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ABSTRACT 15 

Urbanization compromises the biotic integrity and health of streams, and indicators of integrity 16 

loss are needed to improve assessment programs and identify mechanisms of urban effects. We 17 

investigated linkages between landscapes and assemblages in 31 wadeable Piedmont streams in 18 

the Etowah River basin in northern Georgia (USA).  Our objectives were to identify the 19 

indicators of macroinvertebrate and fish integrity from a large set of best land cover (n = 45), 20 

geomorphology (n = 115), and water quality (n = 12) variables, and to evaluate the potential for 21 

variables measured with minimal cost and effort to effectively predict biotic integrity.  22 

Macroinvertebrate descriptors were better predicted by land cover whereas fish descriptors were 23 

better predicted by geomorphology.  Water quality variables demonstrated moderate levels of 24 

predictive power for biotic descriptors.  Macroinvertebrate descriptors were best predicted by 25 

urban cover (-), conductivity (-), fines in riffles (-), and local relief (+).  Fish descriptors were 26 
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best predicted by embeddedness (-), turbidity (-), slope (+), and forest cover (+).  We used 27 

multiple linear regression modeling to predict descriptors using three independent variable sets 28 

that varied in difficulty of data collection.  “Full” models included a full range of geomorphic, 29 

water quality and landscape variables regardless of the intensity of data collection efforts.  30 

“Reduced” models included GIS-derived variables describing catchment morphometry and land 31 

use as well as variables easily collected in the field with minimal cost and effort.  “Simple” 32 

models only included GIS-derived variables.  Full models explained 63-81% of the variation 33 

among descriptors, indicating strong relationships between landscape properties and biotic 34 

assemblages across our sites.  Reduced and simple models were weaker, explaining 48-79% and 35 

42-79%, respectively, of the variance among descriptors.  Considering the difference in 36 

predictive power among these model sets, we recommend a tiered approach to variable selection 37 

and model development depending upon management goals.  GIS variables are simple and 38 

inexpensive to collect, and a GIS-based modeling approach would be appropriate for goals such 39 

as site-screening (e.g., identification of reference streams).  As management goals become more 40 

complex (e.g., long-term monitoring programs), additional, easily-collected field variables (e.g., 41 

embeddedness) should be included.  Finally, labor-intensive variables (e.g., nutrients, fines in 42 

sediments) could be added to meet complex management goals such as restoration of impaired 43 

streams or mechanistic studies of land use effects on stream ecosystems.   44 

Key Words: land use, biotic indices, stressor gradient, urban syndrome, biotic integrity45 
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1. Introduction 46 

As natural landscapes are altered by human disturbances, the health of streams and rivers 47 

draining the land are increasingly at risk (Schlosser, 1991; Allan et al., 1997; Walters et al., 48 

2003b; Allan, 2004).  The global rise in human population is driving a continual conversion of 49 

land to anthropogenic uses (Cohen, 2003; Grimm, 2008), so there is a strong need for monitoring 50 

stream health.   Indicators of stream health (e.g., biotic integrity) and stream stressors (e.g., 51 

geomorphology, water quality) are important tools not only for assessing stream condition, but 52 

also for determining the mechanisms of impacts and, accordingly, effective avenues for 53 

protecting and restoring stream ecosystems.  54 

 Increases in impervious cover and a concomitant reduction in forest cover in urbanizing 55 

landscapes alter stream biotic assemblages (see reviews, Paul and Meyer, 2001; Walsh et al., 56 

2005).  Typical responses of benthic macroinvertebrate assemblages include reduced richness 57 

and diversity, and increased abundances of tolerant organisms in urbanized streams (Jones and 58 

Clark, 1987; Lenat and Crawford, 1994; Kennen, 1999; Walsh et al., 2001; Morse et al., 2003; 59 

Roy et al., 2003; Cuffney et al., 2005, and others).  Likewise, fish responses to urbanization 60 

include reduced biotic integrity (Klein, 1979; Steedman, 1988; Wang et al., 1997; Wang et al., 61 

2000; Kennen et al., 2005; Morgan and Cushman, 2005) and increased homogenization of 62 

assemblages (Walters et al., 2003a; Marchetti et al., 2006; Scott, 2006).  While these biota have 63 

been well-studied with respect to land cover change, few studies have assessed differences in the 64 

strength and mechanism of responses between fish and macroinvertebrates at the same sites (but 65 

see Lenat and Crawford, 1994; Lammert and Allan, 1999; Passy et al., 2004). 66 

 There are several mechanisms by which land use change alters stream biota, including: 67 

riparian clearing and loss of large wood, hydrologic alteration, excessive sedimentation, nutrient 68 
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enrichment, and contaminant pollution (Allan, 2004).  A primary mechanism of stream 69 

disturbance in urbanizing areas is stormwater runoff from impervious surfaces, which alters the 70 

magnitude, volume, frequency, and timing of high flow events (see reviews, Shuster et al., 2005; 71 

