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1. INTRODUCTION 
The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments 
designed as part of NASA’s Earth Observing System (EOS) to provide long-term global 
observation of the Earth’s land, ocean, and atmospheric properties (Asrar and Dokken, 1993). 
The development of MODIS was built upon the experiences of Advanced Very High Resolution 
Radiometer (AVHRR) and the Landsat Thematic Mapper (TM). It was designed not only for 
providing continuous global observations, but also as a new generation of sensor with an 
increased combination of spectral, spatial, radiometric, and temporal resolutions. In addition to 
advances in sensor instrument, the MODIS mission also emphasized the development of 
operational data processing algorithms to generate global remote sensing spectral datasets and a 
variety of value added products spanning both the optical and biophysical domains. The 
motivation was to provide MODIS standard products to the general scientific community to 
support both theoretical and applied applications. Two MODIS instruments were initially 
scheduled for launch on the EOS-AM and EOS-PM platforms in June 1998 and December 2000, 
respectively (Running et al., 1994). The actual launch dates were December 18, 1999 (EOS-
Terra) and May 4, 2002 (EOS-Aqua). Terra MODIS data have been available since February 
2000. Subsequently, numerous scientific papers have been published on topics of MODIS data, 
algorithms, validation, and applications.  
 
This chapter provides a review of selected MODIS data products and algorithms. We reviewed a 
large number of MODIS algorithm theoretical basis documents (ATBD) developed by individual 
MODIS science teams and scientific papers published over the last 10–15 years. It is of our main 
interest to review MODIS algorithms to increase the understanding of the standard data products, 
document advances and limitations, and identify data quality and validation issues. The general 
organization of this chapter is as follows. We first briefly describe the MODIS sensor 
characteristics. We then review selected MODIS data products and algorithms for land, 
atmosphere, and ocean disciplines. Our focus is on the MODIS land product because its 
relatively wider use among the three. Finally, we review a wide range of applications and 
research activities that emphasize broad range of MODIS product applications.  
 
1.1 MODIS sensor characteristics  
Both EOS-Terra and EOS-Aqua are polar orbiting sun-synchronous platforms. The orbit height 
of EOS platforms are 705 km at the Equator. Terra’s equatorial crossing time (descending) is at 
10:30am local time; approximately 30 minutes later than the Landsat 7 satellite. Aqua crosses 
(ascending) the equator at approximately 1:30 pm.  Each MODIS instrument has a two-sided 
scan mirror that operates perpendicular to the spacecraft track. The mirror scanning extends 55° 
at either side of nadir, providing a nominal swath of 2330 km. The wide swath allows the nearly 
global coverage to be obtained by each instrument every 1–2 days.  
 
In addition to the high temporal resolution, the MODIS sensor has high spectral, spatial, and 
radiometric resolutions; compared to previous sensor systems such as the AVHRR. A total of 36 
spectral bands were carefully positioned across the 0.412–14.235 μm spectral region. Among the 
36 spectral bands, the first two bands are located in the red (0.648 µm) and near-infrared (0.858 
µm) with a spatial resolution of 250 m. There are five additional bands (bands 3–7: 0.470 µm, 
0.555 µm, 1.240 µm, 1.640 µm, and 2.13 µm) with a spatial resolution of 500 m located in the 
visible to short-wave infrared (SWIR) spectral regions. The remaining 29 spectral bands (bands 



8–36) have 1000 m spatial resolution, and are located in the middle and long-wave thermal 
infrared regions (TIR). The MODIS instrument also has a 12-bit radiometric resolution and an 
advanced onboard calibration subsystem that ensures high calibration accuracy (Guenther et al., 
1998; Justice et al., 1998). The sensor characteristics are considered to be substantially improved 
over other similar observation systems (Townshend and Justice, 2002). Unlike the AVHRR 
(mainly designed for monitoring the atmosphere), the MODIS sensor, is well suited for a wide 
range of research applications intended to improve the understanding of land, ocean and 
atmospheric processes, domain interactions, and the impacts of human activity on the global 
environment. Table 1 shows MODIS technical specifications including primary use, band 
numbers, band widths, spectral radiance, spatial resolutions, and signal-to-noise ratio. 
 
1.2 Data Products and Algorithms 
The MODIS instrument calibration, algorithm development, and standard data products are 
provided by the MODIS science team. The science team consists of over 70 American and 
international scientists, divided into four discipline groups for:  calibration, land, atmosphere, 
and ocean.  Each discipline group has clearly defined scientific responsibilities, and close 
interactions between the groups are maintained throughout the algorithm development, data 
processing, evaluation and product distribution.  
 
MODIS data products are broadly categorized into five levels from level-0 to level-4. MODIS 
level-0 data is the initial dataset automatically converted from instrumental raw format. The 
level-0 data is subsequently split into granules and an earth location algorithm is employed to 
add geodetic position information to each MODIS granule. This creates the MODIS level 1-A 
product that contains geodetic information such as latitude, longitude, height, satellite 
zenith/azimuth and solar zenith/azimuth angles (Nishihama et al., 1997). The level-1A data is 
further processed to generate level 1-B product (calibrated radiance for all bands and surface 
reflectance values for selected bands). Additional information such as data quality flags and error 
estimates are also provided. The MODIS level-1B data is still considered to be instrument data. 
It is used primarily as input to derive higher order MODIS geophysical products (levels 2–4). For 
example, MODIS level-2G is a gridded product that stores level-2 data in an earth-based uniform 
grid system. level-3 data provides an estimation of optical or biophysical variables for each grid 
element for predefined spatial and temporal resolutions (e.g., daily, eight-day, and monthly). The 
algorithms for the level-3 products often include spatial re-sampling, averaging, and temporal 
composition. Finally, level-4 data is generated through a variety of algorithms, models, and 
statistical methods. Generally, additional ancillary data are required to generate level-4 data (e.g., 
MODIS Net Primary Production product).  
 
MODIS data products are also labeled by collection version. Each collection version indicates a 
complete set of MODIS files corresponding to a specific data updating or re-processing stage. At 
the time of chapter preparation, the MODIS science team had completed the processing of the 
“Collection 5” data. The MODIS team anticipates that another round of data processing will be 
conducted in 2010, subject to the availability of new MODIS algorithms. The distribution of 
MODIS land, atmosphere and ocean data are primarily supported by three data centers including 
the:  Goddard Space Flight Center in Greenbelt, MD (i.e., level-2, level-2G, ocean color, sea 
surface temperature); U.S. Geological Survey EROS Data Center in Sioux Falls, SD (i.e., land 
products); and National Snow and Ice Data Center (NSIDC) in Boulder, CO (i.e., snow and sea 



ice). MODIS Level-1 and atmosphere products are distributed through the level-1 and 
Atmosphere Archive and Distribution System (LAADS) website.  
 
2. MODIS LAND PRODUCTS 
MODIS land products are developed by the MODIS land discipline group (MODLAND). The 
standard land products include both remote sensing surface variables (i.e., radiance, surface 
reflectance) and a wide-range of derived variables such as VI’s (Vegetation Indexes), LAI (Leaf 
Area Index), fPAR (fraction of Photosynthetically Active Radiation), BRDF (Bidirectional 
Reflectance Distribution Function), LST (Land Surface Temperature), NPP (Net Primary 
Production), fire and burn scar, land cover and land cover change, and snow and sea ice cover 
(Justice et al., 1998; Running et al., 1994).  Detailed descriptions about MODIS land products 
are provided by Justice et al. (1998) and ATBDs developed by the MODIS science team. A 
review of selected MODIS land products, algorithms and validation issues was conducted in this 
section.  
 
