
SATELLITE REMOTE SENSING OF ISOLATED WETLANDS USING
OBJECT-ORIENTED CLASSIFICATION OF LANDSAT-7 DATA

Robert C. Frohn1,2, Molly Reif1,3, Charles Lane4, and Brad Autrey4

1Dynamac Corporation c/o U.S. Environmental Protection Agency (U.S. EPA)

26 W. Martin Luther King Dr., Cincinnati, Ohio, USA 45268

E-mail: frohn.robert@epa.gov

2Department of Geography, University of Cincinnati, Cincinnati, Ohio, USA 45221

3Present Address: Gulf Coast Geospatial Center, University of Southern Mississippi

1203 Broad Avenue, Gulfport, Mississippi, USA 39501

4U.S. Environmental Protection Agency (U.S. EPA)

26 W. Martin Luther King Dr., Cincinnati, Ohio, USA 45268

Abstract: There has been an increasing interest in characterizing and mapping isolated depressional

wetlands due to a 2001 U.S. Supreme Court decision that effectively removed their protected status. Our

objective was to determine the utility of satellite remote sensing to accurately detect isolated wetlands.

Image segmentation and object-oriented analysis were applied to Landsat-7 imagery from January and

October 2000 to map isolated wetlands in the St. Johns River Water Management District of Alachua

County, Florida. Accuracy for individual isolated wetlands was determined based on the intersection of

reference and remotely sensed polygons. The January data yielded producer and user accuracies of 88%

and 89%, respectively, for isolated wetlands larger than 0.5 acres (0.20 ha). Producer and user accuracies

increased to 97% and 95%, respectively, for isolated wetlands larger than 2 acres (0.81 ha). Recently, the

Federal Geographic Data Committee recommended that all U.S. wetlands 0.5 acres (0.20 ha) or larger

should be mapped using 1-m aerial photography with an accuracy of 98%. That accuracy was nearly

achieved in this study using a spatial resolution that is 900 times coarser. Satellite remote sensing provides

an accurate, relatively inexpensive, and timely means for classifying isolated depressional wetlands on a

regional or national basis.
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INTRODUCTION

Geographically isolated wetlands are a unique

and significant part of the nation’s wetlands

resources and provide vital habitats for fish and

wildlife (Tiner et al. 2002, 2003a). Isolated wetlands

have received increasing attention due to the 2001

Solid Waste Agency of Northern Cook County

(SWANCC) vs. U.S. Army Corp of Engineers

Supreme Court ruling [531 U.S. 159 (2001)] that
isolated, intrastate non-navigable wetlands could

not be protected under the Clean Water Act (CWA)

based solely on the presence of migratory birds

(Downing et al. 2003). Because isolated wetlands

have no apparent surface connections to navigable

waters, their protection status under the CWA was

effectively removed as a result of this ruling.

Wetlands are defined as areas that are transitional
between terrestrial and aquatic systems, where the

water table is usually at or near the surface or the

land is covered by shallow water. Traditionally,

isolated wetlands have not been consistently defined,

however (Leibowitz 2003, Leibowitz and Nadeau

2003). The National Research Council (1995)

defined an isolated wetland as a wetland not

adjacent to a water body. Tiner et al. (2002) defined

isolated wetlands, in terms of their relationship to

surface waters, as wetlands with no apparent surface

water connection to perennial rivers and streams,

estuaries, or the ocean. Isolated wetlands can

actually be defined from a number of hydrologic,

ecologic, geographic, or other perspectives (Tiner

2003b). For example, ecologists have referred to

them as rare and highly dispersed habitats (Pearson

1994) and as islands in a terrestrial landscape

(Edwards and Sharitz 2000). Tiner (2003b) main-

tains that geographic isolation is the easiest way to

determine isolation, because it defines the position

of the wetland on the landscape, and defines an
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isolated wetland as a wetland that is completely

surrounded by uplands. For the purposes of this

paper, we define geographically isolated wetlands as

wetlands that are completely surrounded by up-

lands, with no apparent connections to perennial

surface waters. This definition does not require

complete hydrologic isolation of the wetland; thus,

these wetlands may or may not be connected to

other waters through ground water (Gibbons 2003,

Leibowitz 2003, Tiner 2003b, Winter and LaBaugh

2003). In addition, isolated wetlands may also have

occasional surface-water connections during very

wet conditions through overland flow (Leibowitz

and Nadeau 2003).

