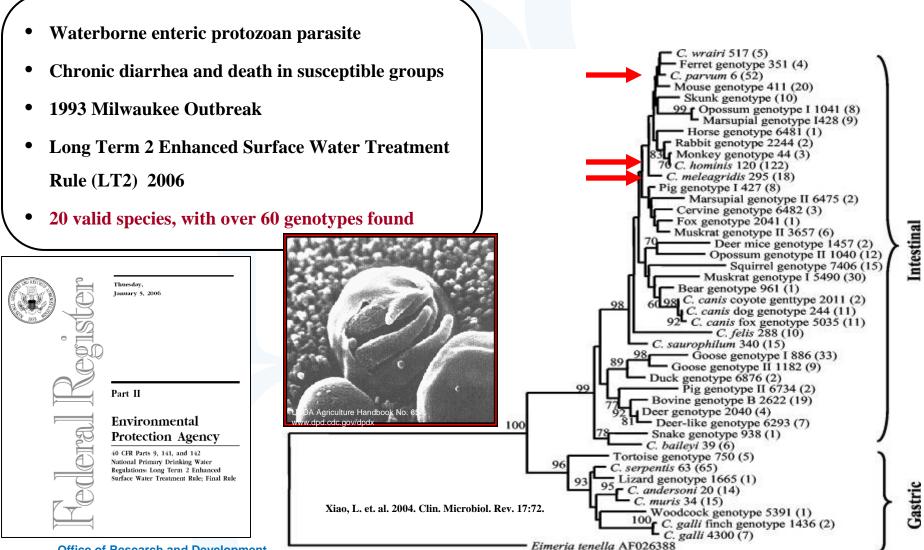


Surveillance Systems for Waterborne *Cryptosporidium*: Past, Present, and the Future

Eric N. Villegas, Ph.D. 2009 International Society of Exposure Science Annual Conference Minneapolis, MN 1-5 November , 2009

Office of Research and Development


Overview

- I. Brief introduction to waterborne Cryptosporidium
 - Historical perspective on detecting Cryptosporidium
 - Current detection methodologies
- II. US EPA's waterborne protozoan research program
 - Detecting, typing, and tracking sources of *Cryptosporidium* contamination
- **III.** The future of the "Microbial Detection Toolbox"

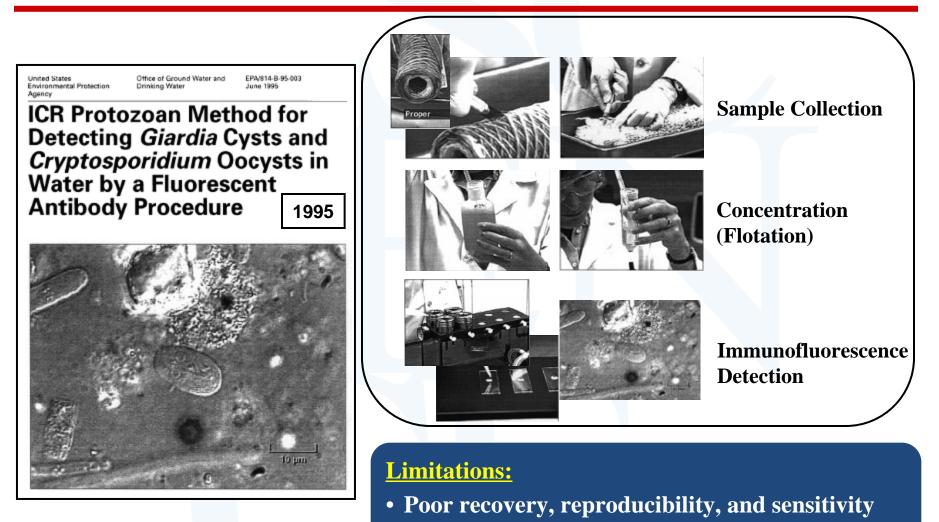
Office of Research and Development National Exposure Research Laboratory | Microbiological and Chemical Exposure Assessment Research Division | Biohazard Assessment Research Branch