2.1 Surface Reflectance 
The core of the MODIS surface reflectance algorithm is atmospheric correction. Atmospheric 
gases, aerosols and clouds have direct impacts on solar radiation though absorption and 
scattering. The atmospheric effects may modify pixel brightness and change wavelength 
dependence on radiance (Herman and Browning, 1975; Kaufman, 1989). The objective of 
atmospheric correction is to remove atmospheric effects, and thus extract the surface reflectance 
values as if they were measured at ground level. The successful retrieval of surface reflectance is 
important for improving remote sensing data quality and subsequent data analysis and 
applications (Gordon et al., 1988; Liang et al., 2002; Tanre et al., 1992). 
 
One of the principal challenges for an operational atmospheric correction algorithm is high 
variations of aerosols and water vapor in space and time. Aerosol optical characteristics are often 
very difficult to model because of high variations of aerosol loadings, particle sizes, and 
distributions. Due to the lack of available data on aerosol characteristics, previous operational 
atmospheric correction algorithms have often assumed standard atmosphere with zero or 
constant aerosol loading to simplify the problem. The main advantage of the MODIS 
atmospheric correction algorithm is that it derives atmospheric characteristics from the MODIS 
data itself. The MODIS-derived aerosol optical thickness and water vapor content are coupled 
with MODIS spectral information and other ancillary data (i.e., digital elevation model) in a 
radiative transfer model to derive surface reflectance values. The direct implementation of the 
radiative transfer model at a per-pixel level is impossible for daily global MODIS data, 
considering the high computational cost; thus a look up table (LUT) approach is used to simplify 
the radiative transfer computation. A number of atmospheric effect quantities such as path 
radiance, atmosphere reflectance for isotropic light, and diffuse transmittance are pre-calculated 
for different aerosol loadings and sun-view geometries using the 6S (Second Simulation of a 
Satellite Signal in the Solar Spectrum) (Vermote et al., 1997) code. The surface reflectance 
values are then estimated using a second degree equation. The detailed mathematical equations 
and algorithms are described by Vermote and Vermeulen (1999). 
 
It should be noted that the MODIS atmospheric correction algorithm also considers adjacent 
effects, Bidirectional Reflectance Distribution Function (BRDF) and atmosphere coupling 



effects. The adjacent effects occur when the reflectance of a target pixel is mixed with those 
from surrounding pixels (Tanre et al, 1981). The adjacent effects should not be ignored for 
heterogeneous ground surfaces, especially for fine resolution pixels (i.e., 250 m). The MODIS 
atmospheric correction algorithm employs an inverting approach to correct the adjacent effects 
under linear combination assumptions (Tanre et al, 1981). The coupling of BRDF into 
atmospheric correction is implemented using a-priori estimates of the surface BRDF. The 
MODIS algorithm uses the BRDF from the previous 16-day period (Strahler et al., 1996); which 
increases accuracy compared to a commonly used Lambertian assumption.  
 
MODIS surface reflectance values are derived for MODIS bands 1–7 using the above described 
atmospheric correction algorithms. The major advantage is to use MODIS-derived atmospheric 
optical properties to achieve automated and operational correction at the global level (Kaufman 
and Tanre, 1996). The quality of MODIS surface reflectance is highly dependent on a number of 
MODIS-derived input data products (i.e., atmospheric properties) and radiative transfer models 
that incorporate various theoretical assumptions. Validation of the MODIS surface reflectance 
products has been conducted by intensive field campaigns and continuous validation at various 
validation sites. Liang et al. (2002) suggested that the direct comparison of MODIS surface 
reflectance values and ground “point” measurements are unrealistic due to scale mismatch. They 
proposed deriving surface reflectance values using higher resolution remote sensing data (e.g., 
Landsat) along with field calibration data, then upscaling (i.e., degrading) the high resolution 
surface reflectance values to the MODIS spatial resolution. In their validation work, MODIS 
surface reflectance values appeared to have reasonable accuracy (±5%) when compared to the 
degraded Landsat derived surface reflectance values. It should be noted that this validation effort 
was mostly for vegetated areas on relatively clear days. Additional continuous validation is 
needed for different land cover conditions and aerosol loadings. It is important to incorporate 
additional validation results to further improve the quality of MODIS surface reflectance data 
product, because the product serves as an important input to many higher level MODIS 
algorithms that produce MODIS land products such as VI’s, land cover classification, change 
detection, fire products, and others.  
 
2.2 Vegetation Indexes (VIs) 
Vegetation indexes have been widely shown to provide valuable measurements of vegetation 
activity and conditions (Tucker et al., 1979; Tucker et al., 1985). The Normalized Difference 
Vegetation Index (NDVI) is probably the most commonly used vegetation index, because it is 
highly correlated with many other biophysical parameters related to vegetation canopy 
properties, processes and functions (Curran, 1980; Tucker et al., 1981; Asrar et al., 1984; 
Goward et al., 1985). NDVI is mathematically a simple ratio of two linear combinations of 
spectral reflectance values of near infrared (NIR) and red bands: 
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Where NIRρ  and redρ  denote surface reflectance values at the NIR and red wavelength intervals, 
respectively. NDVI data is one of the standard MODIS VI products (Justice et al., 1998; Huete et 
al., 2003). It is also referred as “continuity” data which extends the AVHRR’s long-term NDVI 
records. 



 
In addition to NDVI product, MODIS VI products also include a newly developed Enhanced 
Vegetation Index (EVI) (Huete et al., 2002): 
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Where G is the Gain factor, C1 and C2 are aerosol resistance coefficients, and L is the canopy 
background adjustment. The numeric values for these coefficients are 2.5, 6, 7.5 and 1 for G, C1, 
C2, and L, respectively (Huete et al., 1994; Liu and Huete, 1995). Compared to NDVI, EVI 
provides improved sensitivity of vegetation signals in high biomass or dense forest regions 
(Huete et al., 2003). EVI is also better correlated with tree canopy structure characteristics such 
as LAI (Gao et al., 2000). The finest spatial resolution of the MODIS VI product is 250 m. It 
should be noted that there is no 250 m blue band for MODIS instrument, thus the 500 m blue 
band surface reflectance values are used as replacements to generate 250 m EVI products. Also, 
water, clouds/shadows, and pixels with heavy aerosol loadings are masked out for the VI 
products, since VI values are not robust for these cover types.  
 