Walsh et al., 2005).  The physical force of stormwater runoff causes stream bank erosion, 72 

sedimentation, bed scouring, and channel morphology alteration (Booth, 1990; Trimble, 1997; 73 

Finkenbine et al., 2000; Pizzuto et al., 2000; Fitzpatrick et al., 2005).  Runoff also delivers 74 

contaminants to streams resulting in increased nutrients, metals, pharmaceuticals, and other 75 

toxins in urban streams (Wilber and Hunter, 1977; Herlihy et al., 1998; Ometo et al., 2000; 76 

Kolpin et al., 2002; Hatt et al., 2004).  This extensive suite of stressors and ecosystem responses 77 

compose the symptoms of the “urban stream syndrome” (Paul and Meyer, 2001; Walsh et al., 78 

2005) and may be used to assess the severity of stream disturbance. 79 

 Given the wide variety of stressors in urban streams, a key management goal is to 80 

identify key indicators and mechanisms of stream alteration, so managers can rapidly diagnose 81 

stream health and work toward treating the symptoms.  Here we assess biotic responses to 82 

watershed and reach-scale stressors in the Etowah River basin near Atlanta, Georgia, in an effort 83 

to identify key indicators of disturbance.  The objectives of this paper are to (1) determine which 84 

attributes of land cover, geomorphology, and water quality best predict biotic assemblage health, 85 

and (2) evaluate the potential for variables measured with low or minimal cost and effort to 86 

effectively predict biotic integrity.  We compare the responses of macroinvertebrate and fish 87 

assemblages to disturbance, assessing whether there are different mechanisms by which biotic 88 

health declines.  The results are placed in a management context and used to recommend a tiered 89 

approach to monitoring and assessment, based on management goals and resource availability.  90 

2. Methods 91 
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2.1. Study Sites and Environmental Setting  92 

The study area includes 31 catchments of the Etowah River Basin in north Georgia (Figure 1).  93 

All sample reaches are on the Piedmont, but a few of the catchments have headwaters in the Blue 94 

Ridge Mountains.  Catchments varied in size from 11 to 126 km2, with channel types ranging 95 

from low-gradient (0.1%), sand-bed streams to high-gradient (1.0%), cobble-bed streams.  96 

Detailed site characteristics are provided by Walters et al. (2003b) and Roy et al. (2003).  Stream 97 

reaches were sampled in 1999 (n = 29) and 2000 (n = 2).  Natural land cover was primarily forest 98 

which was cut and supplanted by various land uses including mining, agriculture, silvaculture, 99 

and urbanization.  By the 1930s, agriculture was in steady decline and was being replaced by 100 

secondary growth forest.  This conversion corresponded with population expansion associated 101 

with metropolitan Atlanta (Figure 1, inset).  Urbanization was the main form of land cover 102 

conversion in the last decade, with human population growth rates among the highest in the U.S. 103 

(Walters et al. 2005).  The catchments exhibit a steady gradation between urban and forested 104 

landscapes with land cover ranging from 6-37% urban, 7-38% agriculture (primarily pasture) and 105 

40-87% forest.   106 

2.2. Land Cover 107 

We calculated numerous land cover variables and indices of land disturbance to characterize 108 

human alteration of catchments.  Calculations for variables used in statistical analyses are 109 

provided in Supplementary Material (Table 1) and have been previously described (Roy et al., 110 

2003; Walters et al., 2003b; Walters et al., 2005).  Land cover data were derived from Landsat 111 

thematic mapper (TM) images from July 1997 (Lo and Yang, 2000).  TM images were 112 

resampled to 25 m and classified using modified Level-I and Level-II Anderson schemes 113 

(Anderson, 1976) and summarized into 12 land cover classes within four major groups: urban 114 
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(high-density, low-density, total), agriculture (cultivated/exposed, cropland/grassland, golf 115 

course, total), forest (deciduous, evergreen, mixed, total), and water.  Land cover was calculated 116 

at three scales: 1) catchment-wide or “catchment”; 2) the stream network riparian scale or 117 

“network”; and 3) the stream-reach riparian scale or “riparian”.  Catchment scale included 118 

everything within the watershed boundary.  Network scale included everything within a 100 m 119 

wide band on either side of the stream network (200 m wide band) as it is portrayed on 120 

1:100,000 USGS topographic maps.  Riparian scale included everything within a 100 m wide 121 

band on either side of the stream within a distance of 1000 m upstream from the downstream end 122 

of the sample locale.  We also used a Landsat image from October 1998 to determine the extent 123 

of ponds (i.e., artificial impoundments) within catchments based on a 20-bin unsupervised 124 

classification scheme (Arc View 3.2, Esri, CA).  Total impervious area (TIA) was estimated by 125 

multiplying low-density urban and high-density urban land cover by either the minimum (0.5 & 126 

0.8) or median (0.65 & 0.9) impervious coverage estimates, respectively (Lo and Yang, 2000).  127 

Other measures of human disturbance included road density, a disturbed land index (median TIA 128 