Cryptosporidium species

Office of Research and Development

2

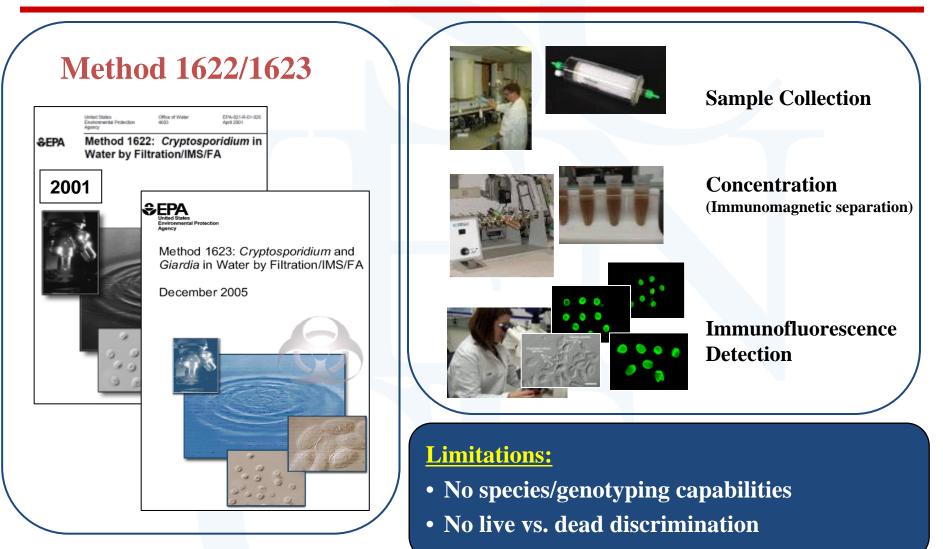
Cryptosporidium Species Infecting Humans and Selected Animals


Host	Major Species	Minor Species		
Humans	C. hominis and C. parvum (90% of all infections)	C. meleagridis , C. felis, C. canis, C. suis, cervine genotype		
Cat	C. felis			
Cattle	<mark>C. parvum</mark> , C. bovis, C. andersoni, deer-like genotype	C. suis		
Chickens	C. baileyi	C. meleagridis		
Deer	C. parvum, deer genotype			
Dog	C. canis			
Turkey	C. meleagridis, C. baileyi			
Pig	C. suis	Pig genotype II		
Sheep	Cervine genotype 1-3, bovine genotypes			

Modified from Fayer and Xiao. 2008.

Office of Research and Development

Detection of *Cryptosporidium* "The Past"



• High limits of detection

Office of Research and Development

Detection of *Cryptosporidium* "The Present"

Office of Research and Development

Challenges for the 21st Century United States Environmental Protection Developing a "Water Quality Tricorder"

Microbial Detection Systems:

- **Fast and user friendly** 1.
- Sensitive and quantitative 2.
- 3. **Species/genotype specific**
- Live vs. dead 4
- **Identify source of contamination** 5.
- **Multiple organisms** 6.

Office of Research and Development

Advances in the Detection of *Cryptosporidium* Oocysts in Water

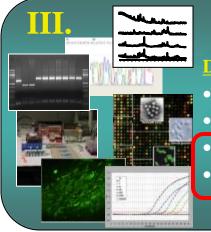
Building a "Microbial Detection Toolbox"

Office of Research and Development

7

Protozoan Detection Methods: Current Research Efforts

Collection/Filtration


- Ultra filtration (single/multiple-pathogen)
- Continuous flow centrifugation (CFC)
- Membrane (charged) filters
- Glass wool

II.

Secondary Concentration

- Antibody-based (IMS)
- **DEP/microfluidics**
- Nanotechnology

8

Detection Assays

- Microscopy-based (antibodies)
- *In vitro* cell culture and *in vivo* bioassays
- PCR-based assays
- Genomics and proteomics

All on-going and at various stages in development

Office of Research and Development

9

Detecting, Typing, and Tracking Sources of Human Infectious Cryptosporidium Oocysts in Water

Office of Research and Development National Exposure Research Laboratory | Microbiological and Chemical Exposure Assessment Research Division | Biohazard Assessment Research Branch

