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Abstract 

This paper discusses the need for critically evaluating regional-scale (~200-2000 km) three-

dimensional numerical photochemical air quality modeling systems to establish a model’s 

credibility in simulating the spatio-temporal features embedded in the observations.  Because of  

limitations of currently used approaches for evaluating regional air quality models, a framework 

for model evaluation is introduced here for determining the suitability of a modeling system for a 

given application, distinguishing the performance between different models through confidence-

testing of model results, guiding model development, and analyzing the impacts of regulatory 

policy options.  The framework identifies operational, diagnostic, dynamic, and probabilistic 

types of model evaluation.  Operational evaluation techniques include statistical and graphical 

analyses aimed at determining whether model estimates are in agreement with the observations 

in an overall sense.  Diagnostic evaluation focuses on process-oriented analyses to determine 

whether the individual processes and components of the model system are working correctly, 

both independently and in combination.  Dynamic evaluation assesses the ability of the air 

quality model to simulate changes in air quality stemming from changes in source emissions 

and/or meteorology, the principal forces that drive the air quality model.  Probabilistic evaluation 

attempts to assess the confidence that can be placed in model predictions using techniques such 

as ensemble modeling and Bayesian model averaging.  The advantages of these types of model 

evaluation approaches are discussed in this paper.  

Keywords:  air quality model, photochemical model, model evaluation, performance evaluation 
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1. Introduction 

 Regional-scale air quality models are designed to simulate air quality in a domain with a 

horizontal scale of several hundred to several thousand kilometers and a vertical scale of several 

kilometers.  The horizontal grid cell size is usually on the order of a few kilometers and the 

smallest vertical grid spacing is on the order of tens of meters.  Such three-dimensional 

numerical photochemical air quality models (AQMs) play a key role in the development and 

implementation of air pollution control rules and regulations in the United States and elsewhere 

[1-3], and they are also being used for short-term forecasting of air quality [4-6].  The 

prerequisite to such applications is an assessment of the degree to which an AQM can simulate 

the spatio-temporal features embedded in air quality data.  This paper discusses multiple 

approaches for rigorously evaluating three-dimensional photochemical AQMs.   

 Over the last three decades, several workshops and research papers have addressed the 

evaluation of AQMs [7-9].  However, these workshops and papers have addressed short-range to 

mesoscale range plume or puff-type AQMs rather than regional-scale three-dimensional 

numerical photochemical modeling systems.  The statistical metrics developed to evaluate short-

range dispersion models are limited in their ability to evaluate the ability of regional-scale 

models to simulate the complex relationships among the variables that constitute the 

photochemical system.  Most evaluation methods for short-range models focus on generating 

statistics of the deviations between the modeled concentrations of a few species and the 

corresponding observations.  While such statistics are useful, they provide little insight into the 

adequacy of models for the many processes that constitute the complex three-dimensional air 

quality system.  Recognition of these shortcomings led the U.S. Environmental Protection 

Agency (EPA) and the American Meteorological Society (AMS) to convene an invited group of 
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nearly 100 experts at a workshop during August 7-8, 2007.  The objectives of the workshop were 

to (1) examine current approaches for the evaluation of regional scale models, 2) discuss new 

approaches to advance air quality and related model evaluation methods and procedures, and (3) 

develop a set of recommendations for model evaluation methods, procedures, and metrics for 

different components of regional AQMs for further testing and use by the air quality modeling 

community.  This paper is motivated by the discussions held among the workshop participants. 

 

2. Model Evaluation Framework  

 Three-dimensional time-dependent numerical models of the atmosphere describe processes at 

a wide range of spatial and temporal scales, and they are used in widely differing applications 

ranging from research on atmospheric processes to air quality forecasting.   For regulatory 

applications, a model must provide an adequate estimate of concentration response to forcing 

variables, such as emissions and meteorology, in addition to adequate quantitative estimates of 

species concentrations.  By contrast, a forecast model is judged solely by its ability to simulate 

the temporal evolution of chosen forecast variables.  Hence, model evaluation criteria are 

dependent on the context in which models are to be applied [10].  Nevertheless, the following 

three primary objectives can be identified: 

(1) Determining the suitability of a model system for a specific application and configuration. 