+ cultivated/exposed) and an erosive land index (urban + cultivated/exposed).  The latter two 129 

indices were calculated separately for the catchment scale and for slopes >10% within 130 

catchments.   131 

2.3. Geomorphology 132 

Geomorphic variables were collected at the catchment and reach scales.  Categories of variables 133 

included catchment morphometry (n = 17), stream channel morphology (n = 60), and 134 

sedimentology (n = 38).  In most cases, we followed standard methods in reference manuals for 135 

collecting reach data (i.e., Harrelson et al., 1994; Fitzpatrick et al., 1998; Kaufmann et al., 1999).  136 

Detailed descriptions of collection methods are in Leigh et al (2002) and Walters et al. (2003b) 137 



 7

and information on geomorphic variables analyzed in this study is provided in the 138 

Supplementary Material (Table 1).   139 

Morphometry variables included the area, perimeter, shape (compactness), and drainage 140 

density of the study catchments.  We also characterized length, slope, total relief, relative relief 141 

(total relief ÷ perimeter), and ruggedness (total relief × drainage density) for the catchment and 142 

trunk stream based on standard equations from Ritter et al. (1995).  We included an innovative 143 

variable, local relief, measured as the elevation difference between the surveyed reach and the 144 

ridges confining the stream valley.  Finally, we estimated soil erosion by applying the universal 145 

soil loss equation (USLE) to land cover and digital elevation maps (DEMs).  All variables were 146 

derived in ArcView 3.2 using digital raster graphics (DRGs) of 1:24,000 USGS 7.5-minute 147 

quadrangles.   148 

 Stream channel morphology was measured in reaches 20 times the average baseflow 149 

water width and was surveyed with an electronic total station.  Most of the channel dimensions 150 

were calculated as averages obtained from three cross sections arbitrarily located at the lower, 151 

upper, and midpoint of each reach.  Percent geomorphic units (riffle, glide, and pool) were 152 

sampled along five longitudinal transects (i.e., “zig-zag” survey, Walters et al., 2003b) and 153 

summarized for the thalweg (the line connecting the deepest parts of the channel) and all points. 154 

Water depth was also sampled in the zig-zag survey and summarized as average, standard 155 

deviation, coefficient of variation, and 95th percentile for riffles, glides, pools, and the entire 156 

reach (thalweg and all points).  Baseflow width, depth, and velocity were characterized and 157 

averaged along five equally-spaced cross-sections.  Three cross-sections were mapped for 158 

bankfull conditions, and flow variables (area, width, depth, thalweg depth, hydraulic radius, 159 

velocity, discharge, tractive force, and stream power) were generated from models (Walters et 160 
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al., 2003b).  Entrenchment ratios and flood recurrence intervals at bankfull and valley-flat levels 161 

were also modeled using HEC-RAS.  Other miscellaneous variables included stream slope, 162 

channel sinuosity, Manning’s roughness coefficient (n), and the volume of large wood (>10 cm).  163 

It is important to note that we measured stream slope at three scales.  At the reach-scale, slope 164 

was measured as the average gradient projected across the tops of riffles in the survey reach.  We 165 

also calculated map slope as the height/distance of the two contours nearest the survey reach 166 

from 1:24000 topographic maps.  Finally, we calculated trunk stream slope as the total gradient 167 

from the catchment divide to the surveyed reach as measured along the trunk (or main channel) 168 

of the stream.   169 

  Bed sediment variables were derived using three methods: 1) pebble counts from 170 

representative riffles (Wolman, 1954), 2) sieving of samples from three riffles and three pools, 171 

and 3) point counts from the zig-zag survey (Walters et al., 2003b).  Point counts were based on 172 

the modal sediment size observed within a 50 cm diameter patch of the upper 5 cm of stream bed 173 

sediment at each sample point.  Texture variables derived from these methods included mean 174 

particle size, percent composition of different size classes (<0.063, <2, 2-63, and 63-256 mm), 175 

and estimates of variance in particle size.  Sediment transport variables were calculated to 176 

estimate bed mobility during the 0.5 year recurrence interval flood.  Bed mobility ratios compare 177 

the force exerted on the streambed during the 0.5-year flood relative to the threshold force 178 

(stream power, tractive force, or velocity) needed to initiate motion of average size particles on 179 

the whole steam bed or in riffles.  In addition, embeddedness of coarse particles was determined 180 

from a visual assessment by 2-4 observers (Bjorkland et al., 2001). 181 

2.4. Water Quality  182 
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Baseflow water chemistry samples were collected during monthly synoptic surveys at 29 sites 183 

from May 1999 to June 2000, at least 72 hours after significant rainfall.  Dissolved oxygen (DO), 184 

specific conductance (SC), and pH were measured with a Hydrolab® Datasonde 4 multi-probe 185 

(Hydrolab Corporation, Texas, USA).  Grab samples for dissolved orthophosphate, nitrate, and 186 

ammonium analyses were collected from the thalweg at 0.6 water depth.  Samples were filtered 187 

