

Removal of endocrine disrupting chemicals by a constructed wetland for on-site domestic wastewater treatment

Marc A. Mills¹, Bryan Boulanger², Nathan Engel³, Christopher Nietch¹

¹EPA-ORD National Risk Management Research Laboratory, ²Texas A&M University, ³University of Cincinnati

Science Questions

- What are monitoring and measurement tools to improve the characterization of endocrine disrupting chemicals?
- What are the major sources and environmental fates of
- How can unreasonable risks be managed?
- > How and to what degree are human and wildlife populations exposed to EDCs?

Experimental Objectives

- · Develop and implement an experimental system for treatment technology testing at the full-scale.
- Track longer-term performance with respect to traditional regulatory variables.
- o Nitrogen and Phosphorus speciation and
- o Pathogenic indicators

Track longer-term performance for select EDCs

- o Steroid hormones
- o Alkylphenol compounds
- ...with respect to traditional regulatory variables.
- o Nitrogen and Phosphorus speciation and dynamics
- o Pathogenic indicators
- Relate treatment efficacy to wetland performance characteristics.

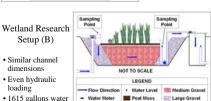
Study Location

Grailville, Loveland, Ohio

- Nonprofit Organization
- 300-acre Farm Cooperative
- · Women's Center
- · Environmental & Educational Retreat

1,200 gallons per day Family Home 9.0 Days Office & Wetland Sentic Contact Time

Grailville CW Treatment System


Wetland Research Single-pass Channel 5 Setup (A) Recirculation Channel 4 5 wetland channels Recirculation Channel 2 Recirculating Recirculation Channel 1 channels LEGEND Monitor flows Pump Tank --- Recycle Line

Filter Tank

Sampling Well → Flow Direction

volume per channel

Not To Scale

Materials and Methods

EDC Analytical Methods

Arialyte	IMEGIOG	Steroid Hormones – evaluation of
Steroid hormones	NRMRL SOP	two approaches
APs, AP1EOs, AP2EOs, BPA	EPA Reg 5	 Derivatized followed by GC-MSD analysis Through put = many days Susceptible to interferences
APEOs 3-18	EPA Reg 5	>Derivatized followed by LC-MS/MS analys • Throughput = hours
NPECs	EPA Reg 5	More specificity, less interferences
	ethoxylates C-MS (ASTM)	Accepted High Accepted Accepte

Nutrient Sampling

Wastewater samples collected quarterly at same time as EDCs

Analyzed for species of N and P including TN and TP by FIA using standard methods

> APEOs - LC-MS/MS

> APECs - LC-MS/MS

Pathogenic Indicators

Wastewater samples collected quarterly along with EDCs Fecal coliforms E. Coli Enterococcus

Sample Nutrients

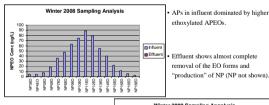
44.5°C for 24 hours

· Blue colonies

- 35.0°C for 4 hours
- ME agar 41.0°C for 48 hours
- Fluoresces under UV (366nm) · Pink/red colonies

Additional Study Variables

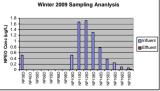
	Analyte	Method	Analyte	Method
	Total Phosphorus		Enterococcus	Membrane Filtration
	Total Dissolved Phosphorus	Acid Persulfate-Ascorbic Acid-Molybdate	E. Call	Membrane Filtration
	Total Reactive Phosphorus	Ascorbic Acid-Molybdate	Rhodamine (as tracer)	YSI-Optical Sensor
	Dissolved Reactive Phosphorus	Ascorbic Acid-Molybdate	Dissolved Oxygen	YSI-eensor
	Acid Hydrolyzable Phosphorus	Hydrolysis-Ascorbic Acid-Molybdate	pH	YSI-probe
	Particulate and Dissolved Organic Phosphorus	By Difference	Oxidation Reduction Potential	YSI-probe
	Particle Associated Reactive Phosphorus	By Difference	Water Temp	YSI-probe
	Total Nitrogen	Alkaline Persultate	Conductivity	YSI-probe
	Total Dissolved Nitrogen	Alkaline Persultate	Turbidity	YSI-Optical Sensor
	Ammonium (NH4)		Level	YSI-Pressure Transducer
	Ammonium (NH4)	Distillation then Phenolate	Precipitation	Meterological Station
	Ammonium (NH4)	Ion Chromatography	Barometric Pressure	Meterological Station
	Nitrite-Nitrate	Cadmium Reduction	kradiance	Meterological Station
	Biological Oxygen Demand	5-day	Atm-Temp	Meterological Station
	Particulate and Dissolved Organic Nitrogen	By Difference	Dew Point	Meterological Station
	Lithium	Ion Chromatography	Relative Humidity	Meterological Station
	Sodium	Ion Chromatography	Wind speed	Meterological Station
	Potasskum	Ion Chromatography	Gust Speed	Meterological Station
	Magnesium	Ion Chromatography	Wind Dir	Meterological Station
	Calcium	Ion Chromatography	Flow rate	P-D in line totalizer
	Fecal coliform	Membrane Filtration	Aboveground Biomass	Random Harvest and Allometry