MODIS standard VI products are provided at 250 m, 500 m, 1.0 km and 0.05° (5,600 m) 
resolutions through 16-day data composites. The MODIS VI data composite algorithm was 
developed based upon the experiences gained from the AVHRR-NDVI composite algorithm. 
The motivation is to generate cloud free and consistent NDVI product at the global scale. The 
AVHRR-NDVI composite algorithm selects the maximum NDVI value for a pixel within each 
14-day time interval. This is commonly referred as maximum value compositing (MVC) 
algorithm. One main drawback is that the MVC algorithm favors pixels with large view angles. 
These large view angle pixels often have higher NDVI values than the nadir view pixels, but 
they may not be cloud-free (Goward et al., 1991). The MODIS science team developed two new 
approaches to solve this problem: CV-MVC (constrained-view angle – maximum value 
composite) and BRDF-C (bidirectional reflectance distribution function composite). The CV-
MVC compares the two highest NDVI/EVI values and selects the one with smaller view angle 
for compositing, which typically improves the spatial consistency for VI time-series data. The 
BRDF-C algorithm is considered to be more complicated. It requires a minimum of five valid VI 
values for each pixel to mathematically interpolate nadir-view reflectance values and VIs 
(Walthall et al., 1985). This largely limits its applicability in regions with frequent cloud cover, 
thus it can be considered a region-dependent algorithm. Currently, CV-MVC is used as the 
primary compositing algorithm for MODIS VI products with MVC as a backup algorithm. 
BRDF-C algorithm is turned off due to its regional dependency.  
 
The results of MODIS VI’s validation have been reported by a number of researchers (Huete et 
al., 2002; Gao et al., 2003; Brown et al., 2006). Gao et al. (2003) compared MODIS vegetation 
indices with those from high spatial resolution images through the scaling up approach. It was 
found that both MODIS single-day VI and 16-day composited VI matched well with those values 
derived from higher spatial resolution datasets. Huete et al. (2002) conducted validation work in 
four field campaigns across the U.S. and at sites in North and South America. They compared 
MODIS NDVI and EVI with regard to temporal (seasonal) vegetation profiles, dynamic range 
and saturation, and their relationships with biophysical variables such as LAI, biomass, canopy 



cover, and fAPAR. The MODIS NDVI and EVI temporal profiles matched well in vegetation 
growing season in selected biomes. One noticeable difference of MODIS NDVI and EVI is the 
dynamic range. MODIS NDVI appears to be saturated (e.g., > 0.9) in high biomass regions, 
while EVI shows more sensitivities in those regions without suffering data saturation. EVI also 
has advantages in differentiating forest types such as broadleaf and needleleaf forests, while 
MODIS NDVI shows very similar signals for these forest types. These differences can have 
direct impact on vegetation index-based land cover mapping applications. The comparison of 
MODIS-NDVI and AVHRR-NDVI also shows interesting results (Huete et al., 2002). These two 
time-series products have very similar signals for arid and semi-arid regions in dry seasons; 
however, MODIS-NDVI products have much higher values in wet seasons. Brown et al. (2006) 
further suggested that the differences between these two NDVI products are land cover-
dependent and they can not simply be interchanged for analyzes. These studies suggested the 
challenge of data “continuity” between AVHRR and MODIS-NDVI data records. The 
contributing factors include differences in sensor band characteristics, and atmospheric 
correction and compositing algorithms used. Further research is needed to link AVHRR-NDVI 
and MODIS-NDVI in a more consistent manner for monitoring global vegetation conditions and 
changes.  
 
2.3 Land Cover and Change Detection Products 
Timely and accurate global land cover information is important for a wide range of studies 
including global climate change, carbon and hydrologic balance, terrestrial ecosystem, and 
human impacts on the natural earth system (Townshend and Justice, 2002). Operational global 
land cover mapping; however, is extremely challenging due to limitations in training data, high 
computational cost, and intrinsic spectral confusion between land cover classes.  Historically, 
global land cover maps have been complied by a number of research institutions and 
organizations (Friedl et al., 2002). The first remote sensing-based global map was produced by 
DeFries and Townshend (1994) using time-series AVHRR-NDVI monthly composite data at a 
1.0° spatial resolution. AVHRR-based global maps at finer spatial resolutions (e.g., 1–8km) have 
been subsequently developed using a variety of classification algorithms (Loveland et al., 2000). 
The main concern for the AVHRR-derived land cover data products is related to AVHRR sensor 
characteristics, which were not configured for land cover mapping. The MODIS science team 
has high expectations for the MODIS-derived land cover map products, mainly due to the 
improved sensor characteristics (spatial, spectral, and radiometric resolutions) and advances in 
computer algorithms such as atmospheric correction, image classification, and improved quality 
and quantity of training data sites. Land cover mapping and land cover change was identified as 
the most import task for the MODIS land science team (Asrar and Dokken, 1993; Running et al., 
1994).  
 
The MODIS land cover classification follows the IGBP (International Geosphere-Biosphere 
Programme) classification scheme. A total of 17 land cover classes are defined including 11 
natural vegetation classes, three non-vegetation classes, and three human-altered classes (Friedl 
et al., 2002). The training data points are designed to ensure the global representation through the 
System for Terrestrial Ecosystem Parameterization (STEP) (Muchoney et al., 1999). This global 
site database includes more than 1,373 sites globally. Training data points are developed mainly 
through visual interpretation of high resolution remote sensing imagery. Additional ancillary data 
was also used to augment training data points. It should be noted that the global site database is 
dynamic and needs to be updated continually to meet the requirements of operational global land 



cover mapping. The inputs for the MODIS land cover classification include the 16-day 
composite of MODIS surface reflectance values (bands 1–7) and the EVI. Two image 
classification algorithms were considered for the land cover classification by the MODIS science 
team. A supervised decision-tree algorithm (Quinlan, 1993) was selected over a neural network 
(Carpenter et al., 1992) algorithm, based on global operational considerations. An advanced 
boosting algorithm (Freund, 1995) was integrated with the decision-tree algorithm. This 
provided more robust estimates of per pixel probabilities of class membership. Currently, 
standard MODIS land cover products are provided at 500 m and 0.05° spatial resolutions on 
annual intervals.  
 
The validation of MODIS land cover data products is ongoing. Initial results from Friedl et al. 
(2002) suggested improved classification performance compared to AVHRR-derived products. 
This can be attributed to increased MODIS sensor characteristics and advances in atmospheric 
correction and improved classification algorithms. The accuracy of MODIS land cover products, 
however, does appear to have high regional differences. The quality of MODIS land cover 
products at high latitudes is particularly questionable due to the deterioration of MODIS inputs at 
those latitudes (e.g., low solar zenith angles). Considerable confusion is present between 
agriculture and natural vegetation. In a recent study, Giri et al. (2005) compared the MODIS 
global land cover data and the Global Land Cover 2000 (GLC-2000) data. These two global land 
cover datasets are derived using very different input data and classification algorithms. Although 
a general agreement was found at the class aggregated level, there were substantial differences 
for individual classes. Moreover, the agreements were highly variable across different biomes. 
This calls for further studies in the development of land cover classification schemes and 
classification algorithms.  
 
