

C60 Fullerene: Surface Energy and Interfacial Interactions in Aqueous Systems

Xin Ma, Bethany Wigington and Dermont C. Bouchard, USEPA/ORD National Exposure Research Laboratory, Athens GA, USA

Abstract

The underlying mechanisms of fullerene-fullerene. fullerene-water, and fullerene-soil surface interactions in aqueous systems are not well understood. To advance our understanding of these interfacial interactions, the surface properties of C₆₀ and guartz surfaces were investigated. From application of the van Oss-Chaudhury-Good model and the Young-Dupre equation, the Lifshitzvan der Waals, acid-base, and the total surface energies of C₆₀ powder and quartz surfaces were calculated from contact angle measurements using the sessile drop technique. C₆₀ powder measurements indicate low to medium energy surfaces of 41.7 mJ/m² with a dominant Lifshitzvan der Waals component. In aqueous systems, hydrophobic attraction due to the high cohesion of water is the driving force for C_{60} aggregation. The high free energy of hydration (Δ GpwTotal = -90.5 mJ/m²) indicates the high affinity of C₆₀ particles for water. Hamaker constants of 4.02 x10⁻²¹ J (A_{pwp}) and 2.59x10⁻²¹ J (A_{pws}) were derived for C₆₀-C₆₀ and C₆₀-quartz interactions in aqueous systems. The results of this study indicate that surface energy is an important physical parameter that should be considered as a basic characterization property of fullerene nanomaterials.

Experimental

- 10 mg of ground $C_{\rm 60}$ powder was pressed into a 4 mm diameter pellet.
- Contact angles measurements were performed using a contact angle goniometer.
- Six probe liquids were used in contact angle measurements: double deionized H₂O (DDI) resistivity > 18 MΩ/cm), glycerin, 1-bromonaphthalene (97%), formamide (deionized, 99.5%), diiodomethane (99%) and 1,1,2,2-tetrabromoethane (Laboratory grade).
- The pendant drop was dispensed just above the pellet surface and touch-off drops.
- The high speed with imaging period of 0.02 seconds accurately captured the contact of liquid with the pellet surfaces .

Figure 1. The pellet preparation using a 5-ton hydralic press

 $R_{ms} = 52.2 \pm 30 \text{ nm}$ $R_{ms} = 43.6 \pm 5.6 \text{ nm}$ $R_{ms} = 48.2 \pm 22 \text{ nm}$ $R_{ms} = 41.5 \pm 17.9 \text{ nm}$

Figure 2. The effect of pellet compactness on contact angle measurement. (a) Water contact angles on $C_{\rm 80}$ pellets made under different press force. (b) Representative AFM images of pellet roughness (root mean square roughness, $R_{\rm rms}$) under different press force.

Figure 3. Examples of contact angle-time profiles. a). Constant contact angle profile; b). Decreasing contact angle profile.

			-	-				
	Test liquid		Dispersive	Polar	Acid	Base	Contact	Angle (8)
		TOT	y‡.w	745	r	r	C ₆₀	quartz
1	water*	72.8	21.8	51.0	25.5	25.5	60.6 ± 2.6	8.8 ± 2.4
2	diiodomethane"	50.8	50.8	0.0	0.0	0.0	29.6 ± 2.9	39.4 ± 2.0
3	formamide"	58.0	39.0	19.0	2.3	39.6	45.0 ± 2.1	31.4 ± 9.3
4	glycerol*	64.0	34.0	30.0	3.9	57.4	79.2 ±3.7	54.3 ± 3.0
5	1-bromonaphthalene*	44.4	44.4	0.0	0.0	0.0	32.3 ±2.1	21.1 ±2.8
6	1,1,2,2-tetrabromoethaneb	49.7	49.7	0.0	3.1	0.0	37.8 ± 3.1	41.1 ± 1.3

b)						
			Dispersiv e	Polar	Acid	Base
		γ ^{τοτ}	۲ ^{LW}	γ ^{ab}	٣	٣
	1, 2, 3	46.2	44.4	1.8	0.0	19.2
	1, 2, 4	49.0	49.0	0.0	0.0	0.7
	1, 3, 5	41.0	38.9	2.1	3.1	0.4
	1, 3, 6	41.1	38.9	2.1	3.1	0.4
	1, 4, 5	40.0	40.0	0.0	0.0	4.6
	1, 4, 6	32.6	32.6	0.0	0.0	10.4
	average	41.7± 5.9	$\textbf{40.6} \pm \textbf{5.8}$	$\textbf{1.0} \pm \textbf{1.2}$	$\textbf{1.0} \pm \textbf{1.7}$	$\textbf{5.9} \pm \textbf{8.0}$

ə						
			Dispersi ve	Polar	Acid	Base
		TOT	≁ ^w	Y ⁴⁰	r	*
	1, 2, 3	45.0	39.9	5.1	0.1	66.9
	1, 2, 4	48.8	48.8	0.0	0.0	51.5
	1, 3, 5	45.2	45.2	0.0	0.0	77.6
	1, 3, 6	57.1	17.5	39.6	6.2	63.8
	1, 4, 5	50.5	50.5	0.0	0.0	54.2
	1, 4, 6	38.7	14.3	24.4	1.6	91.3
8	verage	47.6	36.0	11.5	1.3	67.5
Clean	glass *	51.7	33.7	18.0	1.3	62.2
SiO2 Scie	(Fisher ntific) *	50.7	39.2	11.5	0.8	41.4
Quartz	plate ^b	57.2	36.1	21.12	9.4	11.86

Table. (a) Surface Tension Components and Parameters of Test Liquids Used in Contact Angle Measurement (in mJ/m²) and Contract Angles with 95% Confidence Limit (in deg) measured on C₆₀ pellets and quartz; (b) Surface Tension Components and Parameters of C₆₀ (in mJ/m²) with 95% Confidence Limit, Derived from (a); (c) Surface Tension Components and Parameters of Quartz (in mJ/m²), Derived from (a).

$$\begin{split} A_{pp} &= 24 \pi y_{p}^{LW} I_{o}^{2} \\ A_{ppp} &= \left(\sqrt{A_{pp}} - \sqrt{A_{vv}} \right)^{2} \quad A_{C60-w-C60} &= 4.02 \times 10^{-21} J \\ A_{ppp} &= \left(\sqrt{A_{pp}} - \sqrt{A_{vv}} \right)^{2} \quad A_{C60-w-quartc} &= 2.59 \times 10^{-21} J \end{split}$$

Figure 4. Hamarker constants of C_{60} - C_{60} interactions in water and C_{60} interactions with quartz surfaces in water.

Figure 5. C₆₀-C₆₀ agregation in water

Figure 6. Hydration of C₆₀.

Conclusions

- This study demonstrates that contact angle measurements by the sessile drop technique can be used to derive important surface properties of nanoparticle powders.
- Using this technique, C₆₀ powder surfaces are shown to have low-medium surface energy (41.7 mJ/m²) and the electromagnetic Lifshitz-van der Waals component is the major component of the surface energy of C₆₀.
- Total surface energy derived by VOCG model is close to the critical surface tension.
- The Hamaker constants of C_{60} –C_{60} interaction and C_{60^-} quartz interaction in water were also derived.
- The strong cohesion of water induced the hydrophobic attraction, which is the driving force for C₆₀ aggregation.
- Interaction energies indicate that C₆₀ powder will not bind to monopolar quartz surfaces in water.