Isolated wetlands are important ecological sys-

tems that support high levels of biodiversity,

including significant numbers of rare and endan-

gered plant and animal species (Semlitsch and Bodie

1998). A total of 86 plant and animal species listed

as threatened or endangered under the Endangered

Species Act are supported by isolated wetlands, and

more than half of these species are completely

dependent on isolated wetland habitat (Comer et al.

2005). In addition, Comer et al. found a total of 274

at-risk plant and animal species are supported by

isolated wetlands, 35% of which are restricted to

isolated wetland habitat. Also, isolated wetlands

play an important role in the aquatic ecosystem by

contributing habitat, water quality improvements,

flood reduction, and aquatic productivity (Downing

et al. 2003). Moreover, most of the ecological

functions attributed to non-isolated wetlands are

also provided by isolated wetlands (Tiner 2003a).

There has been an ever increasing interest in

assessing and mapping isolated wetlands since the

2001 U.S. Supreme Court decision in the SWANCC

vs. U.S. Army Corps of Engineers case. Although

there have been a number of studies that have used

geographic information systems (GIS) to map

isolated wetlands, the national extent of isolated

wetlands is still unknown (Tiner et al. 2002). Tiner

(2003b) used GIS analysis of the U.S. Fish and

Wildlife Service (USFWS) National Wetlands In-

ventory (NWI) data and the United States Geolog-

ical Survey (USGS) digital line graphs (DLG) to

estimate the extent of isolated wetlands for 72 study

sites in 44 states. Nearly 70% of the 72 study areas

had more than half of their wetlands designated as

geographically isolated; nine of the 72 study sites

had more than 90% of their wetlands classified as

isolated (Tiner et al. 2002). At least four states have

produced estimates of isolated wetlands: Nebraska,

Wisconsin, Indiana, and Illinois (Tiner 2003b). For

example, McCauley and Jenkins (2005) estimated

isolated wetlands for Illinois using a GIS model

based on USGS digital raster graphic (DRG) and

digital elevation model (DEM) data.

There are several limitations, however, with many

of the studies that have used GIS analysis of existing

datasets to estimate isolated wetlands. First, isolated

wetlands are very dynamic ecosystems and their

wetted area, size, and shape, can change from year

to year with hydrologic inputs. Isolated wetlands are

also affected by changes in land use. The data used

in the aforementioned studies is, in most cases, dated

and thus, may not reflect the current landscape with

respect to isolated wetlands. Furthermore, datasets

such as the NWI are incomplete and do not cover all

areas of the United States. One of the major

considerations in mapping isolated wetlands is often

to determine the change in their extent over time;

these changes cannot be assessed using GIS analysis

of existing USGS and USFWS datasets.

An alternative to using GIS analysis of existing

datasets is to utilize remotely sensed satellite data for

estimating the extent of isolated wetlands. Satellite

imagery can provide the necessary temporal resolu-

tion and historical imagery for assessing the extent

and distribution of isolated wetlands over time.

Remotely sensed satellite data can also provide

information about adjacent land cover, especially

those areas that are potential threats to isolated

wetlands. Satellite data are also relatively inexpen-

sive compared to aerial photography and are easily

integrated into a GIS (Ozesmi and Bauer 2002).

Despite these advantages, satellite imagery has not

been used for mapping isolated wetlands.

Image segmentation is a commonly applied

technique in the fields of machine vision and pattern

recognition (Pekkarinen 2002, Schiewe 2003) and is

gaining popularity in the field of remote sensing. The

basic processing units of object-oriented image anal-

ysis are objects, rather than individual pixels (Benz et

al. 2004). Initial image segmentation uses low-level

information (pixel-based features) to create higher-

level contiguous regions or image objects. These

higher-level objects have spectral, textural, contextual,

and shape characteristics that can be used for

classification.The goal of this project was to determine

the utility of image segmentation and object-oriented

processing of Landsat-7 imagery for detecting isolated

wetlands in the St. Johns River Water Management

District of Alachua County, Florida.