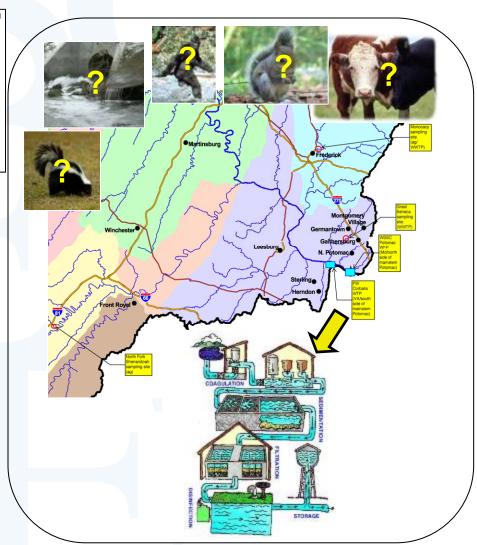
Tracking Sources of Contamination in a Watershed

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2008, p. 6495–6504 0099-2240/08/\$08.00+0 doi:10.1128/AEM.01345-08 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Vol. 74, No. 21

Cryptosporidium Source Tracking in the Potomac River Watershed^{∇}

Wenli Yang,¹ Plato Chen,² Eric N. Villegas,³ Ronald B. Landy,⁴ Charles Kanetsky,⁴ Vitaliano Cama,¹ Theresa Dearen,¹ Cherie L. Schultz,⁵ Kenneth G. Orndorff,⁶ Gregory J. Prelewicz,⁷ Miranda H. Brown,⁸ Kim Roy Young,⁴ and Lihua Xiao¹*

Centers for Disease Control and Prevention, Atlanta, Georgia 30341¹; Washington Suburban Sanitary Commission, Laurel, Maryland 20705²; National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 452683³; EPA Region III, Fort Meade, Maryland 20755⁴; Interstate Commission for the Potomac River Basin, Rockville, Maryland 20850⁵; Frederick County Division of Utilities and Solid Waste Management, Frederick, Maryland 21704⁶; Fairfax Water, Fairfax, Virginia 22031⁷; and Washington Aqueduct, Washington, DC 20016⁸


Received 16 June 2008/Accepted 22 August 2008

Goals

- Identify types of *Cryptosporidium* oocysts present
- Use PCR-RFLP and Method 1623
- Identify potential sources of *Cryptosporidium* oocysts in the Potomac River

Potential Sources:

Storm water runoffs Wastewater treatment discharges Wild animals Agricultural/animal operations

Office of Research and Development

Cryptosporidium Species and Genotypes Found

Species or genotype	Major known host(s)	Minor known host(s)	No. of samples positive	No. of detections ^{a}	Detection site(s)
C. andersoni	Cattle	Sheep, humans (?)	41	167 (151 type A, 14 type B, and 2 type C sequences)	All except Great Seneca Creek ^b
C. felis	Cats	Cattle, humans	2	3	Great Seneca Creek
C. meleagridis	Birds	Humans, dogs, deer mice, brown rats	1	1	Great Seneca Creek
C. serpentis	Snakes, lizards	,	1	1	Potomac WFP
Deer mouse genotype III (W1)	Deer mice	Squirrels	3	5	Great Seneca Creek, Potomac WFP, Corbalis WTP
Deer mouse genotype IV (W3)	Deer mice		1	1	Great Seneca Creek
Cervine genotype (W4)	Sheep, zoo and wild ruminants, squirrels, chipmunks, woodchucks	Deer mice, beavers, raccoons, lemurs, humans	3	5	Great Seneca Creek
Muskrat genotype I (W7)	Muskrats, voles		3	4	Corbalis WTP, North Fork Shenandoah River, Monocacy River
Snake genotype (W11)	Snakes		1	1	Potomac WFP
W12			1	1	Great Seneca Creek
Skunk genotype (W13)	Skunks	Raccoons, otters, opossums, squirrels, humans	4	5	Great Seneca Creek, Potomac WFP, Corbalis WTP
Vole genotype (W15)	Voles		1	1	North Fork Shenandoah River
Tortoise genotype	Tortoises		1	1	Great Seneca Creek
C. bovis-like genotype			1	1	Potomac WFP
Mouse genotype II-like	Mice		1	3	North Fork Shenandoah River

^a Total number of positive samples for five PCR replicates of all samples.