(Gelman A/E glass fiber filter, 0.47-µm pore size) in the field, placed on ice, frozen until 188 

analysis (< 2 weeks), and analyzed with an Alpkem® autoanalyzer following standard methods 189 

(American Public Health Association, 1989).  We collected depth-integrated samples for 190 

turbidity and total suspended solids (TSS) from the thalweg using a DH-48 sampler.  Turbidity 191 

samples were analyzed in the field on a portable turbidimeter (Hach 2100P).  TSS samples were 192 

filtered through pre-weighed 0.7-µm glass fiber filter, dried, and weighed.  At two sites, mean 193 

dissolved oxygen, pH, conductivity, nitrate, and turbidity were calculated using quarterly 194 

samples collected from March 1997 and December 2000 by the Cobb County Water Authority 195 

(CCWA, Marietta, GA). 196 

 Stream temperature at 29 sites was recorded hourly from June 1999 to June 2000 with 197 

Onset Hobo temperature data loggers (Onset Corporation, Massachusetts, USA).  Data were 198 

analyzed on an annual, summer (June 21 to September 21), and winter (December 21 to March 199 

21) time scales.  Stream temperature was also recorded with a thermometer during monthly 200 

surveys (April 1999 to June 2000) at 29 sites, and quarterly (March 1997 to June 2000) at two 201 

sites.  These data were used to calculate mean annual baseflow temperature.   202 

2.5. Biotic Assemblages  203 

Sampling methods for macroinvertebrates and fishes are provided in Roy et al. (2003) and 204 

Walters et al. (2003b), respectively.  Briefly, sites were sampled once during baseflow 205 
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conditions.   Three benthic macroinvertebrate samples were taken in each of three habitats within 206 

100 m reaches.  Macroinvertebrates were sampled in riffle, pool, and bank habitats using a 207 

Surber sampler, stove-pipe corer, and rectangular dipnet, respectively (500-µm mesh).  Samples 208 

from all habitats were pooled to calculate assemblage descriptor variables.  Fishes were collected 209 

in reaches approximately 40 times mean wetted width using a backpack electroshocker, seine, 210 

and dipnet.  All samples were preserved in 10% formalin. Fishes were identified to species and 211 

invertebrates were identified to genus, where possible, using standard keys (e.g., Merrit and 212 

Cummins, 1996; Mettee et al., 1996). 213 

 Assemblages were characterized using sensitive taxa metrics, multi-metric indices, and 214 

ordination analyses.  Macroinvertebrate assemblages were characterized using richness of 215 

Ephemeroptera, Plecoptera, and Trichoptera (EPT) orders and the Invertebrate Community Index 216 

(ICI; Ohio EPA 1989).  The ICI is a tool for assessing invertebrate assemblage health based on 217 

10 metrics of invertebrate richness and community structure (see Roy et al., 2003 for a full list of 218 

metrics). The ICI calculation excluded one metric, percent predatory Chironomidae composition, 219 

because it was non-normally distributed and added no useful information to ICI score.  Fish 220 

assemblages were characterized using an index of homogenization (the ratio of endemic species 221 

to endemic + cosmopolitan species richness, E/E+C, Walters et al., 2003a) and an index of biotic 222 

integrity (IBI) for the Piedmont portion of the Coosa River system  (including the Etowah basin, 223 

Georgia Department of Natural Resources, 2005).  Low values for the homogenization index 224 

indicated dominance by cosmopolitan species and a high degree of homogenization.  The IBI is a 225 

tool for assessing fish health based on 8 metrics of richness (e.g., number of native species), 226 

seven metrics of community structure (e.g., relative abundance of Lepomis species) and fish 227 

abundance.  228 
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 Axis scores from non-metric multidimensional scaling (NMDS) analysis were used as 229 

objective measures of macroinvertebrate and fish assemblage structure.  Analyses were 230 

performed with PC-ORD (Version 4.1, MjM Software Design, Glenden Beach, OR, USA).  For 231 

macroinvertebrates, we used habitat-weighted densities, calculated by multiplying 232 

macroinvertebrate densities by the proportion of habitat present at each site (Roy et al., 2003).  233 

Density data were transformed (log10(x+1)) and rare species (i.e., present at one site or density 234 

<0.01 individuals m-2) were excluded.  NMDS analysis on fishes used transformed (x0.25) 235 

abundance data and rare species (present at <10% of sites) were excluded (Walters et al., 2003b).  236 

We used the inverse of invertebrate axes 1 and 2 (Invert A1 & A2), which explained 78.1% and 237 

10.6% of variation in assemblages across sites, respectively, and responded negatively to 238 

disturbance.  We used fish axis 2 (Fish A2, 46% variance explained) and the inverse of fish axis 239 

3 (Fish A3, 35% variance explained) as descriptors of fish integrity. 240 

2.6. Statistical Analyses 241 

All predictor (i.e., independent) and response (i.e., dependent) variables were tested for 242 

normality with the Komolgorov-Smirnov (KS) test using SigmaStat 2.03 (SPSS Inc., Chicago, 243 