METHODS

Study Area and Data Acquisition

The study area for this research consisted of a

1560 km2 area of the St. Johns River Water
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Management District (SJRWMD) located in Ala-

chua County, Florida (Figure 1). The area was

selected because of the high density of wetlands, the

high diversity of mixed land cover, and the

availability of GIS and remote sensing data prod-

ucts. The area geology is a mixture of clayey sands,

medium to fine sands and silts, and limestone karst

topography (Florida Department of Environmental

Protection Environmental Geology data, http://www.

dep.state.fl.us/gis/datadir.asp, accessed 01/09). Both

isolated and non-isolated wetlands are abundant in

this area and include over 17 wetland types, such as

cypress domes, sinkhole wetlands, pond pines,

freshwater marshes, wet prairies, and wetland hard-

woods. The SJRWMD has detailed land use and land

cover data (including wetland types) digitized from

color-infrared (IR) aerial photos from 2000 for the

study area; these data were acquired through the

SJRWMD website (http://sjr.state.fl.us/gisdevelop-

ment/docs/themes.html) and used for training and

accuracy assessment in this research project.

In order to analyze a scene from the same year as

the SJRWMD land cover data, a search was

conducted to acquire the wettest Landsat-7 scene

for the year 2000. Daily rainfall records were

examined for the county and a Landsat-7 October

16, 2000 scene [Path 17 (orbit), Row 39 (scene

center)] was acquired from the University of Florida

Map and Imagery Library. It was later determined

that rainfall records were not necessarily a good

indicator for overall scene wetness. Several other

Landsat-7 scenes were acquired from the University

of Florida Map and Imagery Library and band 5

(1.55–1.75 mm) of each scene analyzed for overall

scene wetness. Band 5 of Landsat is very sensitive to

water content in vegetation and soil (USGS 2003)

and through analysis of this band, it was determined

that a January 2, 2000 scene was the wettest scene

for the year. The full January 2, 2000 scene (Path 17

and Row 39, Scene ID LE7017039000000250) was

acquired from Global Observatory for Ecosystem

Services, Michigan State University and used for

classification of isolated wetlands in the project. In

this paper, we present analysis of both the January

2000 and October 2000 scenes (Figure 2) for

comparison. Differences in wetness and ease of

wetland identification are obvious when comparing

the two scenes. The Landsat-7 data, which feature a

15-m resolution panchromatic (pan) band and six,

30-m resolution multispectral bands, were georegis-

tered to the SJRWMD land cover data using 10–15

ground control points and a first-order polynomial

data transformation.

Data Transformations

Three different transformations were applied to

the georegistered Landsat-7 ETM+ data to improve

the potential classification of isolated wetlands.

These included 1) a minimum noise fraction

(MNF) transformation, 2) a texture transformation

based on mean co-occurrence in band 5, and 3) a

pan-merge transformation to merge the 30-m

spectral data with the 15-m pan-band (band 8).

Figure 1. Landsat-7 scene clipped to the study area covering the St. Johns River Water Management District of Alachua

County, Florida.
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The MNF was used to determine the inherent

dimensionality of the data, to segregate noise, and to

reduce the complexity of the data. This transforma-

tion, modified by Green et al. (1988) and imple-

mented in ENVI 4.2 (ITT Visual Information

Solutions, Boulder, CO), is essentially two cascaded

principal components transformations. The first

transformation, based on an estimated noise covari-

ance matrix, decorrelated and rescaled the noise

data. This first step resulted in transformed data in

which the noise had unit variance and no band-to-

band correlations. The second step was a standard

principal components transformation of the noise-

whitened data. The inherent dimensionality of the

data was determined by examination of the final

eigenvalues and the associated images. Figure 3

shows the first three MNF bands of the January

2000 data in RGB; isolated wetlands are clearly

visible in the MNF transformation.