The main goal of a model evaluation exercise (including regional AQMs) is to demonstrate that 

the model is “performing adequately” when compared with observations, for the purposes for 

which the model is applied.  The purpose of model application as well as the relevant model 

outputs should be stated at the outset.  For air quality management, we are mainly interested in 

the model’s ability to correctly estimate the air quality response to changes in potential source 
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emissions.  In this application, we focus on assessments of the model’s simulation of the 

governing processes and the interaction among them.  Emphasis in air quality forecasting is 

chiefly on the outcome state of the model, a prediction of next-day air quality.   

(2) Distinguishing the performance among different models or different versions of the same 

model.     We need to compare the relative performance of different models in comparing their 

results to observations so we can better understand models’ strengths and limitations.    

Evaluation procedures must to be able to distinguish the relative performance with specified 

levels of statistical significance [11].  The model inter-comparisons can identify model 

deficiencies and areas requiring further model development.  

 (3) Guiding model improvement.   Evaluation exercises should shed light on the uncertainties 

in the simulation of atmospheric processes attributable to model parameterizations and model 

input.  The results of these exercises should lead to improved AQMs. 

  Figure 1 introduces a model evaluation framework, incorporating the above three major 

objectives.  “Operational evaluation” refers to generating statistics of the deviations between 

model estimates and observations, and comparing their magnitudes to some selected criteria.   

“Diagnostic evaluation” examines the ability of the model to simulate each of the interacting 

processes that govern the air quality system.  “Dynamic evaluation” focuses on the model’s 

ability to predict changes in air quality concentrations in response to changes in either source 

emissions or meteorological conditions.  Recognizing that there is uncertainty in model inputs 

and formulation of processes, “Probabilistic evaluation” focuses on the modeled distributions 

of selected variables rather than individual model estimates at specific times and locations.   
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3. Evaluation Methods 

 This section provides details on the approaches embodied in the proposed model evaluation 

framework. We provide some illustrative examples of their application to regional AQMs. 

 

Operational Evaluation.  Operational evaluations make use of routine observations of ambient 

pollutant concentrations, emissions, meteorology, and other relevant variables.  The modeled 

meteorological variables considered in operational model evaluation include temperature, 

moisture (humidity), wind speed and direction, planetary boundary layer height, surface 

radiation, clouds and precipitation.  Air quality variables include concentrations of ozone (O3), 

carbon monoxide (CO), nitrogen oxides (NO, NOx), and fine particulate matter mass and its 

species (fine particulate matter [PM2.5], sulfate [SO4], nitrate [NO3], ammonia [NH3], organic 

and elemental carbon [OC, EC]).  

 The three performance measures most widely used in AQM evaluation (and most other types 

of model evaluation) are mean bias (MB), root mean square error (RMSE), and correlation (R) 

[12].  However, statistical confidence levels in these statistics are rarely calculated.  This 

information can be used to answer questions such as “Is the model mean bias significantly 

different from zero at the 95% confidence level?”, or “Is the correlation coefficient for one 

model significantly different from the correlation coefficient for another model?”  It is important 

to note that observations and corresponding modeled values may contain different spatio-

temporal correlation structures, complicating the interpretations of confidence intervals and other 

statistics for judging model performance. 

 The standard metrics (MB, RMSE, and R) do not take into consideration that predictions 

from 3-dimensional regional AQM models are volume-averaged ensemble mean (representing 
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average weather conditions, physical processes, and chemical reaction rates) concentrations,  

whereas observations are point measurements reflecting individual events.  This inconsistency is 

referred to as the incommensurability or change of support problem [13].    One way of dealing 

with this problem is to use spatial smoothing such as block-kriging on the observed data to 

produce values that can be compared with the grid-averaged model estimates.  However, such 

smoothing techniques rely on a statistical model to interpolate observations, and, thus, the 

evaluation is based on a comparison of the results of two different models, and not a direct 

comparison of model output and corresponding observations.  Furthermore, observations contain 

measurement errors while model outputs contain errors due to inadequacies in both the model 

input data and the model’s representations of the relevant atmospheric processes.   

 Often, dense observations at the ground level and aloft are not available to adequately define 

the initial and boundary conditions for numerical photochemical AQMs [14].  It is well-

recognized that without completely knowing the 3-D initial chemical state of the atmosphere, its 

future state cannot be simulated accurately.  Also, whereas the observations contain stochastic 

variations, models do not.  Thus, one should expect differences between model outputs and their 

corresponding observations. Most operational model evaluations conducted and published to 

date have simply paired the observations and modeled values in computing statistical metrics 

such as MB, RMSE, and R without properly taking into account the points mentioned above.  