The MODIS land cover change algorithm does not use a post-classification comparison 
approach. The main reason is that the classification errors associated with two individual image 
classifications can be accumulated during the post-classification comparisons; which may 
seriously impact change detection performances (Stow, 1980; Singh, 1989). Instead, the MODIS 
land cover change algorithm relies on the analysis of multi-temporal image stacks or time-
trajectories to assess land cover dynamics caused by processes such as deforestation, agricultural 
expansion and urbanization. Change vector analysis (Lambin and Strahler, 1994) is the primary 
change detection technique used in the MODIS land cover change algorithm (Strahler et al., 
1999). The input data to the change vector analysis includes a variety of MODIS-derived 
spectral/spatial variables such as vegetation indexes, surface temperature, and spatial structure 
indexes. To detect the annual land cover change between consecutive years, these variables are 
compiled for each individual year by monthly (32-day) composites. The land cover statuses from 
the two consecutive years can be treated as two ‘points’ located in a multi-temporal feature 
space. A change vector thus can be generated by linking these two ‘points’ in the multi-temporal 
feature space. The direction and magnitude of the change vector is assessed to identify potential 
land cover changes (Lambin and Strahler, 1994). The main advantages of using change vector 
analysis are to overcome the error accumulation problem and subtle land cover changes can be 
identified. Currently, the MODIS land cover change product is provided at 1.0 km spatial 
resolution. In addition to the annual land cover change product, Zhan et al. (2002) developed the 
Vegetative Cover Conversion (VCC) product as a global alarm of land cover change caused by 
anthropogenic activities and extreme natural events. The spatial resolution of the land cover 



change alarm product is 250 m. The MODIS Level 1B data was used as input for decision trees 
to detection wildfire, flood, and deforestation activities. Furthermore, the MODIS research team 
at the University of Maryland (UMD) are actively developing enhanced land cover and land 
cover change products. These include the global 250 m land cover change indicator product, the 
global 500 m Vegetation Continuous Fields (VCF) product, and the global 1.0 km land cover 
classification at-launch product. The validation of MODIS land cover change products is an 
ongoing process. A review of recent literature suggests that very few studies have been 
performed for the validation of MODIS land cover change products at local, regional and global 
levels.  
 
2.4 Fire Products 
MODIS fire products consist of both fire detection and burn scar products. The theoretical 
background of the fire detection algorithm is provided by Ward et al. (1992) and Kaufman et al. 
(1992). The MODIS fire detection algorithm also benefits from rich experiences gained from 
AVHRR and Visible and Infrared Scanner (VIRS) (Giglio et al., 1999). The main objective was 
to automatically detect locations where active burning is occurring. The primary inputs for the 
fire detection algorithms are MODIS spectral signals at 4 μm and 11 μm. The MODIS channel at 
4 μm is considered to be the most sensitive channel for both fire flaming and fire smoldering, 
while the channel around 11 μm (TIR) detects strong emission from fires (Dozier, 1981; Justice 
et al., 2006). The MODIS fire detection algorithm consists of multiple processing steps to 
identify fire pixels. The initial step removes obvious non-fire pixels through a preliminary 
classification, potential fire pixels are then identified through thresholding of brightness 
temperatures (T4 and T11) derived from MODIS channels at 4 μm and 11 μm. The threshold 
values of T4 are specified as 310 K and 305 K for daytime and nighttime pixels, respectively. In 
addition, the difference between T4 and T11 needs to be larger than 10 K for a pixel to be labeled 
as potential fire pixel. MODIS spectral values at bands 1 (0.648 µm), 2(0.858 µm), and 7 (2.13 
µm) are also incorporated in the decision rules to reduce false alarms (e.g., sun glint) and 
confusion caused by clouds (Nath et al., 1993).  
 
Within the potential fire pixels, the MODIS fire algorithm further considers two approaches to 
identify unambiguous fire pixels. The first approach relies on high threshold values of brightness 
temperatures to identify actual fire pixels. The second approach examines contextual information 
of neighboring pixels (3 × 3 to 21 × 21) to identify active fire pixels. At least eight valid 
neighboring pixels are required for the background contextual analysis using 4 μm and 11 μm 
brightness temperature values. The brightness temperature values for the focal pixels are 
compared with the background contextual statistics to make decisions. The final fire products are 
labeled using the following categories: missing data, cloud, water, non-fire, fire, or unknown 
(Giglio et al., 2003). The fire radiative power (FRP) is also computed for each fire pixel using 
the empirical relationship developed by Kaufman et al. (1998). A range of standard MODIS fire 
products are provided at various processing levels (level-2, level-2G, and level-3) with different 
spatial (1.0 km and 0.5°) and temporal resolutions (daily, 8-day and monthly composite).  
 
The MODIS burn scar algorithm was developed by Roy et al. (2002; 2005). The burn scar 
products identify the spatial extent of the recent burn area, in contrast to the identification of 
active fire in the MODIS fire algorithm. The identification of burn scars at the global scale is an 
extremely challenging task since the spectral signals of burn areas are very similar to those of 
other land cover types such as flooding area and shadows from clouds and surface relief. The 



current MODIS burn scar algorithm can be considered a change detection approach through a 
statistical and temporal modeling of bi-directional reflectance variables. For each pixel, the bi-
directional reflectance values within a pre-defined temporal window (i.e., 16-day) are used in a 
statistical model to predict a subsequent reflectance value. This predicted value is then compared 
to the actual observed surface reflectance value to identify the chance of change. Threshold 
values are specified to identify pixels with large decreases of surface reflectance values. The 
primary inputs to the MODIS burn scar algorithm are MODIS band-2 (841–876 nm) and band-5 
(1230–1250 nm); which are the most sensitive to burning and post-fire reflectance change. 
Additionally, simple band relationships between MODIS bands 2, 5, and 7 are used in the 
MODIS burn scar algorithm to reduce false alarms such as cloud, shadow, or soil moisture 
changes (Justice et al., 2006).  
 
The validation of MODIS fire data product has been conducted by several researchers using 
ASTER- (Advanced Spaceborne Thermal Emission and Reflection Radiometer) derived fire 
products as references (Morisette et al., 2005; Csiszar et al., 2006). The studies concluded that 
approximately 50% of the large fire clusters (45–60 ASTER pixels) were correctly identified. 
Ellicott et al. (2009) validated the MODIS-derived fire products (2001–2007) and found a slight 
underestimation of fire extent. They further analyzed the spatial distribution and found that 
Africa and South America contribute about 70% of global fires annually, suggesting high rates of 
biomass burning in those regions. For the validation of burn scar products, Chang and Song 
(2009) compared the standard MODIS burn scar products to burned areas derived in the SPOT-
based L3JRC product from years 2000–2007. The spatial and temporal patterns from these two 
products were consistent, especially during the fire season. The research also suggested that 
MODIS burn scar products performed better than L3JRC products when compared to selected 
ground-based measurements in Canada, China, Russia, and the U.S. One noticeable problem in 
the MODIS burn scar product is the underestimation of burn area in boreal forests.  
 
2.5 Snow and Sea Ice Cover 
The spatial extents and dynamics of global snow cover are important for studies in hydrologic 
and bio-geochemical cycling, surface albedo, global energy balances, and climate change 
(Robinson et al., 1993). Although large-scale hemispheric snow maps have been routinely 
developed by the National Environmental Satellite Data and Information Service (NESDIS) and 
the Interactive Multi-Sensor Snow and Ice Mapping System (IMS), the spatial resolutions are 
generally coarse (e.g., IMS product at 25 km). The main objective of the MODIS snow cover 
algorithm, or Snowmap, was to develop an automated computer algorithm that can be used to 
identify snow cover at higher spatial resolution (e.g., 500 m) globally (Hall et al., 2001; 2002). 
 