IL, USA) and transformed, when necessary.  In total, there were 45 land cover, 115 244 

geomorphology, and 12 water quality variables.  We used Pearson correlation analysis to screen 245 

the large sets of predictor variables and exclude correlated variables (i.e., Pearson’s |r| > 0.80) 246 

within categories of land cover, geomorphology, and water quality (Supplementary Material, 247 

Table 2).  If  variables were correlated, we retained the variables that were identified in previous 248 

publications as important predictors of fish and macroinvertebrate assemblages (Parisi, 2001; 249 

Roy et al., 2003; Walters et al., 2003a; Walters et al., 2003b; Walters et al., 2005).  To further 250 

reduce geomorphic variables to ≤ 30, we excluded variables that were 1) derived from other 251 
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variables in the remaining list (e.g., ruggedness, which is a product of drainage density and total 252 

relief), 2) components of other variables (e.g., % silt plus clay in riffles, which is included within 253 

% fines in riffles), or 3) largely redundant with other variables (e.g., pool, riffle, and glide depth 254 

at baseflow were excluded while average depth at baseflow remained).  The reduced sets of land 255 

cover (n = 27), geomorphology (n = 30), and water quality variables (n = 12) were then 256 

correlated against fish and macroinvertebrate response variables to determine the best predictors 257 

of assemblage attributes.   258 

 We used multiple linear regression (MLR) analysis with a forward, stepwise selection 259 

procedure to determine the best models for predicting each response variable, and compare the 260 

predictive ability of models which included the best variables (“full models”), relatively easy-to-261 

collect variables (“reduced models”), and variables derived exclusively from GIS (“simple 262 

models”).  First, we ran MLR for the separate variable sets (land cover, geomorphology, and 263 

water quality) to identify the most important variables in the models and select those variables 264 

for inclusion into the full model set  (n = 30 variables).  Variables that explained <6% of the 265 

variation in assemblage descriptors and were never in the top three variables in any model were 266 

excluded.  Then, variables from the full set that were relatively intensive to collect (e.g., required 267 

more than one field visit) or analyze in the laboratory (e.g., water chemistry) were replaced by 268 

variables that were correlated with these and relatively easier to collect in order to construct the 269 

reduced model set (n = 24 variables).  Finally, a simple model set was created that only included 270 

land cover and morphometry variables that were derived from digital topographic map data (n = 271 

28 variables).  For the simple model set, we again screened variables to ensure that variables 272 

were not highly correlated (|r| < 0.80), and we also excluded derivative, forest subcategories 273 

(deciduous, evergreen, and mixed) to obtain <30 variables for MLR.  We compared the adjusted 274 



 13

R2 values of the separate models (limited to 3 predictor variables) to determine whether variables 275 

with minimal cost and effort could effectively predict biotic integrity.  Correlation and MLR 276 

analyses were performed using JMP Version 5 (SAS Institute Inc., Cary, NC, USA). 277 

3. Results 278 

Land cover variables explained up to 66% of the variation in macroinvertebrates (urban vs. 279 

Invert A1, r = -0.81) and 46% of the variation in fishes (forest network riparian vs. E:E+C, r  = 280 

0.68, Table 1). Urban land cover at the catchment scale was consistently among the best 281 

predictors of macroinvertebrate descriptors, and was negatively correlated with ICI, EPT, and 282 

Invert A1.  Pond and road density were also negatively correlated with macroinvertebrate 283 

descriptors whereas forest cover assessed at catchment and riparian scales was positively related 284 

to these descriptors.  Fish descriptors generally showed weaker relationships with land cover 285 

compared with macroinvertebrate variables.  Forest cover at the catchment and riparian scale was 286 

among the best predictors and was positively correlated with IBI, E:E+C, and Fish A2.  The 287 

degree of pond construction (pond density, number, and open water in the riparian zone) was 288 

negatively correlated with fish descriptors.  In contrast to macroinvertebrates, fish variables were 289 

largely uncorrelated with urban land cover (except E:E+C) at the p < 0.001 level.  Agriculture 290 

land cover variables were not strongly related to macroinvertebrate or fish descriptors. 291 

 The strongest geomorphic predictors of macroinvertebrate descriptors were local relief 292 

(+) and sediment characteristics (fines in riffles (-) and embeddedness (-); Table 1).  Compared 293 

with other macroinvertebrate descriptors, Invert A3 was strongly predicted by the highest 294 

number of geomorphic variables (8), including slope, bed texture, and bed mobility.  Two fish 295 

variables were also strongly predicted by numerous geomorphic variables, E:E+C (8 correlations 296 

with p < 0.001) and Fish A2 (7 correlations).  Embeddedness (-), bed mobility (-), riffle bed 297 
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texture (-), stream power (+), and stream gradient (+) were among the strongest predictors of fish 298 

descriptors.  Measures of stream size (e.g., drainage area, width, depth, and discharge) were 299 

generally poor predictors of macroinvertebrate and fish descriptors.   300 

The strongest water quality predictor of macroinvertebrate descriptors was conductivity, 301 

which was negatively correlated with ICI, EPT, and Invert A1 (Table 1).  Dissolved oxygen 302 