Haralick (1986) proposed a variety of measures to

extract useful textural information from co-occur-

rence matrices. In this study, the mean of the co-

occurrence matrix, based on a 3-pixel by 3-pixel

moving window of band 5, was used. During

computation, four brightness value spatial-depen-

dency matrices were derived for each pixel based on

neighboring pixel values. The average of these four

measures was output as the texture value for the

pixel under consideration. The textural information

significantly improved the general discrimination

ability for wetlands.

In order to merge the 30-m spectral data with the

15-m panchromatic data of ETM+, a Gram-Schmidt

sharpening algorithm (ITT Visual Information

Solutions, Boulder, CO, USA) was utilized. First,

a panchromatic band was simulated from the lower

spatial resolution spectral bands. Then, the Gram-

Schmidt algorithm was applied to the simulated

panchromatic band and the rest of the 30-m spectral

bands. The simulated panchromatic band became

the first band of the new dataset, then the 15-m

resolution Landsat-7 panchromatic band was sub-

stituted for the first Gram-Schmidt band, and the

inverse Gram-Schmidt transform applied to the

entire dataset. This pan-merge transformation re-

sulted in a 15-m spectrally merged dataset.

Figure 2. Comparison of the October 2000 (top) and

January 2000 (bottom) Landsat-7 imagery. Wetted soils

are visible as darker areas throughout the image; lakes are

indicated in dark gray or black. Relative wetness of the

two scenes can be seen in the wetlands indicated by arrows.

Figure 3. Minimum Noise Fraction Transformation

(MNF) showing isolated wetlands in blue. Wetland areas

are in blue tones and areas surrounding wetlands are in

orange tones. The area in this figure is an inset of the

lower center portion of Figure 2 and includes the wetlands

indicated by arrows in that figure.
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Segmentation and Object-Oriented Analysis

Because isolated wetlands have boundaries that

are highly contrasted to the surrounding uplands, we

chose a segmentation and object-oriented approach

for the final classification. The classification scheme

consisted of two classes: isolated wetlands and other.

The georegistered data consisted of an eight-band,

15-m pan-merged dataset with the following bands:

1) Landsat spectral bands 1–5, and 7 (6 bands total);

2) the first MNF band from the MNF transforma-

tion; and 3) a co-occurrence mean texture band

calculated using Landsat spectral band 5. The eight-

band dataset was input for segmentation and object-

oriented processing. The segmentation and object-

oriented classification was divided into two steps:

segmentation to create image objects at multiple

scales and classification of the image objects as

either ‘‘isolated wetland’’ or ‘‘other.’’ Segmentation

and object-based classification was performed using

eCognition software (Definiens Imaging, Munich,

Germany, version 4.0); all other image processing

was performed using ENVI and IDL 4.2 software

(ITT Visual Information Solutions, Boulder, CO,

USA).

Image Segmentation

The segmentation was a bottom-up, region-

merging approach that started with single pixel

objects. In an optimization pair-wise clustering

process, smaller objects were merged into larger

objects based on heterogeneity criteria of color and

shape (Benz et al. 2004):

f ~w:hcolorz 1{wð Þ:hshape ð1Þ

where f is the threshold fusion value for merging

segments, hcolor is the heterogeneity criterion for

color as defined in equation (2), and hshape is the

heterogeneity criterion for shape as defined in

equation (3). The user defined weight parameter w

was set to 0.9, a conservative value that decreases

the influence of color, which can vary phenotypi-

cally within taxa, and increases the influence of

shape.

The heterogeneity criterion for color (hcolor) was

calculated before and after potential merging of each

adjacent object as:

hcolor~
X

c

wc nMerge
:sMerge

c {
�

nObj1
:sObj1

c znObj2
:sObj2

c

� �� ð2Þ

where nmerge is the number of pixels within a merged

object, nobj1 is the number of pixels in object 1, nobj2

is the number of pixels in object 2, and sc is the

standard deviation within object of band c. Sub-

scripts merge refer to merged objects and obj1 and

obj2 refer to the objects prior to a merge.