Snow cover has distinct spectral signals that can be clearly differentiated from most other natural 
cover types. The primary confusion is with clouds, but previous research suggests that snow and 
cloud cover have different spectral responses at visible and short-wave infrared channels. 
Specifically, snow cover has a strong reflectance in the visible range, but a low reflectance in the 
short-wave infrared spectral region. On the other hand, clouds typically have strong reflectance 
values in both spectral regions (Kyle et al., 1978; Dozier 1989). A ratio-based Normalized 
Difference Snow Index (NDSI) has been developed for snow mapping with Landsat data (Dozier 
1989). The NDSI is also one of the primary algorithms used for MODIS Snowmap products. 
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The MODIS Snowmap algorithm uses sensor reflectance values in bands 4 and 6 to compute the 
NDSI (Eq. 3).  A pixel is labeled as snow if the NDSI is larger than the threshold value of 0.4. 
Additional decision rules in the Snowmap include the thresholding of MODIS band-2 (> 0.11) 
and band-4 (> 0.10). Generally, the NDSI value decreases as the purity of snow pixels are 
reduced. To identify partial snow pixel (e.g., > 50%) in forested region, Snowmap incorporates 
MODIS-NDVI to map the snow pixel. For instance, pixels might be labeled as snow in cases of 
NDVI =~0.1 and NDSI < 0.4 (Hall et al., 2002). Currently, standard MODIS snow products are 
provided at daily and temporal compositing of 8-day and monthly intervals. The temporal 
composting algorithm simply selects a maximum value within a specified temporal interval. A 
similar decision rules technique used in Snowmap has also been employed for the MODIS sea 
ice product through the sea ice mapping algorithm (Icemap).  
 
Validation of the Snowmap product has been difficult due to the limited reference data and scale 
mismatch between various remote sensing-derived snow map products. Klein and Barnett (2003) 
conducted a snow map validation work for the Upper Rio Grande River Basin of CO and NM 
using snow cover map products developed by the National Operational Hydrologic Remote 
Sensing Center (NOHRSC). A high overall agreement of 86% was reported. The two snow cover 
maps were also compared with in situ snow measurements. The MODIS snow map performed 
best with a 94% agreement. Noticeable MODIS snow maps errors included locations where 
snow depths are less than 4 cm. Ault et al. (2006) compared MODIS snow products with data 
from a number of observation stations that included amateur observations across the Laurentian 
Great Lakes Region. The MODIS snow cover map matched very well with observational 
datasets. Major errors identified in the MODIS snow maps occurred in the forested areas. Hall 
and Riggs (2007) reported that the accuracy of selected MODIS snow product images (500 m) 
was approximately 93%. The confusion between snow and cloud was a major problem. Although 
the Snowmap algorithm successfully differentiates a majority of snow and cloud pixels at a 500 
m spatial resolution, there were large uncertainties at the partial or sub-pixel level. Additional 
uncertainties were attributed to thin snow cover. The snow cover composite data is believed to be 
less accurate due to error accumulation from the daily snow product (Hall and Riggs, 2007).  
 
2.6 LAI and fPAR 
Leaf area index (LAI) denotes the one-side green leaf area per unit ground area. LAI is a plant-
canopy attribute that is often used in process-based ecosystem, hydrology, and global climate 
models (Sellers et al., 1997). The term fPAR denotes the fraction of photosynthetically active 
radiation absorbed by plant canopies. A large amount of research has been conducted to study 
the relationships among plant canopy reflectance, spectral vegetation indexes, LAI and fPAR 
(Asrar et al., 1984; Asrar et al., 1989). One common approach to estimate LAI and fPAR is to 
develop empirical models based on remote sensing surface reflectance or vegetation indices such 
as NDVI (Asrar et al., 1989).  
 
The MODIS LAI/fPAR algorithm relies on a three-dimensional radiative transfer model and a 
look up table (LUT) approach to estimate LAI/fPAR. A global biome map is developed to 
allocate land cover types into six broad biomes including grasses and cereal crops, shrubs, 



broadleaf crops, savannas, broadleaf forests and needle leaf forests (Myneni et al., 2002). This 
simplifies a number of assumptions and input parameters for the radiative transfer model. The 
three-dimensional radiative transfer model generates several spectral and angular signatures 
which can be compared to the MODIS directional surface reflectance values through a look up 
table. The MODIS LAI/fPAR algorithm then derives location-specific results by incorporating 
the law of energy conservation (Knyazikhin et al., 1998). Further details about the MODIS 
LAI/fPAR algorithm and its theoretical background can be found in Knyazikhin et al. (1999). 
Standard MODIS LAI/fPAR products include 1 km spatial resolution data for both the daily and 
8-day maximum value composite dataset.  
 
Privette et al. (2002) conducted initial validation work for the MODIS LAI products using field-
sampled data in southern Africa and found the accuracy of the MODIS LAI product is within an 
acceptable level. The MODIS LAI products successfully depicted the structural and phenological 
variability in semiarid woodlands and savannas. Wang et al. (2004) conducted LAI validation 
work in a needle-leaf forest site near Ruokolahti, Finland. The field LAI measures were first 
linked to high resolution Landsat images and then aggregated to match the MODIS spatial 
resolution. The MODIS LAI products showed higher variation than expected. The values were 
also overestimated compared to the field-based LAI measures. The authors suggested that the 
understory vegetation might cause the uncertainties. Iiames (2006) assessed MODIS LAI 
products for the evergreen needle leaf biome in the southeastern United States. The major 
challenges were attributed the uncertainties in the creation of the high-resolution LAI reference 
map, land cover classification, and the influences from vegetative understory. Yang et al. (2006) 
further addressed sources of MODIS LAI uncertainties, including the inputs of land cover maps, 
surface reflectance, and look-up tables used in the MODIS LAI algorithm. Kanniah et al. (2009) 
assessed the accuracy of LAI and fPAR for a northern Australian savanna site and found that the 
MODIS products captured the seasonal variation in LAI and fPAR well, especially the most 
recent Collection-5 data. However, Xiao et al. (2009) raised concerns related to the 
spatial/temporal discontinuity of MODIS LAI products for many numerous locations. They 
proposed a new algorithm for estimating LAI from time-series MODIS reflectance data to  
increase temporal continuity and improve accuracy.  
 
2.7 Net Primary Productivity (NPP) 
In addition to developing standard products linked to plant canopy structure and bio-optical 
properties, the MODIS science team also emphasizes developing algorithms and standard 
products for plant productivity and processes. Net primary production (NPP) is one of the 
standard MODIS products that provides a key measure of vegetation productivity. NPP denotes 
the rate of net carbon gain by vegetation over a specified time period and can also be represented 
as the different between gross primary production (GPP) and plant respiration. NPP is commonly 
measure at monthly, annual or longer temporal intervals. The estimation of NPP requires the 
integration of ecological principles, remote sensing data and other ancillary surface datasets. 
Potter et al. (1993) found that NPP can be estimated as a product of absorbed photosynthetically 
active radiation (APAR) and an efficiency of radiation use. The theoretical basis of the 
relationship between APAR and NPP is provided by Monteith (1972; 1977).  
 
