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ToxCast Phase I HTS assays have been used to 
construct target gene lists linked with public 
information on genes and proteins, molecular, 
biological, and cellular pathways/processes, and 
disease. Currently there is no gold-standard for 
analysis of available gene-pathway interaction data, 
and most studies to date have focused on a single data 
source. 

We are performing pathway inference and network 
analyses, with the aim being understanding the links 
between chemical exposure and adverse health 
outcomes at the level of pathways rather than 
individual targets. This approach permits exploration 
of disease at a higher level of cellular and organismal 
organization, focusing on multiple, related disorders, 
and may aid in the understanding of common disease 
outcomes (e.g. cancer or immune disorders) that are 
characterized by locus heterogeneity. Through the use 
of the ToxMinerTM database and the analysis 
framework presented here, we hope to gain insight 
into complex relationships between disease states in 
humans and environmental chemicals. 

1. Is global pathway “space” made up of smaller 
“modules” that have biological relevance? 

2. How much of that global space is defined by toxicity 
and toxicity-related pathways that may be perturbed 
by environmental chemicals?

3. Which toxicity pathways are targeted by ToxCast 
Phase I assays, and which pathways relevant to human 
toxicity and disease need to be the focus of future 
research efforts?
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References1. To cluster all human genes into a set of functionally 
consistent modules that can be associated with toxicity 
pathways. 

2. To use statistical and network analyses to build and 
visualize these clusters, consolidating multiple, 
publically available pathway resources.

3. To annotate these clusters with disease association and 
phenotype information.

4. To delineate the current assay coverage across toxicity 
and disease related pathways, and to propose other 
targets for future assay development to help probe 
important regions of pathway space.
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Schematic of the workflow for mapping ToxCast data to 
publicly available information The ToxMiner database was 
created in order to link biological, metabolic, and cellular 
pathway data from multiple sources to genes and in vitro assay 
data for the chemicals screened in Phase I. Also included in 
ToxMiner is human disease information, which correlates with 
ToxCast assays that target specific genetic loci. These data are 
preprocessed and consolidated via scripts written in perl and 
implemented using MySQL, and can be accessed and queried. 
The ToxMiner database extends  the currently available 
ACToR (Aggregated Computation Toxicology Resource) 
database, which captures information on chemicals and assays 
of chemical-biological effects (Judson, et al., 2008).

Database Generation

The ToxMiner database, which links biological, metabolic, 
and cellular pathway data from multiple sources to genes 
and in vitro assay data for the chemicals screened in Phase I, 
as well as complementary data for all annotated genes, is 
currently in place and being used to generate hypotheses 
regarding the structure of “toxicity pathway space”. Current 
efforts are focused on the application of undirected 
clustering optimization of this global pathway dataset into 
biologically relevant modules. 

Pathway sources have been consolidated for each gene in 
terms of its presence or absence in all pathways, creating a 
binary matrix. We have estimated the similarity/dissimilarity 
between all gene pairs, initially using the Ingenuity 
pathway-gene information, where  proximity between genes 
implies biological/functional similarity. Upon validation of 
biological relevance of each cluster, we will expand this 
workflow to include other pathway sources.
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The initial survey of the pathway data and gene-
disease associations has allowed visualization of 
particular pathway/processes affected by genes 
targeted by ToxCast Phase I assays, placing 
these data into their biological context. We have 
observed that the majority of the current assays 
probe pathways that are associated with 
immunological, developmental, and cancer 
related pathways. 

Current efforts are focused on: describing global 
pathway space for all annotated human genes 
(currently 24,763 loci), defining coverage of 
toxicity and disease related pathways across that 
space, and determining the targets of current, as 
well as future assays.

Genetic Loci Associated with 
Liver Proliferative Lesions in Rat

Network diagram of the genetic 
loci and corresponding disorder 
classes probed by ToxCast Phase I 
HTS Assays. Colors denote disease 
types defined by OMIM disease-
gene associations and based 
loosely on disease classes used by 
Goh et al. PNAS (2007). Node size 
corresponds to the number of 
genes present in each disorder 
class. All genes are illustrated in 
gray, with the exception of those 
shown in red that are discussed in 
the recent article by Judson et al. 
(2009).
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Initial survey of Pathway/Process associated 
with ToxCast HTS assays. Networks, generated 
with Cytoscape 2.6.1, illustrate the overall 
structure and relationship of ToxCast Phase I 
assays (blue nodes) to GO (Genetic and 
Cellular) processes (brown nodes) and KEGG 
Pathways (yellow nodes). Large clusters of 
notable pathways associated with the ToxCast 
assays are indicated.

Pathway Network Construction and Analyses

ToxCast Phase I Assay GO Process KEGG Pathway

The Principle Components Analysis was applied to a gene x 
gene distance matrix generated from Ingenuity pathway data, 
using the Partek Discovery Suite. We observe seven main 
clusters in the Ingenuity pathway dataset, using all 24,763 
annotated loci (3300 genes/110 pathways). Of those seven, 
two clusters, indicated with *, are “complex” and contain 
multiple subclusters. 

Cluster Analyses
*

*

The plot of cluster identity (Ingenuity n=2952) was 
generated using the Silhouette validation technique 
(Rousseeuw, 1987) within the function pam, using the 
statistical package R. The pam algorithm is based on the 
search for k representative objects or medoids among the 
observations of the dataset. Each bar represents a gene, 
where increasing positive values for a group of genes 
indicates strong cluster identity. Small and negative  
values  indicate increased fuzziness of classification. 

The Davies-Bouldin (DB) index was used for 
cluster validation. This index is a function of the 
ratio of the sum of within cluster scatter to between 
cluster separation (Davies and Bouldin, 1979). We 
confirm the presence of seven distinct clusters in 
the Ingenuity dataset, where cluster 1* and 7* 
include 3 and 8 subclusters, respectively (results 
not shown). 
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Ave. silhouette width: 0.19
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For the GO data specifically, inferred distances 
from root nodes (e.g. “hierarchical”
classifications), were obtained directly from the 
GO website. Root node distances of less than 
four, where one is equivalent to all GO 
processes and seventeen represented the most 
distant node, were omitted from further 
analysis. Additionally, GO processes were 
limited for each ToxCast assay in terms of the 
number of loci reported for each process, in 
that no GO process included less than two 
genes and no more than 50 genes.
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Pathway Source ToxCast Human Total Human

GO 1126 7213
KEGG 94 202
Ingenuity 99 110

Total Unique Entrez 
GeneID 231 18,187
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