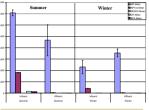

Study Results Steroid Hormones

- · Results for wetland removal only shown here (in/out of CW)
- Removal varies seasonally... But generally in the 60-80+%
- Apparent "production of hormones" likely an artifact of episodic flows and conjugated hormones in influent... more work to be done here

	February 2007			April 2007		July 2007		October, 2007			February 2008			April 2008				
Steroid	Mean Influent	Mean Effluent	Mean % Removal															
Dihydrotestosterone	249.1	38.9	84.4	32.8	34.5	-5.2	75.6	81.3	-7.6	497.2	92.9	81.3	378.5	68.6	81.8	306.6	59.3	80.7
17-p-estradiol (E2)	6.9	2.9	57.5	2.2	6.3	-185.4	2.7	3.8	-41.1	8.9	1.3	84.8	3.6	3.8	-8.2	NPD	5.5	
Estrone (E1)	44.6	19.2	56.9	9.3	17.1	-84.0	14.8	23.7	-59.8	234.1	35.6	84.8	53.1	19.4	63.4	34.0	15.7	53.7
Testosterone (TEST)	27.4	4.4	84.0	4.7	2.7	42.7	8.0	5.1	36.7	32.0	5.6	82.6	10.8	2.4	77.7	8.7	5.3	38.9
Androstenedione (AND)	110.3	7.9	92.8	18.6	5.8	69.0	36.8	19.4	47.3	264.3	39.8	84.9	102.2	17.1	83.2	142.7	21.5	84.9
17-a-ethynylestradiol (EE2)	NPD	NPD	-	NPD	NPD	-	NPD	NPD		2.0	NPD	>30	NPD	NPD	-	NPD	NPD	-
Estrial (E3)	211.3	76.5	63.8	4.3	26.4	-520.3	4.4	16.7	-283.0	612.0	137.5	77.5	161.1	102.3	36.5	23.0	115.8	-404.4
Progesterone	15.3	NPD	-	12.3	NPD	-	4.4	NPD	-	57.9	NPD	>98	11.3	NPD	>87.7	NPD	NPD	-

romoval rate determination not nossible % removal determined by % removal = (1 - (Cout/Cini)*100


APEOs comparing sources


· APs in influent dominated by higher ethoxylated APEOs but...

... appears to be a different source of APEOs to the system.

· Effluent shows almost complete removal of the EO forms and "production" of NP (NP not shown).

APs – seasonal comparisons

Discussion

Nutrient removal

- > TN removed limited by nitrification o Requires oxygen source
- o Recirculation did not provide significant
- > TP removed limited by adsorption or
- precipitation
- o Requires contact time in channel
- o Recirculation did not affect average contact time as compared with single-pass

•EDC removal

- > Highly variable episodic flows make data interpretation difficult
- > Degradation of selected EDCs is variable by season and with changing flow conditions

. Future work with the CW owner to:

- o Conduct controlled studies with fixed volume pulsed flows to allow for more controlled
- o Evaluate a product replacement option for
- o Moving to the leachfield to evaluate the entire system and the potential for release in the

Responsiveness and Collaborations

Findings from this research to be used directly by :

- · EPA's Office of Water
- · The Great Lakes National Program Office
- · EPA Regional offices and State/local regulators