Theoretically, NPP values can be estimated based on an empirical relationship between APAR 
and NPP; which has been demonstrated in numerous studies (Asrar et al., 1984; Goward et al., 
1985). However, the relationship between the two variables is also dependent upon vegetation 



type and numerous other control factors such as concentration of photosynthetic enzymes, 
canopy structure, and soil water availability (Russell et al., 1989; Running et al., 1999). This 
represents a considerable challenge to the development of an operational MODIS NPP algorithm 
using the APAR-based approach. The current MODIS NPP algorithm relies on an alternative 
approach that computes the difference between GPP and plant respiration. The basis for this 
approach is that APAR is actually more closely related to GPP than to NPP (Hunt, 1994; 
Running et al., 1999). A detailed algorithm flowchart can be found in Running et al. (1999). The 
primary algorithm can be broken down into two sub-routines. The first estimates the daily GPP 
using standard MODIS fPAR products and ancillary surface meteorological measures as inputs. 
Different radiation conversion efficiency parameters are also provided as inputs using a look-up 
table (stratified by biome types). The second sub-routine estimates daily plant respiration. 
MODIS LAI is used as one of the inputs to estimate leaf mass, which is further used as an input 
for plant respiration estimation. The results from the two sub-routines (estimated GPP and plant 
respiration) are used to derive daily NPP. The daily NPP product is provided at a spatial 
resolution of 1.0 km. In addition to the daily NPP, MODIS algorithm also provides annual NPP. 
The annual NPP is estimated by integrating daily NPP and subtracting a number of respiration 
parameters for live woody tissue, leaves and fine roots (Running et al., 1999).  
 
Turner et al. (2006) evaluated MODIS NPP and GPP products across multiple biomes. The GPP 
at eddy covariance flux towers and plot-level measurements of NPP were scaled up to 25 km2 
and compared to the MODIS products. The authors reported high variations of results over 
different biome types and land uses. The MODIS products overestimated NPP and GPP at low 
productivity sites while underestimated those values at high productivity sites. One of the main 
error sources was attributed to the input (e.g., fPAR estimates) to the MODIS NPP algorithm 
(Turner et al., 2006).  
 
 
3. MODIS ATMOSPHERIC AND OCEAN PRODUCTS 
3.1 Aerosols  
Aerosols, especially human-made aerosols may lead to large reductions in the amount of solar 
irradiance reaching the Earth’s surface, and increase in solar heating of the atmosphere 
(Ramanathan et al., 2001). Aerosol loadings and distributions are often poorly characterized 
because they are highly variable in space and time. Remote sensing-based characterization is 
generally performed by estimating aerosol optical depth or thickness. To account for the very 
different surface reflective properties associated with ocean and land surface, the MODIS 
products incorporate two independent algorithms to retrieve aerosol optical depth (Kaufman et 
al. 1997, Tanre et al. 1997).  
 
The aerosol algorithm over ocean integrates a radiative transfer model and LUT to produce 
aerosol optical depth estimates. The radiative transfer model has been run under a range of pre-
defined aerosol conditions that describe particle modes (fine and coarse particles), total loadings, 
sensor/sun geometry angles, wind speed and other parameters computed from ancillary data 
(Ahmad and Fraser, 1981). The theoretical background is provided by Wang and Gordon (1994) 
who use fine/coarse particle modes to model multiple scattering process of radiance. The 
radiative transfer model produces a LUT table which can link spectral reflectance values and 
aerosol spectral properties or optical depth estimates. The observed MODIS surface reflectance 



values are simply compared to the values in the LUT to find the best fit using a least-square 
algorithm.    
 
Aerosols over land surface are more concentrated compared to those over the ocean surface 
because the majority of aerosol sources are located on land (Kaufman et al., 1997). The 
estimation of aerosol optical depth over land surface is considered to be more challenging due to 
the highly variable reflective properties associated with different cover types. The radiance 
components from land surface cannot be easily separated from those of aerosols (note that ocean 
surface is generally darker and water-leaving radiance can often be assumed to be zero). This is 
one of the major reasons that aerosol optical depth has not been routinely estimated at the global 
level before the use of MODIS data (Kaufman et al., 1997).  
 
The MODIS aerosol algorithm over land relies on the accurate identification of dark surface 
pixels. Vegetation index-based dark pixel detection was found to be unreliable for global 
applications because vegetation indices themselves are affected by the presence of aerosols 
(Holben et al., 1986). For the MODIS aerosol algorithm over land, two MODIS spectral bands at 
2.1 µm and 3.8 µm are used to detect dark pixels (Kaufman et al., 1997). The spectral band at 
2.1 µm is preferred; especially when the reflectance value for this band is lower than 0.05. The 
wavelengths of these two spectral bands are considerably longer than those of typical aerosol 
particles, thus the surface reflectance retrieved for these spectral bands can be considered as free 
of aerosol impacts. Under aerosol-free conditions, there are stable relationships between surface 
reflectance in the visible bands (0.47 µm and  0.66 µm) and SWIR bands (2.1 and 3.8 µm), thus 
the surface reflectance values in visible bands can be estimated from surface reflectance values 
derived for the SWIR channels (Kaufman et al., 1997). The difference between the estimated and 
the MODIS-derived surface reflectance values in visible bands can be attributed to the presence 
of aerosols. This is the fundamental assumption for the MODIS aerosol algorithm for land 
surfaces.  
 
Validations of aerosol optical depth estimates have been conducted by a number of researchers. 
Remer et al. (2004) compared 8,000 MODIS-derived optical depth values and AERONET 
(Aerosol Robotic Network) measurements. MODIS estimates were reported to be within the 
acceptable uncertainty levels over ocean and land surfaces. Chu et al. (2002) compared MODIS-
derived aerosol optical depths and measurements from 30 AERONET sites. They found that the 
levels of consistency are higher for continental inland regions than for coastal regions. The 
partial water surface may have contaminated the aerosol optical depth estimation in the coastal 
regions. The authors also suggested that the lack of AERONET sites in East Asia, India and 
Australia makes global validation of MODIS aerosol optical depths particularly challenging.  
Aloysius et al. (2009) compared MODIS-derived aerosol optical depths and NCEP (National 
Centers for Environmental Prediction) reanalysis data over the South East Arabian Sea. They 
reported high correlations (R2 = 0.96) between the two datasets. At the local level, Li et al. 
(2005) suggested that the standard MODIS 10 km aerosol optical depth estimates are insufficient 
to characterize the local aerosol variation over urban areas. They modified the MODIS aerosol 
algorithm and derived aerosol optical depth at 1.0 km spatial resolution over Hong Kong. High 
accuracies are reported compared to field measures. This suggested high potential of MODIS 
data for the estimation of aerosol optical depth at higher spatial resolution over local areas.  
 
3.2 Clouds 



Clouds play major roles in the Earth’s radiation budget and climate change research 
(Ramanathan, 1987). The MODIS atmosphere science team has developed a variety of 
algorithms to generate MODIS cloud products including a cloud mask and optical properties. 
The review provided here focuses on the MODIS cloud detection, or cloud mask algorithm. The 
MODIS cloud mask algorithm employs an automated and threshold-based approach to identify 
clouds. The algorithm is developed upon previous cloud detection research and experiences from 
the International Satellite Cloud Climatology Project (ISCCP) (Rossow and Garder, 1993) and 
the AVHRR processing scheme Over Cloud Land and Ocean (APOLLO) (Gesell, 1989) cloud 
detection algorithm (Ackerman et al., 2006). These algorithms primarily use multiple radiance 
thresholds testing to label pixels as cloudy or clear. The ISCCP algorithm also integrates spatial 
and temporal information in its decision rules.  
 