Hence, any agreement found between the paired observations and modeled results should be 

considered fortuitous.   

 The spatio-temporal patterns of model predictions and observations can be compared by 

determining the fractional overlap of spatial patterns or time series of predictions and 

observations [15].  The evaluation could determine whether the scales of variability in the 

 7



predicted and observed patterns are comparable using correlation and spectral analysis.  

Differences between maps of model predictions and maps computed from observations yield a 

spatial difference field.  Investigation of spatial patterns can be done using statistical measures of 

spatial dependency, such as the variogram function, and temporal dependency structure can be 

studied with methods such as spectral analysis.  For example, time series of ozone (O3) have 

been decomposed into spectral bands representing intra-day, diurnal, synoptic, seasonal, and 

longer-term fluctuations [16,17].  Figure 2a illustrates the comparison between these component 

spectra estimated from 15 years of observed and CMAQ model-predicted hourly O3 data.  The 

figure reveals the model’s ability in capturing the variability associated with diurnal and synoptic 

features in the time series of O3.  There are apparent problems in the model’s simulation of the 

variability inherent in high-frequency (hour-to-hour) variations, as well as a tendency for the 

model to underestimate the variability of the seasonal and longer-term O3 signal, possibly due to 

the inaccuracies in the regional model’s boundary conditions, emissions, and representation of 

the free tropospheric processes.   

 Empirical orthogonal functions can also be used for analysis of spatial/temporal data.  This 

approach provides a decomposition of the spatial response surfaces in terms of the principal 

components that explain the spatial structure at different scales.  For this second-order 

assessment (based on the correlation structure), graphical displays can be used such as the spatial 

variogram and estimated temporal spectrum for both model output and data-based grid cells, and 

also for the difference field (differences maps between model and data-based grid cells). 

 Some graphical techniques in operational model evaluation have been alluded to earlier in 

conjunction with standard statistical metrics.  While scatter plots of percentile values of pollutant 

concentrations and time-series plots have been useful for regional AQM analyses [5,18], it may 
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be more appropriate to aggregate results across coherent space and/or time regions based on 

techniques such as Principal Component Analysis to represent distributional quantities, and not 

single point observations [19,20].  For example, daily time series of summary statistics for O3 

concentrations over all monitoring sites in a region (where pollutants are spatially-coherent) can 

be plotted as box plots over a month or longer period for model results and observations.  The 

hourly O3 concentration values for a month (or a season) at a site (or averaged over sites within a 

given sub-region) can be used to track the diurnal variation of modeled and observed averages, 

variances, bias, etc.  Time series of model bias and error distributions are also useful.  Pie charts 

or bar graphs of particulate matter species are useful for comparing simulated and observed 

chemical constituents of size-segregated particulate matter [21].  Scatterplots can be used to 

compare distributions of observed and modeled parameters, such as that for PM2.5 shown in 

Figure 3 [22].  From an operational evaluation perspective it is recommended that standard 

statistics (R, MB, RMSE) be calculated from the distributional comparisons of observed and 

modeled variables; this is a more appropriate alternative to strict pair-wise comparisons. 

 Performance goal plots (“soccer” plots) that summarize model performance by plotting 

performance goals and criteria for fractional bias versus fractional error, and concentration 

performance plots (“bugle” plots) that display fractional bias or error as a function of 

concentration have been suggested [23].  A Taylor diagram [24], which combines model error 

and correlation statistics in a single plot, has been found to be useful for comparing the 

performance of several models [25].   Figure 4 provides an illustration of the Taylor diagram 

where, for each model included, the standard deviation of simulated values (radius) and the time 

correlation between simulated and observed values (angle from horizontal) are indicated.  The 

standard deviation of observations is shown as the point on the horizontal axis, and circles 
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centered on this point represent points of equal simulation error standard deviation.  As shown in 

the figure, error standard deviations are smallest for models with the highest correlations. 