^b Detected in one PCR replicate of one storm flow water sample from the Great Seneca Creek.

Office of Research and Development

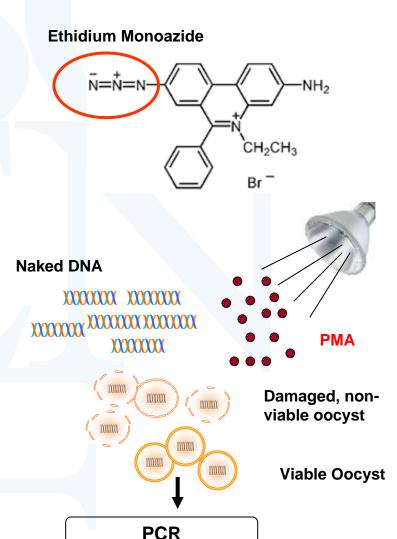
Summary

- Predominant species detected: C. andersoni, not infectious to humans
- C. hominis and C. parvum not detected in all samples analyzed (93 samples)
- Only minor species/genotypes infecting humans were detected (10 samples)
- PCR is effective at detecting and typing oocysts contaminating the watershed
- Expensive! Required 2 split samples; 1) Method 1623 and 2) Molecular genotyping
- No live/dead differentiation
- Molecular source tracking data were useful towards improving management

practices of the local water, agricultural, and live stock industries

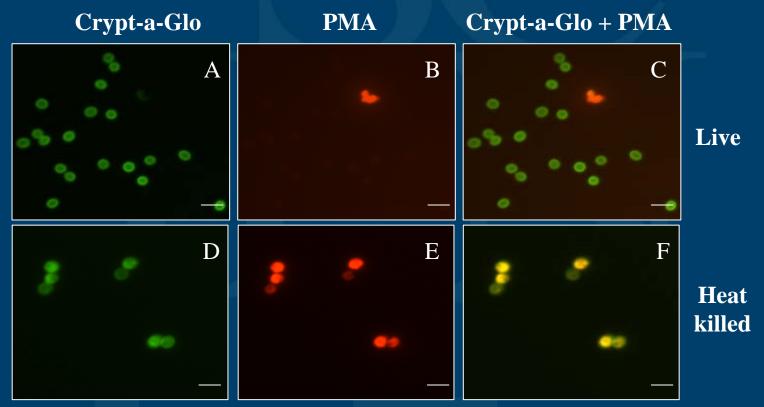
Office of Research and Development

How Can We Improve Current Genotyping Approaches?


By Adding a Live/Dead Selection Step...

 Office of Research and Development
National Exposure Research Laboratory | Microbiological and Chemical Exposure Assessment Research Division | Biohazard Assessment Research Branch

Using Propidium Monoazide (PMA) to Differentiate Live/Dead Organisms


- Selectively permeable to dead bacteria and fungi
- Intercalates into DNA and binds covalently to DNA upon light exposure
- Photolysis of the azide group produces a reactive nitrene radical which reacts to hydrocarbon moieties in nucleic acids
- PMA renders the DNA insoluble and subsequently removed during nucleic acid extraction procedures

Office of Research and Development

Detection of Live vs. Dead *C. parvum* Oocysts Using PMA

Bar, 10 µm

Brescia, et. al. 2009. Applied and Environmental Microbiology

Office of Research and Development

Molecular Genotyping of *C. muris* and *C. parvum* using CryptoPMA-PCR

Oocyst		Oocysts detected inRatioexperiments:				Live oocysts detected	Dead oocysts detected
Live	Heat-killed		1	2	3		
C. muris	C. parvum	0:100	-	-	-	0/3	0/3
C. muris	C. parvum	1:99	Cm	-	-	1/3	0/3
C. muris	C. parvum	10:90	Cm	Cm	Cm	3/3	0/3
C. muris	C. parvum	50:50	Cm	Cm	Cm	3/3	0/3
C. muris	C. parvum	100:0	Cm	Cm	Cm	3/3	0/3