The primary inputs to the MODIS cloud detection algorithm include 19 MODIS visible and 
infrared radiance values. Additional ancillary datasets include sun and sensor geometry angles, 
ecosystem classifications, land and water distributions, elevation above mean sea level, daily 
snow and ice maps from NSIDC (National Snow and Ice Data Center) and the daily sea ice 
concentration product from NOAA (National Oceanic and Atmospheric Administration). The 
ancillary data provide a basis to segment the Earth’s surface into a range of surface conditions 
over time including:  daytime land; daytime water; nighttime land; nighttime water; daytime 
desert; and daytime and nighttime snow or ice surfaces (Ackerman et al., 2006). The MODIS 
cloud detection algorithm employs different threshold testing for different surface conditions 
over time. For a specific surface condition at a given time, each 1.0 k pixel is put through a 
variety of radiance and temperature-based threshold tests; which can be classified into the 
following five groups: simple IR threshold tests; brightness temperature differences; solar 
reflectance tests; NIR thin cirrus; and IR thin cirrus testing. One advance of the MODIS cloud 
detection algorithm was to include a confidence level for each threshold test, rather than provide 
simple categorical labels such as cloudy or clear. The confidence level is computed based on the 
distance from the threshold value and a continuous value is derived for each test (high 
confidence of clear pixel = 1, high confidence of cloudy pixel = 0). For each threshold testing 
group, a minimum confidence value is determined.  The final confidence level is then integrated 
from the results of five groups. As a result, the MODIS algorithm provides multiple levels of 
‘confidence’ for the cloud mask product (i.e., cloudy, probably clear, confidently clear, and 
uncertain). This allows users to develop their own decision rules to process or use the standard 
MODIS cloud mask product.   
 
Berendes et al. (2004) compared MODIS-derived daytime cloud products and observations from 
ground-based instrumentation located in North Alaska. They reported agreement within ±20% 
between the two datasets. In their study, the MODIS cloud mask appeared to be more accurate in 
the detection of thin cirrus clouds than the surface-based instruments. However, other researchers 
suggested that a major challenge in MODIS cloud masking is still cirrus cloud cover. Dessler and 
Yang (2003) analyzed MODIS cloud mask products for two 3-day periods from December 2000 
and June 2001. They reported that approximately one-third of the pixels flagged as cloud free by 
the MODIS cloud mask contains detectable thin cirrus clouds. Further research is needed to 
improve the detection of thin cirrus clouds in the MODIS cloud algorithm.  
 
3.3 Ocean  



Numerous standard MODIS ocean data products are provided by the MODIS science team, 
including normalized water-leaving radiance, pigment concentration, chlorophyll fluorescence, 
chlorophyll-a pigment concentration, photosynthetically available radiation, suspended solids 
concentration, organic matter concentration, ocean water attenuation coefficient, ocean primary 
productivity, sea surface temperature, phycoerythrin concentration, and ocean aerosol properties.  
 
Many MODIS ocean algorithms were developed upon experiences from the Coastal Zone Color 
Scanner (CZCS) (Gordon and Voss, 1999). A common perception is that water color (spectral 
measures) can be used to derive important biophysical parameters related to phytoplankton 
pigment concentration, primary productivity and sea surface temperature. One main challenge of 
ocean color characterization is that the retrieval of the relevant signal from the total radiance is 
difficult, because the water-leaving radiance is quite small (<10%) compared to the total radiance 
received at the sensor. In other words, at-sensor radiance is dominated by atmospheric effects 
over the ocean surface. It is therefore necessary to conduct atmospheric correction for the 
MODIS ocean color products. A detailed atmospheric correction algorithm is provided by 
Gordon and Voss (1999). The output of the algorithm is called normalized water-leaving 
radiance, which approximates water-leaving radiance (sun at zenith) free of atmospheric impacts 
for most oceanic conditions. The normalized water-leaving radiance is further used as input to 
generate almost all other MODIS ocean products. For instance, the current MODIS pigment 
concentration and bio-optical properties are largely dependent on empirical or semi-empirical 
relationships derived between spectral and biophysical measures obtained from the same field 
observations. The normalized water-leaving radiance over a large ocean area thus can be 
compared to those spectral measures obtained at field observations to generate estimations of 
pigment concentration or other biophysical properties.  
 
3.4 Other 
It must be noted that the MODIS science team has developed a large number of algorithms over 
the periods of MODIS instrument design, pre-launch, and post-launch phases. Some of the 
algorithms are continually updated, which leads to several MODIS data reprocessing procedures. 
This chapter only reviews a selected number of MODIS algorithms and products, thus it is by no 
means a complete description of MODIS algorithms and products. There is a range of MODIS 
standard products that were not discussed in this chapter, particularly for the atmosphere and 
ocean disciplines. The ATBDs developed by the MODIS science team is probably the best 
resource for those readers interested in more detailed MODIS algorithms, theoretical 
background, and data products.  
 
4. MODIS APPLICATIONS 
Since the launch of MODIS-Terra, hundreds of scientific papers have been published on the 
application of MODIS data at global, regional and local levels. The remote sensing literature has 
covered research on the following topics:  global climate models (Oleson et al., 2003; Tian et all, 
2004); land cover and change detection (Lunetta et al., 2006; Zhang et al., 2008; Gill et al., 
2009); forest disturbance and vegetation dynamics (Evrendilek and Gulbeyaz 2008; Hansen et 
al., 2008; Hilker et al., 2009; Maeda et al., 2009); vegetation and crop phenology monitoring 
(Zhang et al., 2003; Sakamoto et al., 2005), terrestrial ecosystem carbon exchange (Garbulsky et 
al., 2008; Xiao et al., 2009); eco-hydrological analysis (Hwang et al., 2008); crop mapping and 
crop yield estimation (Doraiswamy et al., 2004; Sakamoto et al., 2009); human health issues (Hu 



2009); air quality assessment (Gupta and Christopher, 2008); water quality monitoring and 
assessment (Hu et al, 2004); species and habitat distribution (Vina et al., 2008). 
 
At the global level, various MODIS data products have been used as primary inputs into climate 
models, and as reference data to validate the climate models (Oleson et al., 2003; Tian et al., 
2004). For example, Tian et al. (2004) compared the land surface albedo from the Community 
Land Model (CLM) (Bonan et al., 2002) to MODIS albedo products (Gao et al., 2005) under two 
land surface scenarios. The first land scenario used older standard parameters in the CLM for a 
“control run”. The second scenario uses a range of newly derived MODIS land parameters such 
as vegetation continuous fields (VCF), LAI, land cover, and plant functional type as the model 
inputs. Improved CLM results are reported when the MODIS-derived products are used as land 
surface parameters. Lawrence and Chase (2007) developed new CLM land surface parameters 
based on MODIS land products and found that the new model had substantial improvements in 
surface albedo estimation; which further improved the simulation of precipitation and near-
surface air temperature. Although the MODIS data algorithms and products show promise for 
climate modeling, Dickson (2009) also suggested that one of the major challenges for the current 
remote sensing data are the spatial and temporal discontinuities. For example, general land cover 
on the earth’s surface should be quite stable over time, except for some small random changes 
caused by human or natural disturbance. Spatial and temporal discontinuity, however, often 
occur in remote sensing-derived land surface parameters as a result of system limitations or 
systematic errors. Future research should address these problems, mainly through algorithm 
improvements.  
 
