The Use of ICP-MS and IC-ICP-MS in Environmental and Exposure Assessment Analyses

John T. Creed^a, P.A. Creed^a, C. Schwegel^a, T.S. Pinyayev^a, S.E. Lenhof^a, M.C. Kohan^b, K. Herbin-Davis^b, D.J. Thomas^b, M. Mantha^c, C.M. Gallawa^c, A.R. Young^c, S.K.V. Yathavakilla^c, J.T. Trent^c, K.M. Kubachka^d, J. Xue^e

^aUS EPA, ORD, NERL, MCEARD, Cincinnati, OH
^bUS EPA, ORD, NHEERL, ISTD, Research Triangle Park, NC
^cStudent Services Contractor ORD, NERL, MCEARD, Cincinnati, OH
^dFDA, Forensic Chemistry Center, Cincinnati, OH
^eUS EPA, ORD, NERL, HEASD, Research Triangle Park, NC

Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

- Application of collision/reaction cell interference reduction technology for the minimization of polyatomic interferences in environmental matrices.
- Improved risk assessments through the use of arsenic speciation approaches that estimate the bio-accessibility associated with the exposure.
- Presystemic bio-transformation of arsenic oxides and their exposure assessment implications.

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

1. Existing method suffers from matrix induced polyatomics.

RESEARCH & DEVELOPMENT

- 1. Existing method suffers from matrix induced polyatomics.
- 2. Vendors have developed two instrumental techniques to minimize polyatomics
 - a. Collision Cell: He or H_2 gas
 - Based on Physics: Collision Energy vs. Bond Energy
 - Generally simplifies the spectra
 - b. Reaction Cell
 - Based on Chemistry
 - Generally complicates the spectra

RESEARCH & DEVELOPMENT

1. Polyatomic problem: Simple example.

Matrix Elements

⁸²Se Recommended Analysis Mode ⁸¹BrH

Matrix	Vendor 1	Vendor 2	Vendor 3	Vendor 4
Na	0.05	0.47	<lod< td=""><td>0.04</td></lod<>	0.04
H ₂ SO ₄	0.16	0.58	0.04	0.16
Мо	-0.03	0.19	<lod< td=""><td>0.01</td></lod<>	0.01
С	0.09	0.39	<lod< td=""><td>0.07</td></lod<>	0.07
Br	106.30	3795.00	1625.00	355.50
Ва	0.03	1.97	<lod< td=""><td>-0.01</td></lod<>	-0.01
Са	0.16	<lod< td=""><td>0.83</td><td>-0.05</td></lod<>	0.83	-0.05
К	-0.03	3.73	0.22	-0.39
Mg	0.55	0.24	0.05	0.28
Rb	-0.01	0.46	0.66	0.01

Preliminary Data Set

RESEARCH & DEVELOPMENT

1. Existing method suffers from matrix induced polyatomics.

RESEARCH & DEVELOPMENT

- 2. Vendors have developed two instrumental techniques to minimize polyatomics.
 - a. Collision Cell: ⁴⁰Ar³⁵Cl \longrightarrow He, H $X_1(^{40}Ar + ^{35}Cl) + Y_1(^{40}Ar^{35}Cl)$ $X_2(^{40}Ar + ^{37}Cl) + Y_2(^{40}Ar^{37}Cl)$ $X_3(^{81}Br + H) + Y_3(^{81}BrH)$
 - b. Reaction Cell: ⁷⁵As vs. ⁴⁰Ar³⁵Cl

RESEARCH & DEVELOPMENT

⁷⁵As Recommended Analysis Mode Results

Matrix	Vendor 1	Vendor 2	Vendor 3	Vendor 4
Na	0.04	0.04	0.02	0.01
H ₂ SO ₄	0.19	<lod< td=""><td>0.01</td><td>0.00</td></lod<>	0.01	0.00
Мо	-0.03	0.07	0.01	0.01
С	-0.14	0.00	<lod< td=""><td>-0.01</td></lod<>	-0.01
Br	96.43	0.03	<lod< td=""><td>-0.03</td></lod<>	-0.03
Ва	0.16	<lod< td=""><td><lod< td=""><td>-0.01</td></lod<></td></lod<>	<lod< td=""><td>-0.01</td></lod<>	-0.01
Са	-0.28	0.11	0.13	0.14
К	-0.06	0.01	<lod< td=""><td>0.03</td></lod<>	0.03
Mg	-0.11	0.02	0.00	0.04

Preliminary Data Set

RESEARCH & DEVELOPMENT

- 2. Vendors have developed two instrumental techniques to minimize polyatomics
 - a. Collision Cell: He or H_2 gas
 - Based on Physics: Collision Energy vs. Bond Energy
 - Generally simplifies the spectra
 - b. Reaction Cell
 - Based on Chemistry
 - Generally complicates the spectra

Two approaches produce different across matrix performance leading to vendor specific performance.