SSU rRNA and hsp70 genes were amplified and sequenced

Brescia, et. al. 2009. Applied and Environmental Microbiology

Office of Research and Development

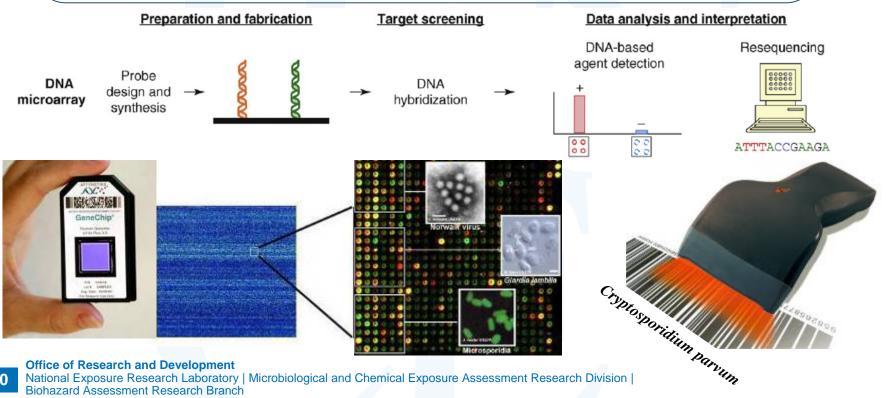
Is the CryptoPMA-PCR Effective in Detecting Cryptosporidium in Water?

Office of Research and Development

- PMA pre-treatment allows for specific detection and genotyping of live *Cryptosporidium* oocysts;
 - By preventing amplification of naked DNA, old, damaged, and dead oocysts
 - Uses a culture-independent "viability" component
 - Results correlated with cell-culture assay
- Can potentially be incorporated into other molecular-based methods
 - qPCR, microarrays, etc.
- PMA has also been successfully applied to other microbes
- May be applied to evaluate "viable" oocysts present in environmental matrices (source or finished water)

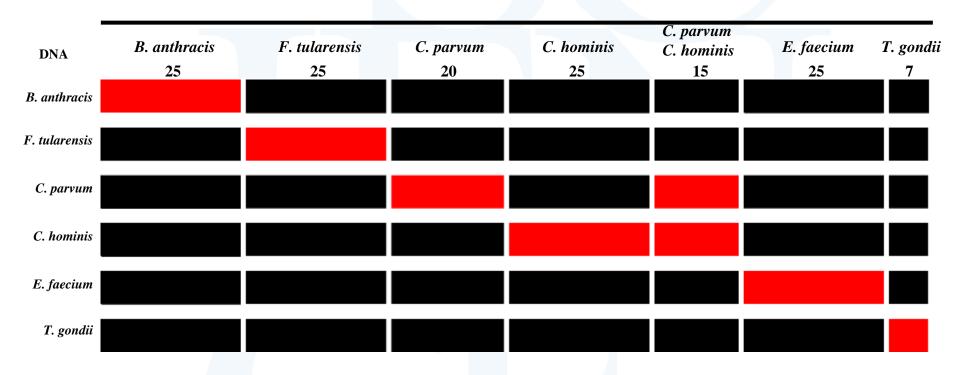
What Lies Ahead for the "Microbial Detection Toolbox?

Advanced Molecular Detection Technologies: Real-time PCR, Microarrays, Whole Genome Sequencing, etc.


 Office of Research and Development
National Exposure Research Laboratory | Microbiological and Chemical Exposure Assessment Research Division | Biohazard Assessment Research Branch