(DO, +), and NH4
+ (-) were also consistent predictors of macroinvertebrates.  Fishes were most 303 

strongly correlated with NH4
+ (-) but were also consistently predicted by turbidity (-) and DO 304 

(+).  Stream temperature variables were weak predictors except for baseflow temperature, which 305 

was negatively correlated with ICI, Invert A1, and Fish A2.  Macroinvertebrates and fishes were 306 

uncorrelated with NO3
- + NO2

-, pH, annual temperature, and winter temperature at p < 0.001. 307 

Multiple linear regression models using land cover, geomorphology, and water quality 308 

variable sets generally confirmed results of bivariate analysis in terms of key environmental 309 

predictors and their scale of measurement (Table 2).  Land cover models explained 41 – 70% of 310 

the variance in descriptors, and were strongest for macroinvertebrate descriptors (ICI and Invert 311 

A1).  The primary predictors for macroinvertebrates were urban land cover, pond density, and (to 312 

a lesser extent) forest and agriculture cover.  Catchment-scale variables were more important 313 

than network- and riparian-scale variables among macroinvertebrate descriptors.   Fish 314 

descriptors were primarily related to forest cover assessed at the catchment and riparian network 315 

spatial scales, with variables describing open water emerging as secondary predictors.  The 316 

exception was Fish A3, which was best predicted by the disturbed land index.    317 

Geomorphology models explained 51 – 79% of the variance in assemblage descriptors.  318 

Fines in riffles and local relief were the primary predictors of macroinvertebrate descriptors, with 319 

stream gradient, entrenchment ratio, large wood, and percent bedrock as secondary predictors. 320 
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The strongest macroinvertebrate model was for Invert A2, confirming the bivariate results that 321 

this ordination axis represents assemblage response to stream geomorphology, rather than land 322 

cover.  Fish descriptors were most strongly predicted by embeddedness, variation in thalweg 323 

depth, and various measures of stream gradient.  Secondary predictors included local relief, 324 

erosion index, bankfull discharge, percent of pool habitat, and large woody debris.  Pool was 325 

negatively correlated with axes scores because low scores for both axes described sites 326 

dominated by pool-dwelling species with generalized habitat requirements whereas sites with 327 

high axis scores were dominated by benthic species specializing in riffle habitats.  The strongest 328 

geomorphic models among fish descriptors were for E:E+C (R2 = 0.74) and Fish A2 (R2 = 0.74). 329 

Water quality models explained 33 – 66% of the variance in assemblage descriptors.  330 

Conductivity and temperature were the primary predictors of macroinvertebrate descriptors, and 331 

DO, pH, and turbidity were secondary predictors.  Fish descriptors were best predicted by 332 

turbidity and baseflow temperature, with DO as a secondary predictor.  Water quality models for 333 

both macroinvertebrates and fish were typically weaker than land cover and geomorphic models 334 

(see ICI and E:E+C; Figure 2).  335 

 Full, three variable models explained a remarkably high percentage of the variation in 336 

assemblage descriptors (73–81%), except for fish IBI (R2 = 0.63; Table 3).  These models always 337 

equaled (2 cases) or exceeded the predictive power of the separate land cover, geomorphology, 338 

and water quality MLR models.  The top three variables selected in the stepwise procedure 339 

always included variables across at least two categories (land cover, geomorphology, or water 340 

quality).  Urban (-), fines in riffles (-), and large wood (+) were predictors in multiple 341 

macroinvertebrate models, with urban as the top predictor for ICI and Invert A2.  Embeddedness 342 
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(-) was the top predictor in two fish models (E:E+C and Fish A2), with turbidity (-), map slope 343 

(+), and pool (-) also predictors in multiple models. 344 

 The reduced and simple models were weaker than full models in most cases but many 345 

were surprisingly robust, explaining 48-79% and 42-79% of the variance, respectively, among 346 

descriptors (Table 3).  Among measures of biotic integrity, reduced models were substantially 347 

weaker than full models for EPT and IBI (Figure 3), and simple models generally had among the 348 

lowest predictive ability.  We also repeated the stepwise procedure for reduced models including 349 

two easily collected (albeit requiring multiple visits) water quality variables, conductivity and 350 

turbidity (data not reported in tables).  Conductivity entered the EPT model and increased the 351 

variance explained from 55% to 71%, similar to the variance explained by the full model (73%).  352 

Turbidity entered the IBI model, but only increased the variance explained from 48% to 49%. 353 

4. Discussion 354 
 355 
4.1. Predictive power and limitation of Etowah models 356 

A major goal of stream ecologists and resource managers is to predict the response of stream 357 

ecosystems to environmental factors and human disturbances such as land use change.  The 358 

Etowah data showed relatively strong correlations between landscape components and 359 

assemblage descriptors (R2 values of 0.63-0.81) compared with similar studies that generally 360 

demonstrated lower predictive capabilities (Richards et al., 1996; Roth et al., 1996; Allan et al., 361 