  For regional models in particular, a basic comparison of the spatial extent and magnitude of 

the modeled concentration field through a concentration isopleth or colored grid plot overlaid 

with the observations or compared with a similarly analyzed field from the data-based grid cell 

values from kriging or other spatial analysis techniques, can often provide a strong initial 

indication of how well the model is predicting the spatial texture and magnitude of the species of 

interest.  This type of screening analysis is often the essential first step in putting into perspective 

the representativeness of the statistical measures and deciding on subsequent steps in the 

operational evaluation.  The spatial extent comparison can be made more objective by using 

pattern comparison techniques, such as the figure of merit [26] and e-folding distance [27]. 

  Emission models are an integral part of regional AQM systems and need to be evaluated.    

However, estimates from emissions models cannot be directly compared with observed values 

because emission observations generally do not exist on the regional-scale.  The sole exception 

to this general case is the Continuous Emissions Monitoring Systems (CEMS), which measure 

primary pollutant emissions on the tall stacks of large electrical generating units.  These data are 

used directly as emission inputs into AQMs.  For other emissions sectors, the primary assessment 

tool is quality assurance and control of the process, such as aggregating emissions estimates by 

state or by source sector and comparing these estimates to previous or independent emissions 

estimates.  Examining statistical distributions of emissions across a model domain can help 

identify outliers or questionable data for further examination.  Studying the spatial distribution of 

emissions surrogates (e.g., population, road networks) or the temporal allocation of emissions 

(e.g., seasonal and daily patterns) may also help spot obvious errors.  While operational 
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evaluation methods are applicable to only a few limited sets of emissions data because of the 

lack of real-world emission measurements for AQMs, diagnostic methods may provide insights 

into biases and errors in the emissions.  These techniques will be discussed as part of the next 

section. 

 

Diagnostic Evaluation.  Operational evaluations do not provide information on the adequacy of 

models for representing the many interacting processes that lead to the concentrations that are 

finally modeled.  Diagnostic evaluation methods are designed to probe into the physical and 

chemical process models or representations.  Regional AQM diagnostic evaluations are 

complicated by the fact that the system is non-linear: a change in a given model input does not 

always lead to a proportional response in the model output.  

An examination of the chemical processes in the AQM requires precursor concentrations 

such as speciated volatile organic compounds and NOy along with radiation data and photolysis 

rate estimates at relatively high temporal resolution (e.g., ten-minute averages).  Diagnostic 

evaluation of aerosol chemistry also requires extensive data for the individual aerosol species, 

their size distributions, and their chemical precursors.  The direct and indirect influences of the 

meteorology on the chemical concentrations require data on meteorological parameters that are 

not typically available, such as the planetary boundary layer heights and cloud heights and cover, 

both of which have a large impact on air quality concentration levels. These types of diagnostic 

evaluation can be obtained through process-oriented field studies, but for very limited locations 

and periods of time due to the resources required.  Some field studies and special data sets 

include both surface data and aloft measurements via aircraft or tower.  Using information from 

such studies can help to evaluate the modeled chemistry and transport processes in the free 
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troposphere and focus on larger regional impacts and emission budgets aloft [27].  Given the 

large investments in, and limited availability of these field studies, many diagnostic evaluation 

studies are tailored to focus on the information and data available from short-duration special 

studies. 

Diagnostic evaluation is aimed at understanding the reasons for poor and good model 

performance.  It can help to build additional confidence in the model even when operational 

model performance statistics are deemed acceptable.  A sensitivity test, which examines a 

model’s response to perturbations in its inputs, is a common way to ascertain whether inputs 

have a notable influence on model performance issues.  A fundamental description of sensitivity 

analyses of environmental models is given by Saltelli et al. [28].  Cullen and Frey [29] provide 

specific discussions related to AQMs.  However, because of the nonlinear response of a regional 

AQM, sensitivity tests may be valid only for a limited range of input variables.  Air quality 

simulations can be performed using multiple meteorological inputs to assess how much 

meteorological model errors and differences impact the air pollutant [30,31].  Emissions have 

also been varied either through incremental changes to emission inputs or comparison across 

different inventory estimates to test the impact on air quality endpoints [32].   Figure 5 illustrates 

an evaluation of total nitrate estimates from the CMAQ model.  Figure 5(a) shows an operational 

comparison of simulated total nitrate (HNO3 + NO3 aerosols) with measurements from the 