The heterogeneity criteria for shape describe the

improvement of shape with respect to smoothness

and compactness:

hshape~wcmpct
:hcmpctz 1{wcmpct

� �
:hsmooth ð3Þ

The user defined weight parameter wcmpct was set

to 0.5, the median value for integrating smoothness

and compactness in determining heterogeneity

criteria. The change in smoothness (hsmooth) and

compactness (hcmpct) were calculated before and

after a potential merging of objects:

hsmooth~nMerge
: lMerge

bMerge

{

nObj1
: lObj1

bObj1
znObj2

: lObj2

bObj2

� �
and

ð4Þ

hcmpct~nMerge
: lMergeffiffiffiffiffiffiffiffiffiffiffiffi

nMerge
p {

nObj1
: lObj1ffiffiffiffiffiffiffiffiffiffi

nObj1
p znObj2

: lObj2ffiffiffiffiffiffiffiffiffiffi
nObj2
p

 ! ð5Þ

where n is the object size, l is the object perimeter,

and b is the perimeter of a bounding rectangle.

With each iteration, the pair of adjacent objects

with the smallest growth from the defined heteroge-

neity criteria was merged. The process stopped when

the smallest growth for merging of adjacent objects

exceeded a pre-defined scale parameter. This proce-

dure simulated the simultaneous growth of segments

during each step so that output objects were of

comparable size and scale (Benz et al. 2004).

A scale parameter was defined in the segmenta-

tion process to set a threshold for the maximum

increase in heterogeneity of two merging segments.

When this parameter was reached, the segmentation

process ended. The larger the scale parameter, the

larger the segmented objects grow (Baatz and

Schäpe 2000, Benz et al. 2004). The dataset in this

study was segmented at five different scale param-

eters (100, 50, 10, 7, and 4), chosen to provide a

range of classification scales for iterative accuracy

assessment. These scale parameters resulted in 785,

2875, 63,874, 133,884, and 422,647 objects, respec-

tively. The scale parameters of 100 and 50 were

primarily used for data masking, while those of 10,

7, and 4 were used for direct classification of objects.

A comparison of all five scale parameters is shown

in Figure 4.

A variety of band combinations from the eight-

band dataset were used in the optimization of the
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segmentation process. Initial analyses based on

iterative comparisons to the reference dataset, sug-

gested that the band combination 5,4,3 RGB of the

the pan-merged dataset produced superior results;

thus, this was used for the segmentation of objects.
This band combination produced superior results due

to the sensitivity of bands 4 and 3 to vegetation cover

and the senstivity of band 4 to water content.

Object-Based Classification

The segmented image objects were classified at

five different scales as either isolated wetland or
other. All eight 15-m pan-merged bands were used in

the classification. The classification of individual

objects was based on a number of decision rules

determined according to feature attributes of the

objects. These attributes were determined through a

process of trial and error, until a combination of

feature values was found to produce the best output.

In this study, the mean values in bands 4 and 5, the
mean values of MNF band 1, the ratio of band 4 to

the overall brightness, shape and size values, and

texture calculations were all feature attributes used

in the classification of isolated wetland objects.

Each decision rule was determined from a fuzzy

set consisting of membership functions of the object

features. A membership function ranged from 0 to 1

for each object’s feature values with respect to its

membership to an assigned class. The output
classification was determined by assigning each

object to the class with the highest degree of

membership, based on all membership features used.

A classification-based segmentation was performed

to fuse all adjacent objects that were assigned the

same land cover category.

Use of GIS Ancillary Data

GIS data layers of buffered hydrology and lakes

were also used in the classification process. These

were used to mask data where potential wetlands

intersected stream, river, and lake buffers, to prevent

these data from being classified as isolated wetlands.

The segmentation/object-oriented classification was
also compared to a ‘‘potential isolated wetlands’’

GIS data layer, as described below, and the

classification parameters were iteratively adjusted,

based on errors found, until the classification

process was completed.