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Dietary Arsenic Exposure Assessment

RESEARCH & DEVELOPMENT

Dietary Arsenic Exposure Assessment

Exposure = "Concentration" x Consumption

Use Carrots as an Example

RESEARCH & DEVELOPMENT

Exposure = Concentration x Consumption

Sampling Based on Harvest Demographics for Carrots

RESEARCH & DEVELOPMENT

Exposure = Concentration x Consumption

Sampling Based on Harvest Demographics for Carrots Speciation reflects chemical form dependent toxicity

RESEARCH & DEVELOPMENT

Exposure = Concentration x Consumption

RESEARCH & DEVELOPMENT

	1	2	3	4	5	6	7	8	9
		As _{Total}				As _{Speciation}			
Mass balance	Sample	Wet Weight Moisture Content (%)	Dry Weight Total Digest (ng/g ± 2σ)	Wet Weight Total Digest (ng/g ± 2σ)	Dry Weight Extraction Efficiency (% ± 2σ)	Dry Weight As _{Inorganic} $(ng/g \pm 2\sigma)$	Wet Weight As _{Inorganic} $(ng/g \pm 2\sigma)$	Dry Weight Chromatographic Recovery (% ± 2σ)	Dry Weight Overall Recovery (% ± 2σ)
Nalarioc	1	91	36 ± 0.8	3.5 ± 0.15	61 ± 11.0	21.4 ± 2.5	2.1 ± 0.2	87 ± 3.7	59 ± 6.9
table for	2	90	37 ± 4.6	4.1 ± 1.03	62 ± 17.5	22.7 ± 2.0	2.5 ± 0.2	101 ± 59.1	61 ± 21.5
snocios	3	87	36 ± 4.7	5.4 ± 0.70	82 ± 27.2	28.0 ± 5.6	4.2 ± 0.8	92 ± 22.0	76 ± 15.1
species	4	90	58 ± 11.2	6.5 ± 1.25	87 ± 21.5	45.8 ± 14.2	5.1 ± 1.6	91 ± 19.6	79 ± 24.5
specific	5	88	48 ± 4.2	6.6 ± 0.57	57 ± 22.0	28.3 ± 9.2	3.9 ± 1.3	103 ± 10.5	59 ± 19.1
hinana	6	87	43 ± 3.5	6.5 ± 0.52	69 ± 17.2	27.4 ± 3.8	4.1 ± 0.6	93 ± 16.7	64 ± 8.9
ploacce-	7	88	63 ± 1.7	8.6 ± 0.23	74 ± 18.2	49.1 ± 12.5	6.7 ± 1.7	107 ± 40.4	78 ± 19.9
ssibility	8	89	74 ± 11.0	9.2 ± 1.35	77 ± 11.0	52.3 ± 8.3	6.5 ± 1.0	93 ± 28.0	71 ± 11.2
	9	91	107 ± 1.3	10.5 ± 0.12	53 ± 9.0	72.0 ± 1.1	7.1 ± 0.1	127 ± 22.8	67 ± 1.0
pased	10	90	63 ± 6.0	7.0 ± 0.65	72 ± 2.5	48.7 ± 4.0	5.4 ± 0.4	108 ± 5.6	77 ± 6.37
analyses	11	90	8 ± 5.4	0.85 ± 0.60	ND	ND	ND	ND	ND
unary Ses	12	90	79 ± 5.7	8.7 ± 0.63	69 ± 6.4	55.6 ± 4.5	6.2 ± 0.5	102 ± 2.2	70 ± 5.7
of arsenic	13	90	79 ± 5.4	9.0 ± 0.65	71 ± 24.2	62.5 ± 16.7	6.9 ± 1.9	112 ± 40.4	79 ± 21.1
in corrote	14	90	24 ± 0.6	2.7 ± 0.07	48 ± 15	ND	ND	ND	ND
	15	87	57 ± 5.9	8.5 ± 0.88	43 ± 9.0	27.9 ± 6.0	4.2 ± 0.9	114 ± 25.8	49 ± 10.6
	16	90	116 ± 14.6	12.8 ± 1.61	29 ± 2.4	32.5 ± 1.5	3.6 ± 0.2	96 ± 8.0	28 ± 1.3
	17	89	39 ± 1.3	4.8 ± 0.16	93 ± 56.6	32.4 ± 4.2	4.0 ± 0.5	94 ± 46.1	83 ± 10.9
	18	90	43 ± 3.6	4.7 ± 0.39	43 ± 16.2	18.0 ± 7.1	2.0 ± 0.8	72 ± 14.0	42 ± 16.5
	Across Matrix Avg ± 2σ	89 ± 2.6	56 ± 55	6.6 ± 5.9	56 ± 15	40 ± 31	4.8 ± 3.1	101 ± 21	65 ± 31