The use of MODIS data for applications in forest disturbance, vegetation dynamics, urban 
development, agricultural expansion, and crop mapping and management generally rely on 
image classification and change detection techniques. Instead of using the standard MODIS 
global data, researchers often need to develop their own classification and change detection 
algorithms for local and region applications. There are three motivations for researchers to 
develop their own products using MODIS spectral information. First, the information desired at 
local and regional levels is generally more detailed than those of the MODIS global datasets. 
Second, the spatial resolution of standard MODIS global data might be too coarse for local 
applications. Third, the accuracy of the MODIS global datasets varies across regions. It is often 
possible to improve accuracy using an increased number of training data points, ancillary data, 
and algorithms that fit better with local conditions.  
 
The desire to obtain more detailed land use and cover type information can be illustrated through 
a number of research projects that focused on the crop mapping using MODIS data. The standard 
MODIS land cover product does not include specific crop types in its mapping scheme. Recent 
studies suggest that MODIS data has sufficient spatial and temporal resolution to identify major 
crop types such as corn, soybean, and wheat in intensive agricultural regions in the United States 
(Wardlow et al., 2007; Wardlow and Egbert, 2008; Shao et al., 2010). These studies often rely 
on the use of MODIS time-series NDVI or a phenology-based analysis for the land cover and 
crop identification. Xiao et al. (2005) found that the MODIS-NDVI profiles were also useful in 
characterizing rice distributions, mainly due to the unique NDVI profiles associated with rice 
transplanting, growing and fallow periods. The results from these studies suggest that the unique 



combination of spatial, spectral, and temporal resolutions associated with MODIS data is a major 
advantage for more detailed land use and cover type classification at regional and local scales.  
 
The 500 m or 1.0 km spatial resolution land cover products may be too coarse for many regional 
to local scale applications. This is particularly evident for areas with complex or heterogeneous 
land cover patterns at finer spatial scales (Lobell and Asner, 2004; Knight et al., 2006). Many 
researchers have employed spectral mixture analysis (SMA) to unmix MODIS pixels, and thus 
derive proportional land cover at the sub-pixel level. Chang et al. (2007) estimated proportional 
corn and soybean cover within MODIS 500 m data. Knight et al. (2006) examined the potential 
of sub-pixel land cover estimation using multi-temporal MODIS-NDVI 250 m data. The sub-
pixel land cover mapping problem is also addressed by the MODIS science team. It is actually 
designed as a part of the MODIS enhanced land cover and land cover change products. Hansen 
et al. (2002) employed a regression tree algorithm to derive sub-pixel tree cover products at 500 
m spatial resolution. His sub-pixel classification approach relied on training pixels that contain 
tree cover proportions derived from high-resolution satellite images. The regression tree was 
trained to model the relationship between the MODIS signals and tree proportions at the sub-
pixel level. The assessment of the sub-pixel tree cover estimation accuracy was extremely 
challenging due to the lack of reference datasets, especially at regional or global scales. The 
trend towards sub-pixel analysis is not limited to land cover classification; researchers are also 
actively working on sub-pixel cloud detection and sub-pixel snow cover mapping (Salomonson 
et al., 2004). The relationship between sensor spatial resolution and ground surface features 
continue to be a challenging topic for the remote sensing research community. 
 
MODIS-based change detection has been employed by many researchers to study deforestation, 
urbanization, and agricultural expansion (Lunetta et al., 2006; Zhang et al., 2008; Gill et al., 
2009). Most of the change detection algorithms are developed for the 250 m MODIS data, 
because many human-introduced land cover changes occur at fine spatial scales. Lunetta et al. 
(2006) developed an automated land cover change alarm product in the Albemarle-Pamlico 
Estuary System (APES) region of the U.S. The approach relied on detecting pixels that have 
experienced significant changes in the annual-integrated NDVI values. A large drop of annual-
integrated NDVI may suggest possible land cover changes such as urban development or 
vegetation clear cutting. Jin and Sader (2005) also used the MODIS 250 m vegetation indexes to 
detection forest harvest disturbance in north Maine. It was found that although the MODIS single 
day and 16-day composite NDVI data showed no significant difference in overall detection 
accuracies, the single day NDVI actually performed better when disturbed patch sizes are 
smaller.  
 
Zhang et al. (2003) examined vegetation phenology using a time-series of the MODIS vegetation 
index (VI). They used a series of piecewise logistic functions to detect transition dates of 
vegetation activity on an intra-annual basis. Sakamot et al. (2005) analyzed time-series data of 
the enhanced vegetation index (EVI). Subsequent to data smoothing the points of maximum, 
minimal and inflection were then identified to examine phenological stages of paddy rice, which 
were then used to evaluate crop productivity and management. Soudani et al. (2008) examined 
vegetation phenological dates for deciduous forest stands using 250 m daily MODIS-NDVI data. 
Key phenological dates (e.g., onset of green-up) matched well with in-situ observations. The 
level of temporal uncertainty for the MODIS-NDVI data is approximately 8-days. This MODIS-



derived vegetation phenologycan be particularly useful for research in vegetation-climate 
interactions and modeling (Pettorelli et al., 2005).  
 
One potential sources of uncertainty in time-series studies is the error of mis-registration. 
Although the MODIS science team has substantially increased the registration accuracy over 
several reprocessing procedures, the 75–100 m mis-registraion error is still a substantial 
challenge for performing time-series analysis at the 250 m spatial resolution (Tan et al., 2006). 
The impacts of mis-registration in time-series composite data can be even larger due to a 
potential ‘multiplier effect’ and the selection of pixels under different sun-sensor geometry 
angles. Therefore, it is important for users to understand these potential error sources. Additional 
research is needed to further our understanding of the cumulative impacts associated with 
MODIS data quality, sensor-sun geometry information, and mis-registration errors. 
 
5. SUMMARY 
The MODIS instrumental characteristics represent a new generation of sensor system for global 
observation. Global coverage of MODIS data are obtained every 1-2 days. The spectral, spatial, 
and radiometric resolutions are also substantially improved compared to previous global sensor 
systems such as the AVHRR. In addition to the spectral products commonly provided for all 
remote sensing platforms, the MODIS science team devoted tremendous efforts in developing a 
wide range of MODIS-derived scientific datasets that are readily available for scientific 
communities. MODIS data represent not only a ‘continuity’ remote sensing data record to extend 
previous sensor systems, but also a substantial improvement by integrating the most advanced 
remote sensing theory, algorithm development, data processing, validation and distribution.  
 
A majority of current MODIS algorithms are operational at the global level. The data quality has 
been improving over several data reprocessing cycles. Validation of MODIS standard products is 
an ongoing effort by both the MODIS science team and independent researchers. Most validation 
work has suggested a high level of data quality for the MODIS products. This can be attributed 
to the improvement of spectral, spatial, temporal, and radiometric resolution, as well as advances 
in the algorithm development from the MODIS science team. The success of MODIS is also 
evident from the exponential growth of applications that use MODIS data products at global, 
regional, and local levels. Future development of MODIS data and algorithms may integrate 
more feedback from continuous data quality validation and applications. These include many 
potential topics such as sub-pixel analysis, scaling problems, biophysical applications, in-situ 
data integration (cloud, ice, water, and land data), and optical and climate modeling.  
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Table 1.  MODIS technical specifications including primary use, band numbers, band widths, 
spectral radiance, spatial resolutions, and signal-to-noise ratio. 
 

 
 
 
 
 