CASTNet network on a monthly basis during 2001.  In Figure 5(b) the sensitivity of CMAQ 

results are diagnostically probed as a function of the treatment of microphysics and soil moisture 

in the meteorology model (MM5).  In another experiment, the sensitivity of ozone estimates 

from the CMAQ model to the representation of the chemical mechanism is illustrated in Figure 

6.  In this example, the CMAQ results for ozone using the Carbon Bond 4 (CB4) chemistry are 
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compared to those using the 1999 version of the Statewide Air Pollution Research Center 

(SAPRC99) chemical mechanism.  The differences seen in the spatial plots are a representation 

of the chemical uncertainties in the model results.  Other chemical diagnostic techniques for 

model evaluation include the use of the ozone production efficiency [27] for gas-phase 

photochemistry and the gas ratio for gas-to-aerosol partitioning 

Advanced instrumented modeling tools (e.g. direct decoupled method, adjoint models, sulfur 

tracking method) have also been introduced into model evaluation research, where contributions 

from various processes or inputs on pollutant concentrations are tracked during the simulation.  

The tracking information from these instrumented modeling tools can sometimes replace the 

need for numerous brute-force sensitivity simulations.  For example, process analysis tools have 

been embedded into AQMs to characterize the impact of transport processes, chemical 

production and loss pathways, and sensitivity to NOx or radical emission sources on ozone 

concentrations [33,34].  Another example of an instrumented modeling tool is the Direct 

Decoupled Method (DDM) that has been incorporated into the CMAQ modeling system, where 

the integral sensitivity of O3 and PM2.5 predictions to emission precursors, source regions and 

sectors, and boundary conditions is calculated during the model simulations [35,36].  The DDM 

tool is able to capture both the first and second order sensitivities to these inputs, which, 

depending upon the size of the perturbations studied, are important for non-linear chemical 

systems.   

Meteorological models have long been used to forecast weather, but AQM predictions are 

sensitive to a number of different meteorological variables that are not as critical to weather 

prediction.  Evaluation of such models for the purpose of providing weather forecasting guidance 

may not be sufficient to assure their reliable use in air quality applications.  Seaman [37] 
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provided a comprehensive summary of the key meteorological issues most relevant for air 

quality modeling.  For retrospective air quality modeling, meteorological simulations often 

include various approaches for data assimilation or nudging, so that agreement between 

meteorological observations and predictions is optimized.  Otte [31] provides an example of a 

diagnostic study that demonstrates that assimilation of observations into the meteorological 

predictions can contribute to improved ozone predictions, in addition to improved meteorological 

predictions.  However, power spectra of modeled and observed temperatures and wind speeds 

reveal large underestimation of the variability in the high-frequency intra-day band even with 4-

dimensional data assimilation (Figure 2b).  The results in Figure 2b imply that one should expect 

large differences to be found in the hour-to-hour comparisons of modeled and observed values of 

meteorological and chemical variables since the variability in the short scales is not well-

represented in the model.  

For observationally-based methods such as receptor models, speciated observations are 

needed on shorter time scales in order to decipher the source signatures to distinguish between 

different source types.  In many cases, the data are only available for limited time periods and 

specific locations.  However, receptor models can be the first major step to understanding the 

types of sources contributing to air pollution at a given location and can help identify potential 

missing sources in an emission inventory.  Inverse modeling also can be limited by data if the 

network does not provide high-resolution spatial and temporal data or if the observed species 

does not provide a conservative indicator for the emitted species (e.g., ammonium is not a 

conservative indicator for ammonia emissions).  Additionally, since inverse modeling relies on 

the AQM to estimate the relationship between the emissions and the resulting concentration, 

model error should be included in the calculations whenever possible and such methods are only 
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helpful if the known emission uncertainties are much larger than the error intrinsic to the AQM 

processes that also impact the concentrations.  Recent advances have introduced approaches that 

integrate receptor modeling methods into AQMs [38] and used detailed tracking of emission 

contributions across space for inverse modeling [39].  In all cases, top-down methodologies can 

inform improvements needed for bottom-up inventories that are critical for AQM performance. 