RESEARCH & DEVELOPMENT

Exposure = Concentration x Consumption

Sampling Based on Harvest Demographics for Carrots Speciation α Toxicity In vitro Assay "Bioaccessibility" 4.8 ng/g ± 3.1

RESEARCH & DEVELOPMENT

Exposure = Concentration x Consumption

Sampling Based on Harvest Demographics for Carrots Speciation α Toxicity In vitro Assay "Bioaccessibility" ↓ 4.8 ng/g ± 3.1

- What We Eat In America (WWEIA), NHANES 2005-2006, considers 13,000 commonly eaten foods in US.
- 52,653 participants in the survey provided information on their food consumption.

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Population Based Exposure Assessment for Arsenic in Carrots

RESEARCH & DEVELOPMENT

Risk Perspective on Population Based Exposure Assessment for Carrots

- Using the following estimates:
 - Oral slope factor of 1.5 per mg per kg bodyweight per day
 - 70 kg bodyweight
 - Mean consumption habit of 25 g per day
 - Mean inorganic As exposure of 0.11 μg per day from carrots
 - The risk is estimated at 2.3 people in a million will develop cancer from ingesting carrots over an <u>entire</u> lifetime.
- Problems:
 - 1. Infant risk is difficult to assess given that the consumption habit per kg bodyweight is not held constant over a lifetime
 - Difficulty in extending estimates for 75th and 90th percentiles because consumption habits vary from day to day. Bear in mind the WWEIA is a two day survey

RESEARCH & DEVELOPMENT

Dietary Arsenic Exposure Assessment

Exposure = Concentration x Consumption

Use Rice as an Example

RESEARCH & DEVELOPMENT

Exposure = Concentration x Consumption

RESEARCH & DEVELOPMENT

Enzymatic Extraction of a Rice Sample (High Chloride)

LC-ICP-MS

RESEARCH & DEVELOPMENT

Estimating the species specific arsenic concentrations present in U.S. consumed rice with an emphasis on determining the bio-accessible component of the exposure