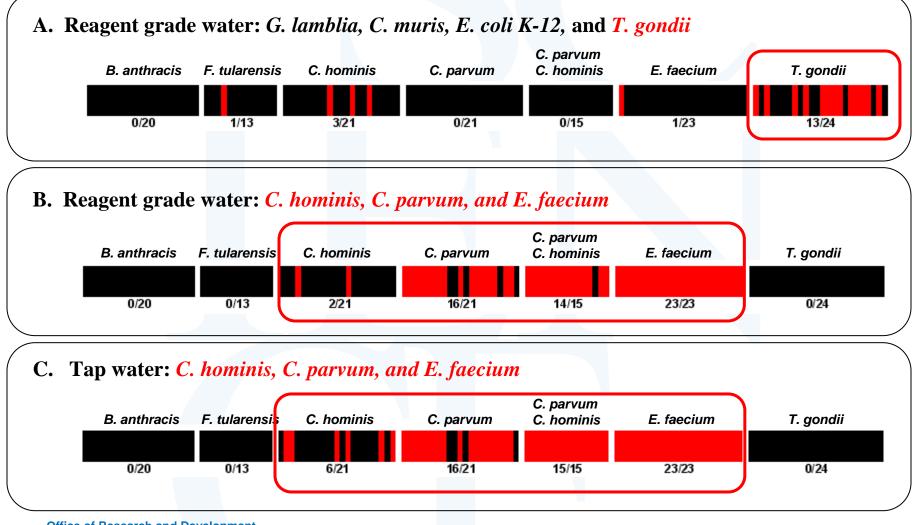
Microarrays for Detecting Multiple Pathogens "Pathogen Sequence Bar Coding"

Goal:


- Identify unique DNA sequences from each organism of interest "bar codes"
- Use microarray technology to detect multiple pathogens:
 - bacteria, protozoa, and viruses
- Detect pathogens in environmental samples (water, soil, feces)

Microsequencing Array: Probe Specificity

Capture probes


Office of Research and Development

21 National Exposure Research Laboratory | Microbiological and Chemical Exposure Assessment Research Division | Biohazard Assessment Research Branch

Brinkman, et. al. 2009. In preparation

Identification of Spiked Organisms in Tap Water Concentrates

22 Office of Research and Development National Exposure Research Laboratory | Microbiological and Chemical Exposure Assessment Research Division | Biohazard Assessment Research Branch

Brinkman, et. al. 2009. In preparation

Outcomes and Potential Benefits

Summary:

- Developed a microarray-based multiple pathogen detection and typing system
- Can only determine the presence or absence of the organism
- Works with tap water concentrates (Brinkman, et. al. 2009. JVM)
- No viability component, but may be used with PMA

Applications:

- Multiple pathogen detection and typing system
- Potential to identify novel pathogens in the environment
- Microbial and pathogen source tracking studies

Office of Research and Development

Molecular Detection Technologies: A Perspective

- 1. Molecular-based detection of *Cryptosporidium* is still evolving
- 2. A better understanding of the differences between animal, zoonotic, and anthroponotic *Cryptosporidium* is possible
- 3. Continued advancements in the development of the "Microbial Detection Toolbox" will improve our understanding of risks associated with waterborne *Cryptosporidium* oocysts

Office of Research and Development

Developing a "Water Quality Tricorder" Are We There Yet?

Microbial Detection Systems:

- **1.** Fast and user friendly
 - 2. Sensitive and quantitative
- **√** 3. Species/genotype specific
 - 4. Live vs. dead
 - 5. Identify source of contamination
 - 6. Multiple organisms

Office of Research and Development

Acknowledgements

US EPA Cristin Brescia Nichole Brinkman

David Erisman Shannon Griffin Ann Grimm Emma Hampton Rich Haugland MJ See Eunice Varughese Mike Ware Tonya Nichols Frank Schaefer

Andrey Egorov

Charles Kanetsky Ron Landy Kim Roy Young

<u>CDC</u>

Lihua Xiao Wenli Yang Vitaliano Cama Theresa Dearen

<mark>USDA</mark> Ron Fayer JP Dubey

<u>Frederick County Division of Utilities and Solid Waste Management</u> Kenneth G. Orndorff

Fairfax Water, Fairfax, VA Gregory J. Prelewicz Washington Aqueduct Miranda H. Brown

Interstate Commission for the Potomac River Basin Cherie L. Schultz

GenArraytion, Inc. Paul Schaudies Doreen Robertson Robert Francisco

Washington Suburban Sanitary Commission Plato Chen

Office of Research and Development

Eric N. Villegas, Ph.D. (513) 569-7017 villegas.eric@epa.gov

Office of Research and Development