 

Dynamic Evaluation.   Dynamic evaluation looks at a retrospective case(s) to evaluate whether 

the model has properly predicted air quality response to known emission and/or meteorological 

changes.  The change in concentration is evaluated instead of the “base” concentration itself, 

unlike operational and diagnostic aspects of model evaluation.  This method is used in addition 

to traditional indicator ratios that focus on a model’s potential response to a change in emissions 

through chemical relationships (e.g., O3/NOy).  One example of dynamic evaluation includes 

modeling assessments of the weekday/weekend concentration differences where mobile source 

emissions are known to significantly change [40].  These studies can provide insight into the 

ozone response to NOx emissions in core urban areas with very dense mobile emissions.  A 

model should also be able to track the impacts of emissions changes over longer time periods.  

Figure 7 displays an eighteen-year smoothed record of NOx and CO concentrations at several 

urban monitoring stations and the analogous record from CMAQ model simulations.  The data 

show that the modeled NOx concentrations are about 50% lower than the observations, at least 

partially due to subgrid-scale emission gradients.  However, there is good agreement between 

observed and simulated trends, with both sets of data showing approximately 30 ppb reduction of 

ambient NOx concentrations over this time period.  The CO analysis indicates that the modeled 

concentrations are about 50% lower than observations for the earlier time periods, with the 

 15



underestimation decreasing to about 20% for the later time periods.  The observations also show 

a steeper decrease over time than the CMAQ model, implying that the emissions inventory for 

CO was more severely underestimated in the early time period.     

More recently, an evaluation of an AQM’s response to a regulatory emission reduction 

program has been assessed [27,32,41].  The “NOx SIP Call” was an unusual example of an 

emission control program that required a large reduction in emissions in a short span of time 

from the electricity generating sector [42].  Since those emissions are monitored with Continuous 

Emission Monitoring Systems, it was a unique opportunity for dynamic evaluation where the 

emission change could be directly measured and then tested in an AQM.  Evaluation of the 

model’s prediction of air quality response to such emission changes is challenged by the question 

of whether the year to year air quality changes are also being influenced by different 

meteorological conditions from one year to another.  In a multi-year simulation, one could 

examine how the seasonality and trends in the air quality data are simulated by the model.  

Further work in this area of dynamic evaluation should include sensitivity studies with varying 

meteorology with the same emission reductions, as well as statistical methods that are 

traditionally used to adjust the observed pollutant concentrations for meteorological influences 

[43,44].   

 

Probabilistic Evaluation.  All regional numerical AQMs use first-order closure, and, hence, the 

model outputs represent population mean reflecting average weather and chemical conditions.  It 

is of course possible to restructure the model system to solve the equations using second-order or 

higher closure.  Thus, the model solves for the ensemble mean and the variance.  A distribution 

shape is assumed (the clipped normal) and thus the full distribution is obtained.  If regional 
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AQMs were to use second-order closure, the computational times required would be much 

larger.  Thus, the current crop of first-order closure regional AQMs are inherently deterministic 

(for a given scenario with a given set of inputs, the same concentrations are predicted).   They 

also do not explicitly account for underlying uncertainties in the data, science process 

algorithms, or numerical routines that constitute the modeling system.  Probabilistic model 

evaluation should allow quantification of the confidence in regional AQM-predicted values and 

determination of how observed concentrations compare within an uncertainty range of model 

estimates.  There are no widely-used prescribed methods for determining such confidence levels 

through a probabilistic evaluation.  A method suggested by Lewellen et al. [45] depends on 

knowledge of the probability distribution function (pdf) of the AQM predictions.  This 

probabilistic model evaluation methodology was applied by Hanna and Davis [7] to regional 

AQM (UAM-V) predictions of ozone in the eastern U.S.  It was shown that, across the full 

distribution range for all observing sites, the observations generally fell within the 95% 

confidence bounds of the regional AQM predictions. For that exercise, the pdf of the model 

predictions was determined from a previous Monte Carlo uncertainty study for that model on that 

domain and episode.  Also, Irwin et al. [46] used the Monte Carlo approach to propagate 

uncertainty in meteorological inputs, using a probability distribution function (pdf), to air quality 

predictions.  

 Yet another technique uses an ensemble of modeling methods to approximate a pdf [47-54].  

The ensemble method is a subset of a full Monte Carlo uncertainty exercise, where a few model 

simulations are made using varying inputs and other assumptions in hopes that a limited number 

of simulations will “cover” the full uncertainty range.  The use of the ensemble method with 

prognostic meteorological models linked with a dispersion model was tested by Warner et al. 
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[55], who showed that the method was able to adequately account for the uncertainties in the 

concentration pdf due to mesoscale and regional meteorological variations.   