1997; Wang et al., 1997).  We believe there are several important reasons why our predictive 362 

capabilities are high.  First, the Etowah data set is relatively large (n=31) considering the 363 

extensive suite of geomorphic variables considered (Walters et al. 2003b) and includes a wide 364 

range of physical and biological conditions, which allows a full spectrum of possibilities to be 365 

analyzed.  Unlike studies that have been conducted in the intensive agricultural landscapes 366 
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(Richards et al., 1996; Roth et al., 1996; Allan et al., 1997; Wang et al., 1997), the Etowah basin 367 

contains fully forested to non-forested landscapes and a wide range of urban to rural land uses.  368 

The topographic setting of the Etowah basin also presents a wide range of variation, which 369 

broadens the spectrum of the physical template shaping stream ecosystems.   Additionally, our 370 

variables were largely collected as continuous data, which maximizes numerical precision, as 371 

opposed to lumping observations into categories.  Finally, some of the success of our indicator 372 

models must be attributed to the fact that the study was conducted within wadeable streams in a 373 

single river basin and physiographic province.  This eliminated potentially confounding 374 

problems associated with scale, intra-basin, and regional differences in environmental setting and 375 

biotic assemblages, thus allowing more emphasis to be placed on variation among landscape 376 

components.   377 

 While the predictive power of many models was high, our dataset and statistical analyses 378 

are not without limitations.  First, our sample size (n = 31 sites) is relatively large considering the 379 

suite of intensively collected geomorphic variables (Walters et al., 2003b), but it is small relative 380 

to the total number of predictor variables considered.  This is an inherent problem for studies 381 

seeking to empirically link stream biological responses to landscape and stream environmental 382 

variables.  For example, with advances in computing capabilities and increasing availability of 383 

digital spatial data, our ability to generate GIS-based variables can quickly outpace our ability to 384 

sample sites.  One danger of having many more predictor variables than sites is developing 385 

overspecified models that “over-explain” biological descriptor variables.  We took three steps to 386 

minimize this threat.  First, we used Pearson correlation analysis to screen predictor variables 387 

and trim the dataset prior to modeling.  This reduced the number of variables and minimized 388 

potential overspecification of models related to multicollinearity among predictor variables.  389 
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Second, we limited the limited the number of predictors in model sets so that n of predictors was 390 

less than n of sites (Draper and Smith, 1998).  Third, we arbitrarily limited the number of 391 

variables in multiple linear regression models to three when reporting R2 and F values to limit 392 

overspecification of models.  Another drawback of our models is that they were not validated by 393 

comparing predicted values from environmental variables with observed values of biotic 394 

descriptors from sites not used to build the models.  Thus, even though predictive power of some 395 

models was high, they must be tested with additional data prior to application.   In spite of these 396 

shortcomings, the modeling approach we used was reasonable and conservative for achieving 397 

our main objectives of (1) identifying environmental indicators of stream assemblage integrity 398 

and (2) comparing the predictive power of variables that vary in their difficulty of collection. 399 

4.2. Key Indicators and their Roles as Stressors to Stream Biota 400 

The indicators that we identified represent broader landscape components that should be 401 

considered in the context of physical and chemical stressors on stream communities.  Key 402 

landscape components (land cover, morphometry, channel morphometry, sedimentology, and 403 

water quality) identified in this study are expected to vary considerably in respect to their status 404 

as stressors to stream ecosystems.    Many of these indicators were correlated with other 405 

environmental variables (Supplementary Material, Table 2), so we must be cautious in 406 

overemphasizing or interpreting the biotic response to individual variables.  However, those 407 

variables that we highlight here were consistent predictors of biotic assemblages, and may have 408 

broader applicability to other river basins or ecoregions.    409 

Land cover was a significant predictor of assemblage descriptors, as it is the source of a 410 

suite of reach-scale physical and chemical stressors which, in turn, affect biota.  Urban land 411 

cover is a proxy for altered hydrology, habitat, and water quality (Paul and Meyer, 2001; Walsh 412 



 19

et al., 2005) that affect stream assemblages at the reach-scale, leading to predictable changes in 413 

assemblage traits in Etowah River basin streams.  Likewise, deforestation is a proxy for general 414 

disturbance (riparian forest loss, excessive sedimentation) in these naturally forested systems.  In 415 

particular, deforestation and urban development are linked to higher turbidity and increasing 416 

fines on stream beds (Walters et al., 2003a; Price and Leigh, 2006a; b), both of which were 417 

strong predictors of biotic assemblages in this study.  We also found that variables related to 418 

pond development were strong predictors of assemblage descriptors.  We view these artificial 419 

impoundments as proxies for many sorts of stresses to aquatic ecosystems, because they 420 

represent signs of agricultural and urban development, they are typically associated with 421 

livestock within and close to the stream, and they directly affect water temperature, chemical 422 

conditions, and connectivity of stream systems (e.g., Maxted et al., 2005).  Impoundments are 423 

also one of the easiest land cover indicators to measure because water has a very distinctive 424 

signature on Landsat images and thus exhibits high levels of accuracy and reproducibility. 425 

