				179	233	372		524		750				971	1171
	T6	A300	P&W 4158	Fleet fuel	Warm Average Cold			610	178 178	231 232 1014	371 371 2245		529 526 3726		767 758 5658			7026	982 976	1180 1175
				- 1000 1001	Warm Average			368 489		1097 1056	2465 2355		3834 3780		5658 5658			7026 7026		

T7	A300	P&W 4158	Fleet fuel	Cold		600	1035	2230	3688	5702	7100	
				Warm		596		2252		5711	7200	
				Average		598	1035	2241	3688	5706	7150	
T8	B757	RB211- 535E4-B	Fleet fuel	Cold	566	770	1191	2109	3178	4750	6096	
				Warm	437	654	1178	2131	3436	4691	6449	
				Average	501	712	1185	2120	3307	4720	6273	
Т9	B757	RB211- 535E4-B	Fleet fuel	Cold	421	690	1221	2004	3068	4479	6233	6966
				Warm	506	668	1173	2037	3111	4551	6307	6987
				Average	464	679	1197	2021	3090	4515	6270	6976

^aNote that bleed air was extracted from the engine during tests EPA-1,-2, and -3 in APEX-1. No fuel flows were recorded by the airline during T1 of APEX-2. ^b "Cold" refers to increasing power in a stepwise fashion, and "Warm" indicates reducing power in a stepwise fashion. ^c Fuel flows provided by aircraft operator. ^d Fuel flows for APEX-2, T1, were derived from the same power conditions for T4, since no data were provided by the aircraft operator for this test.

5. Relationship of PM Mass Emission Indices to Fuel Flow

As discussed in the main text, a similar relationship between the PM mass emission index (EI_m) and increasing fuel flow was observed for all turbofan engines tested during the three APEX sampling campaigns. This observation is illustrated in Figure S-2 for a CFM56-7B24 turbofan engine tested in APEX-2 as compared to the CJ610-8ATJ turbojet engine sampled in APEX-3. As can be seen in this figure, a characteristic U-shaped curve of EI_m vs. fuel flow was determined for the CFM56-7B24, whereas for the CJ610-8ATJ turbojet, the EI_m increases linearly with increasing fuel flow.

5. Example Particle Size Distributions (PSDs)

All of the PSDs determined in the three APEX sampling campaigns generally contained a single primary mode for most engines and power conditions which was lognormally distributed. However, an accumulation mode was also observed at higher engine fuel flows (powers). The magnitude of this accumulation mode varied from engine to engine as illustrated in Figure S-3 for a CFM56-7B24 engine in APEX-2, and a CFM56-3B1 engine in APEX-3. As shown in the figure, the -7B24 model engine had relatively few accumulation mode particles in the PSD whereas the -3B1 model engine exhibited a very distinct accumulation mode at higher fuel flow.

6. Supporting Information Reference

Kinsey, J. S., Mitchell, W. A., Squier, W. C., Linna, K., King, F. G., Logan, R., Dong, Y., Thompson, G. J., Clark, N. N., 2006. Evaluation of methods for the determination of diesel-generated fine particulate matter: Physical characterization results. *Journal of Aerosol Science*, 37, 63-87.

Fig. S-2. PM mass emission index as a function of fuel flow as determined by the nano-SMPS for a: (a) CFM56-7B24 turbofan engine in Test 4 of APEX-2; and (b) CJ610-8ATJ turbojet engine in Test 5 of APEX-3.

Fig. S-3. Average particle size distributions by fuel flow and engine temperature as measured by the nano-SMPS for: (a) a CFM56-7B24 engine in Test 1 of APEX-2; and (b) a CFM56-3B1 engine in Test 1 of APEX-3. Note the prominent accumulation mode present at high fuel flow for the -3B1 model engine.