 A series of studies [56-58] have shown that the effect of model-to-model uncertainty on the 

simulated response to emission reductions is typically on the order of a few percent of daily 

maximum 8-hr ozone concentrations, much smaller than the effect on absolute concentrations for 

the “base case” simulation.  Bayesian Model Averaging (BMA) [59] has been used to calibrate 

the ensemble predictions by weighting each individual ensemble member generated in the Pinder 

et al. study [60] based on how closely it matches observed ozone values.  This approach provides 

an estimated probability distribution of pollutant concentrations at any given location and time, 

which can be used to estimate a range of likely, or "highly probable", concentration values or the 

probability of exceeding a given threshold value for a particular pollutant [61].  Figure 8 

illustrates a month-long time series of daily 8-hour maximum O3 concentrations from a 200-

member CMAQ model ensemble along with the observed concentration time series for this 

single observation site.  This technique is useful for diagnosing structural process-based errors in 

the AQM system.  When the envelope of ensemble results brackets the observations there is 

more confidence that the modeled system processes can replicate reality.  On the other hand 

when the observations fall outside of or barely within the ensemble envelope, there is an 

indication that the model is biased across many process combinations with respect to replicating 

reality. 

This type of model assessment is particularly useful in examining the relative efficacies of 

various emission control options in meeting a given air quality objective and in selecting the 

emission control strategy having the greatest probability of success in meeting the intended 

objective for future air quality.  For example, the probability of exceeding a given threshold 
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ozone concentration over the southeastern United States for the base case and an emission 

reduction case utilizing the ensemble and BMA approach is presented in Figure 9. 

Another potential approach to the probabilistic evaluation of AQMs is the use of order 

statistics and extreme value theory to compare the tail of observed and simulated concentration 

distributions. For some applications, we are particularly interested in the modeling system’s 

ability to simulate a specific aspect of the observed distribution, such as the 4th-highest daily 

maximum ozone concentration over a summer season.  In addition to directly comparing the 

observed and simulated 4th-highest concentrations, one can utilize extreme value theory to 

estimate the probability that the observed or simulated 4th-highest concentration exceeds a 

certain concentration threshold (say 84 ppb) or to estimate the 95% confidence bounds of the 

observed and simulated 4th-highest concentrations given the other sample values of the observed 

and simulated distributions. For example, if at a station the observed and simulated 4th-highest 

ozone concentration were 92 and 87 ppb, respectively, but the width of the 95% confidence 

interval was 5 ppb in both cases, one might conclude that these two values are not significantly 

different given the discrete observed and modeled sample distributions. An illustration of this 

approach and an application to air quality planning is provided by Hogrefe and Rao [56].   

  

4. Summary  

 In this paper, we have examined approaches to the evaluation of regional-scale air quality 

modeling systems, as they are currently used in a variety of applications.  It is evident from this 

examination that model evaluation exercises are based on a set of presumptions, which are often 

not explicitly stated.  These premises are: 
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• Observations of air pollution contain the influences of multiple sources that vary in space 

and time.  Further, observational values are affected by measurement uncertainties that 

can include instrumental errors and biases as well as spatial representativeness 

uncertainties. 

• It should be recognized that even with the perfect model science and perfect model input 

and numerical algorithms, there will be differences between modeled and observed 

values because the model predicts the population mean while an observation is a single 

event out of a population, and stochastic variations embedded in the observations are not 

modeled in current regional-scale numerical air quality models. 

 Our examination of modeling practices leads us to conclude that models cannot be validated 

in the formal sense, but rather can be shown to have predictive and diagnostic value.  The 

process whereby this value is demonstrated is called model evaluation.  Because evaluation 

criteria can differ between applications, the criteria for “success” should be context-relative [10]. 