USGS high resolution (1:24,000 scale) National

Hydrography Dataset (NHD) line and polygon data

(http://nhd.usgs.gov) were clipped to the study

extent and used to identify surface water features
and determine the relative isolation of wetland

systems. Because the goal of the study was to map

isolated wetlands and we were using the NHD to

identify and exclude non-isolated wetlands, features

attributed in the NHD as swamps or marshes were

removed from the buffer mask, as they themselves

could be isolated wetlands. Upon further evaluation

of the NHD polygon data, it was discovered that
many of the small lake and pond features could not

be found on recent aerial photography (http://www.

Figure 4. Comparison of the size and number of segments created using scale parameter 100 (top left), 50 (top middle), 10

(top right), 7 (bottom left), and 4 (bottom right). The area of the top three images is the same area depicted in Figure 2; the

area of the bottom two images is an inset of the lower center portion of these images to show more detail.

936 WETLANDS, Volume 29, No. 3, 2009



labins.org) or conflicted with the NWI classification

of palustrine wetlands. In order to be as inclusive as

possible, the small lake and pond features were

removed from the buffer mask as well, so as not to

exclude potential isolated wetlands from being

identified. In the end, 30 large lake and pond

features were included for use in the buffer

delineation. In addition to the polygon features,

linear features were also edited to exclude surface

water features that were obvious artificial or ditched

channels or streams, disconnected streams, or other

stream features that could not be seen on recent aerial

photography (http://www.labins.org). The resultant

lentic and lotic features were buffered using a 10-m

buffer width to exclude non-isolated wetlands from

the study. This was a more inclusive and conservative
buffer width than the 12-m buffer proposed for use

with 1:24,000 scale hydrology data by the Association

of State Wetland Managers (2001).

Post-GIS processing of the segmentation/object-

oriented classification was used to eliminate any

wetlands that intersected the stream and lake

buffers. Although most of these wetlands were

masked from the data during the classification

process, there were still a small number that needed

to be eliminated through GIS post-processing.

Accuracy Assessment

To assess the accuracy of the remote sensing
analyses, a dataset was developed using five USGS

7.5-minute quarter-quadrangles (quarter-quads)

within the study area. These five quads were

randomly selected using a stratified sampling

approach (Figure 5). Color infrared, digital aerial

photographs (years 1999–2004) obtained from the

Land Boundary Information System (http://www.

labins.org) were photointerpreted, and isolated

wetlands within the selected quarter-quads were

heads-up digitized using ArcGIS software [Environ-

mental Systems Research Institute (ESRI), Red-

lands, CA, versions 9.0 and 9.2]. In addition to the

aerial photographs, ancillary data sources, such as

the NWI, NHD, DRGs, and the SJRWMD land use

and land cover data, were sometimes used to aid in

the photointerpretation process.

Accuracy for individual isolated wetlands was
determined based on the intersection of reference

and remotely sensed polygons. In order to account

for wetland size in our accuracy assessment, the

accuracy dataset was subdivided into five isolated

wetland size classes: 1) . 4.13 acres (1.67 ha; the

mean size of all isolated wetland polygons, 2) .

2.0 acres (0.81 ha), 3) . 1.5 acres (0.61 ha), 4) .

1.0 acre (0.40 ha), and 5) . 0.5 acres (0.20 ha). In

general, if a reference isolated wetland polygon (of a

selected size-class) ‘‘intersected’’ any size mapped

isolated wetland polygon, then the mapped isolated

wetland polygon was considered to be a positive

match and accurate (no matter if the size or shape

were the same). This method of accuracy assessment

was chosen because our goal was to determine if the

approximate location of an actual isolated wetland

was mapped or not; we were not interested in mapping

the actual photointerpreted shape or boundary of the

isolated wetland. A contingency matrix was construct-

ed to compare the reference data to both the January

and October 2000 isolated wetland classifications.

Accuracy was determined by evaluating correctly

classified polygons with respect to the total number of

polygons in the error matrix. Individual class user and

producer accuracies were also calculated for each of

the five size classes, following Story and Congalton

(1986). Producer accuracy represents the probability

of a reference polygon being correctly classified as an

isolated wetland and is a measure of omission error.