			As Extraction Totals		Entraction	As Speciation (As _{Chrom}) in an Enzymatically Extracted Rice Sample						
Rice Rice Di Rice Type (4		Total Digest (As _{TD})	(As _{TE}) in an Enzymatically Extracted Rice Sample		Extraction Efficiency (% Rec ± 20)	Inorganic As (As _{Ing})		DMA		Sum of Speciation (As _{2Chrom})	Chromatographic Recovery	Overall Recovery
		$(ng/g \pm 2\sigma)$	Conc	LFM	(Bioaccessionity	Conc	LFM	Conc	LFM	Conc	$(\% \text{ Kec} \pm 20)$	$(\% \text{ Rec} \pm 20)$
			$(ng/g \pm 2\sigma)$	(% Rec)	LSumatej	$(ng/g \pm 2\sigma)$	(% Rec)	$(ng/g \pm 2\sigma)$	(% Rec)	(ng/g)		
1	W-LG	230 ± 14.7	126 ± 15.4	83	55 ± 6.7	72.1 ± 15.4	85	36.8 ± 11.1	92	109	92 ± 10.8	47 ± 2.6
2	B-MG	131 ± 56.0	76.2 ± 3.2	91	58 ± 2.5	71.0 ± 8.1	66	11.1 ± 2.0	99	82.1	102 ± 20.1	63 ± 13.9
3	B-MG	237 ± 24.3	152 ± 14.4	116	64 ± 6.1	119 ± 18.5	91	36.1 ± 15.0	93	155	96 ± 7.6	65 ± 12.7
4	W	81.0 ± 19.4	48.2 ± 10.7	94	59 ± 13	37.2 ± 7.8	90	15.7 ± 3.7	94	52.8	102 ± 9.0	65 ± 12.2
5	B-LG	279 ± 17.9	165 ± 23.4	75	59 ± 8.4	117 ± 13.9	78	39.8 ± 8.3	99	157	87 ± 2.4	56 ± 7.9
6	B-LG	282 ± 38.6	165 ± 10.1	90	59 ± 8.4	128 ± 5.1	83	26.4 ± 2.1	93	154	88 ± 7.3	55 ± 2.3
7	W	103 ± 31.7	46.5 ± 2.9	101	45 ± 3.6	44.1 ± 7.0	89	9.8 ± 1.3	96	53.9	95 ± 10.5	53 ± 7.1
8	B-LG	264 ± 29.6	162 ± 12.4	73	61 ± 4.7	132 ± 21.2	91	29.2 ± 2.0	102	161	89 ± 11.5	61 ± 8.6
9	W-LG	313 ± 3.6	180 ± 26.6	82	58 ± 8.5	56.3 ± 4.8	88	116 ± 12.3	81	172	85 ± 10.0	55 ± 2.6
10	W-LG	144 ± 30.7	74.1 ± 17.0	80	51 ± 12	60.2 ± 1.0	76	24.8 ± 10.4	91	85.0	99 ± 14.6	59 ± 7.8
11	B-LG	107 ± 21.1	64.0 ± 17.9	93	60 ± 17	48.0 ± 7.4	91	10.8 ± 5.5	97	58.7	80 ± 23.0	55 ± 12.0
12	В	120 ± 29.6	103 ± 34.4	81	86 ± 29	42.1 ± 4.7	82	26.9 ± 1.6	96	69.0	73 ± 18.8	57 ± 5.3
13	W	248 ± 2.8	133 ± 5.9	98	54 ± 2.4	66.8 ± 5.3	75	53.1 ± 3.0	101	120	80 ± 7.9	48 ± 2.6
14	W	213 ± 25.2	136 ± 31.3	81	64 ± 15	81.3 ± 10.7	86	45.7 ± 9.2	98	127	85 ± 23.6	60 ± 6.7
15	W-MG	259 ± 54.9	172 ± 7.5	123	66 ± 2.9	63.4 ± 12.8	102	59.8 ± 34.8	90	123	79 ± 18.4	48 ± 15.3
16	W	294 ± 98.0	233 ± 28.9	101	76 ± 9.8	131 ± 15.0	86	83.8 ± 16.7	102	215	91 ± 12.1	73 ± 7.6
17	W	242 ± 22.0	159 ± 43.8	100	66 ± 18	106 ± 18.9	67	76.4 ± 7.6	93	183	104 ± 28.0	75 ± 6.7
Across Avg	Matrix ± 2σ	209 ± 153	129 ± 106	92 ± 27.7	62 ± 19.3	80.9 ± 67.7	84 ± 18.5	41.3 ± 58.2	95 ± 10.4	122 ± 99.0	90 ± 18.0	59 ± 16.1

RESEARCH & DEVELOPMENT

Exposure = Concentration x Consumption

Sampling Based on Harvest Demographics for Rice Speciation α Toxicity In vitro Assay "Bioaccessibility" 80.9 ng/g ± 67.7

- What We Eat In America (WWEIA), NHANES 2005-2006, considers 13,000 commonly eaten foods in US.
- 52,653 participants in the survey provided information on their food consumption.

Stochastic Human Exposure and Dose Simulation

Population Based Exposure Assessment for Rice

RESEARCH & DEVELOPMENT

Exposure Assessment and Presystemic Biotransformation of Arsenic Oxides

RESEARCH & DEVELOPMENT

Introduction: Challenger Pathway

RESEARCH & DEVELOPMENT

In Vitro Biotransformation of Arsenic Oxides

1) Kubachka et al., J. Anal. At. Spectrom., 2009, 24, 1062-1068

2). Kubachka et.al., Toxic Appl Pharm, 2009, 239,137-143

RESEARCH & DEVELOPMENT

Expanding arsenic oxides to include inorganic arsenic

Incubated Bacterial Cultures

Insignificant amount of As^V in cecal contents

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Arsenic oxide to sulfide conversion as a function of incubation time

		Totals					
As, ppb	0	3	6	12	24	48	
0	3	-	-	-	3	3	9
20	3	-	-	-	3	3	9
200	3	3	3	3	3	3	18
1000	3	3	3	3	3	3	18
2000	6	3	3	3	3	6	24
Totals	18	9	9	9	15	18	78

RESEARCH & DEVELOPMENT

Conclusions

- Major fraction of chromatographable arsenicals in the cecum samples is comprised of unchanged As(V)
- Most abundant metabolites at 48 hours:

The bacteria in the cecum are capable of thiolating inorganic arsenic