 Our review of current practices reveals that model evaluation is driven by three broad 

objectives: to determine a model’s suitability for an intended application, to distinguish between 

models, and to guide model development.  These objectives can be achieved via four types of 

model evaluation: Operational Evaluation, in which model predictions are compared with data 

in an overall sense using a variety of statistical measures; Diagnostic Evaluation, in which the 

relative interplay of chemical and physical processes captured by the model are analyzed to 

assess if the overall operation of the model is correct; Dynamic Evaluation, in which the ability 

of the modeling system to capture observed changes in emissions or meteorology is analyzed; 

and, Probabilistic Evaluation, in which various statistical techniques are used to capture joint 

uncertainty in model predictions and observations. 
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 There exist many measures and techniques for quantifying model performance in an 

operational sense.  These measures (or “standard metrics”) are often used in combination and 

with varying levels of utility and interpretations.  A fundamental problem in using these 

measures is that model output (based on volume-averages) and observations (based on point-

wise measurements) are in principle incommensurable, and that model predictions represent 

population averages while observations reflect individual events out of a population.  Since this 

fundamental problem is generally ignored in the first three types of model evaluation, 

probabilistic evaluation methods are recommended.  

 To conduct diagnostically-oriented model evaluations, high-quality 3-D data on ambient air 

concentrations, emissions and meteorology are needed.  These data needs are often quite 

extensive, and in many cases not fully met.  Hence, most model evaluations to date begin and 

end with the operational evaluation.  An outstanding example of the inadequacy of evaluation 

data sets is the need to resolve three-dimensional pollution fields, when only two dimensional 

data are available.  Our understanding of pollutant transport aloft and re-entrainment in the PBL 

is limited due to the lack of these 3-D datasets [14].  Similarly, process evaluation of chemical 

sub-models often requires measurements of chemical species that are only available in 

specialized research studies, and not generally in routine environmental monitoring programs.   

 To properly address the issues related to the model evaluation, an international effort [62] is 

currently underway to apply the model evaluation framework presented in this paper involving 

several regional air quality models being used in North America and Europe (see 

http://aqmeii.jrc.ec.europa.eu/). 
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Figures 
 

Figure 1. A framework for evaluating regional-scale photochemical modeling systems. 

 
Figure 2.  (a) Power spectra of O3 time series from CMAQ model results (blue line) and 
observations from ground monitoring networks (red line).  Time series of model and observed 
data used in the analysis covers a 15-year period ending in 2005; (b) same as (a) except for wind 
speed.  
 
Figure 3.  Comparison of CMAQ model forecast and observed daily-average PM2.5 distributions 
for January-February 2005. Observed  PM2.5 concentrations are from the AIRNOW network.  At 
each observation location the time-series of modeled and observed daily-average PM2.5 is 
examined and percentiles of the distributions are computed. The figure illustrates the relationship 
between the modeled and observed percentiles (denoted by different colors) at each location. 
Also shown are the 1:1, 1:2, and 2:1 lines. [22] 
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Figure 4. Taylor diagram for model results for O3 in Paris region for 1999 [25].  Symbols 
represent results for distinct models.  Values along axes are in ppb.  
 
Figure 5.  (a) Comparison of monthly simulated distribution of total nitrate (μg/m3) for 2001 
from CMAQ model with CASTNet network measurements.  (b) Comparison of January 2002 
total nitrate concentrations between CMAQ model and CASTNet measurements.  CMAQ results 
are shown for three different simulations, using different microphysics and soil temperature 
options in MM5 meteorology model. 
 
Figure 6.  CMAQ model results for 8-hr maximum daily ozone concentrations on July 27, 1999 
using (a) the CB4 chemical mechanism and (b) the SAPRC99 chemical mechanism. 
 
Figure 7.  Observed and simulated long-term smoothed time series (1988-2005) of (a) NOx 
(averaged over 3 stations) and (b) CO concentrations (averaged over 34 stations) in the eastern 
United States. 
 
Figure 8.  Time series of daily maximum 8-hour O3 concentrations (ppb) for July 2002 at a 
monitoring site located in the Birmingham, Alabama metropolitan area.  Gray lines are results 
from individual members of a 200-member CMAQ model ensemble; black line/symbols are 
observed data from the monitor.  
 
Figure 9.  Spatial plots of the probability of the 4th highest daily maximum 8-hr ozone 
concentration exceeding 75 ppb for (a) the base case CMAQ model simulation and (b) after a 
50% reduction in NOx emissions.  Observations are shown in white circles in plot (a).  
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Figure 1. 
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Figure 2a (top), 2b (bottom) 
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Figure 3 
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Figure 4 
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Figure 5b 
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Figure 6a (top), 6b (bottom) Figure 6a (top), 6b (bottom) 
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Figure 7b 
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Figure 8. 
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Figure 9a (left), 9b (right).  
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