User accuracy is the probability that a polygon

classified as an isolated wetland actually represents

that category in the reference data and is a measure of

commission error.

RESULTS AND DISCUSSION

There were a total of 4388 isolated wetlands

identified in the study area, covering a total area of

Figure 5. Accuracy assessment dataset created by photo-

interpreting five color-IR quarter quads. For the accuracy

assessment, the study area was divided into five rows and

one quad was randomly selected in each row for a total of

five quads. Wetlands are depicted in black.
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27.7 km2. Figure 6 shows a comparison of a portion

of the classified January 2000 image and the St.

Johns River Water Management District land use

data (post-processed for isolated wetlands) for the

same area. Although the SJRWMD data is more

detailed because it was based on photointerpretation

of color-IR aerial photography, as compared to our

classification, which was based on 15-m and 30-m

pan-merged Landsat-7 data, the overall number,

pattern, and shape of isolated wetlands is very

similar in comparison. Figure 7 shows a direct

overlay of the Landsat-7 January 2000 classification

results and one of the photo-interpreted accuracy

assessment quads for isolated wetlands. Overall, the

visual overlay shows a very strong agreement

between the accuracy data and the classification.

The final January 2000 isolated wetland classifica-

tion is shown in Figure 8, overlaid on the Landsat-7

imagery.

Results comparing the segmentation and object-

oriented classification accuracies for the January

2000 and the October 2000 classifications are shown

in Table 1. Producer and user accuracies were very

high for the January 2000 segmentation classifica-

tion for all size classes . 0.5 acres (0.20 ha). For

isolated wetlands . 4.13 acres (1.67 ha; the mean

wetland size), the producer accuracy was 98% and

user accuracy was 97%. When the size of the isolated

wetlands decreased to . 2 acres (0.81 ha), producer

Figure 6. Comparison of isolated wetlands (in white) based on the St. Johns River Water Management District land use

data (left) and the Landsat-7 January 2000 segmentation/object-oriented classification for the same area (right). The area

depicted in these images is an inset of the top-center portion of the study area.

Figure 7. Direct overlay of the Landsat-7 January 2000

classification results and one of the photo-interpreted

accuracy assessment quads for isolated wetlands. The

background (white) is uplands or non-isolated-wetlands.

The light brown areas are isolated wetlands that were

classified in both the Landsat-7 imagery and in the photo-

interpreted accuracy assessment quad. Maroon areas are

isolated wetlands that were classified in the Landsat-7

imagery, but not in the accuracy assessment quad; and

orange areas are isolated wetlands that were not classified

in the Landsat-7 imagery, but were present in the accuracy

assessment quad.
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and user accuracies dropped only slightly, to 97%

and 95%, respectively. Isolated wetlands of . 1 acre

(0.40 ha) were mapped with a producer and user

accuracy of 93%, and wetlands . 0.5 acres (0.20 ha)

were mapped with producer and user accuracies of

88% and 89%, respectively. It should be noted that

an isolated wetland of 0.5 acres (0.20 ha) is approx-

imately two 30-m Landsat pixels. The accuracy is

surprisingly high for objects two pixels or more in

size and it is unrealistic to expect to map wetlands

below this threshold with Landsat-7 data. It should

also be noted that 98% of the wetlands in the study

area are . 0.5 acres (0.20 ha); about 95% are $

1 acre (0.40 ha) and 90% of the wetlands are $

2 acres (0.81 ha). These accuracy numbers are very

promising in light of a recent recommendation by

the Federal Geographic Data Committee (FGDC)

that all wetlands $ 0.5 acres (0.20 ha) in the lower

48 states should be mapped using 1-m aerial

photography with an accuracy of 98% (Heber

2008). In this study, we have nearly achieved this

accuracy using a spatial resolution that is 900 times

coarser than that recommended by FGDC.

In comparing the January 2000 classification of

isolated wetlands to that of October 2000 (Table 1),

we can see that producer accuracy increased 21–29%

and user accuracy increased 4–7%, for each size

category using the January scene. This increase,

especially in producer accuracy, is due primarily to

the fact that the January 2000 scene was much

wetter than the October scene, making the isolated

wetlands much easier to detect. Band 5 of Landsat is

very sensitive to water content in vegetation and soil.

The lower the brightness values in band 5, the higher

the amount of water in the scene. The mean

brightness value of band 5 for the October 2000

data was 66, compared to only 45 for the January

2000 data, indicating that the January scene was

much wetter than the October scene. Several

researchers have found that wetland mapping using

satellite imagery is more accurate when the water

table is high (Hodgson et al. 1987, Sader et al. 1995).

As a result, it was not unexpected that better results

were obtained using the January 2000 scene.

SUMMARY AND CONCLUSIONS

This research represents the first attempt to map

isolated wetlands using remotely sensed satellite

data. The segmentation/object-oriented approach is

ideal for classifying isolated wetlands because of the

highly contrasted boundaries that these wetlands

exhibit. Although segmentation and object-oriented

analysis is a relatively new classification technique in

remote sensing, compared to traditional spectral

classifiers, it is surprising that there are very few

studies that have used segmentation for classifica-

tion of wetlands. Hess et al. (2003) used segmenta-

tion of JERS-1 radar data to delineate wetland

extent in the central Amazon basin with 95%

accuracy, and Costa et al. (2002) used segmentation

to map Amazon floodplain communities with

Figure 8. Final classification of isolated wetlands (red)

overlaid on the Landsat-7 January 2000 image.

Table 1. Isolated wetlands accuracy assessment comparing producer and user accuracies for multiple wetland size classes

using Landsat-7 scenes of varying relative wetness.

Isolated Wetland Size Class

Oct. 2000 Classification Jan. 2000 Classification

Producer Accuracy User Accuracy Producer Accuracy User Accuracy

. mean (4.13 acres; 1.67 ha) 77% 93% 98% 97%

. 2 acres (0.81 ha) 72% 90% 97% 95%

.1.5 acres (0.61 ha) 70% 88% 96% 95%

.1 acre (0.40 ha) 65% 87% 93% 93%

.0.5 acres (0.20 ha) 59% 84% 88% 89%
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RADARSAT and JERS-1 data. Likewise, Atunes et
al. (2003) used segmentation on IKONOS imagery

to identify riparian areas in Parana, Brazil. Segmen-

tation is ideal for classifying any type of land cover

that has highly contrasted boundaries, such as

isolated wetlands. This research shows very encour-

aging results for the use of image segmentation and

Landsat data for mapping both isolated and non-

isolated wetlands.

Several conclusions and recommendations can be

drawn from this research with respect to satellite
mapping of isolated wetlands:

1) Landsat data provide the necessary temporal,

spatial, and spectral resolutions for accurately

detecting isolated wetlands that are $ 0.5 acres

(0.20 ha);

2) Isolated wetlands can be mapped more accu-

rately using the wettest scene of a particular

year;

3) Rainfall data may not be the best indicator of

the wetness within a scene. A better indicator is

the mean value of a middle-IR band sensitive to

wetness, such as band 5 of Landsat;

4) Object-oriented analysis is an ideal classifica-

tion method for mapping isolated wetlands

since they have highly-contrasted boundaries;

5) The use of data transformations, such as the

minimum noise fraction transformation, texture

analysis, and pan-merging techniques, are effec-
tive in improving the ability to classify isolated

wetlands with remotely sensed satellite data; and

6) Satellite remote sensing provides an accurate,
relatively inexpensive, and timely means for

classifying isolated wetlands on a regional or

even national basis.

This research is important considering the unpro-

tected status of most isolated wetlands due to the

2001 US Supreme Court decision in the SWANCC

vs. U.S. Army Corps of Engineers case [531 U.S. 159

(2001)]. More studies, such as this, are needed so

that the distribution and extent of these unique

wetland ecosystems can be accurately mapped on a

regional and national basis and strategies for their

potential protection developed.
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