Morphometry is a static variable over timescales of thousands to millions of years (Ritter 426 

et al., 1995), which cannot be significantly influenced by humans.   Thus, we do not consider it 427 

as a stressor to biota, but rather as an inherent template of the landscape that influences biotic 428 

assemblages.  For instance, catchment-wide geomorphic variables are important elements of the 429 

bedrock and topographic template that ultimately influence channel form and sedimentology 430 

(Montgomery, 1999).   Morphometry variables typically resulted as secondary predictors in our 431 

models, but were particularly useful for improving the predictive capabilities of simple models 432 

that relied solely on remotely sensed and map data.  We identified local relief and map slope as 433 

key indicators.  Local relief and stream gradient exert strong influences on the localized 434 

morphology of the stream reach and physical processes operating within it.  Rugged, high relief 435 
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terrain is most conducive to a high frequency of riffles and shoals that tend to favor both high 436 

levels of habitat quality and habitat heterogeneity (Leigh et al., 2002; Walters et al., 2003a; 437 

Fitzpatrick et al., 2005; Walters et al., 2005).  Biotic assemblages in such streams in the Etowah 438 

River basin tend to have high species richness as well as endemic fishes and sensitive 439 

macroinvertebrates that are positive indicators of biotic integrity (Roy et al., 2003; Walters et al., 440 

2003a).  Stream size generally was found to be a minor indicator compared with other variables 441 

(channel morphology, sedimentology, and land cover) that have little or no relationship with 442 

stream size, likely due to the narrow range in size among catchments in our study (11-126 km2).   443 

 Channel morphology is an indicator category that may or may not be linked with human 444 

disturbance, depending upon the variable under consideration.  Stream slope, depth variability, 445 

width, entrenchment ratio, stream power, discharge, and large wood were key indicators within 446 

the channel morphology category.  Even though stream slope was not always among the 447 

strongest assemblage predictors, it is a critical channel morphology variable to consider because 448 

it establishes the template for velocity, stream power, and tractive forces that shape channel 449 

morphology and is the key determinant of the particle size composition on the stream bed 450 

(Walters et al., 2003b). It is not likely that land use has had much influence on channel slopes, 451 

because many of our sites have their slopes controlled by bedrock or they are in alluvial settings 452 

where no evidence for historical changes in slope can be observed (Leigh et al., 2002).  In 453 

general, we do not view slope as a distinct stressor, but rather as a critical element of the physical 454 

template influencing both assemblages and habitats within these streams (Walters et al., 2003a; 455 

Walters et al., 2003b; Walters et al., 2005). 456 

 Sedimentology, the particle size composition of the channel bed, is an influential variable 457 

group for stream assemblages.  Finer, more embedded, and more mobile beds exhibited lower 458 
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biotic integrity and altered assemblage structure.  Excessive sedimentation is widely viewed as a 459 

key stressor in stream ecosystems, and the detrimental effects on macroinvertebrate and fish 460 

assemblages (e.g., altered assemblage structure, increased drift, reduced feeding, growth, and 461 

recruitment, and respiratory impairment) are well documented (Waters, 1997).  We previously 462 

documented the strong effects of channel slope on particle size in Etowah streams (Walters et al., 463 

2003a), suggesting that sedimentology is mostly determined by non-anthropogenic controls.  Yet 464 

channel bed sediment can be considered a stressor, at least in part, because deforestation and 465 

urbanization are significantly related to finer bed texture (e.g., fines in riffles, mean particle size, 466 

and embeddedness) beyond the primary correlations with slope (Leigh et al., 2002; Walters et al., 467 

2003a).  This suggests that that land cover change has influenced the particle size composition of 468 

stream beds to some extent, with subsequent negative effects on stream biotic assemblages.    469 

Considering that bed texture indicators are both simple to collect (requiring one field visit and 470 

minimal laboratory processing) and are strong indicators of biotic condition, their value for 471 

predicting assemblage traits in Piedmont streams can not be overstated.   472 

 Declining water quality is an important stressor to stream ecosystems, and some water 473 

quality variables may be more directly linked to land use change than other stressor variables we 474 

considered (e.g.,  catchment morphometry and channel morphology).  We found that specific 475 

conductivity was a strong predictor of macroinvertebrate descriptors and that turbidity was a 476 

strong indicator of fish descriptors.  Elevated conductivity has been previously linked to 477 

increased urbanization and altered macroinvertebrate assemblages in other regions (Wang and 478 

Yin, 1997; Paul and Meyer, 2001; Kratzer et al., 2006) and in these Etowah streams (Roy et al., 479 

2003).  Likewise, elevated stream turbidity is linked to removal of native forest cover and other 480 

land disturbing activities (Allan, 2004) and altered fish assemblages in these streams (Walters et 481 
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al., 2003a) and other systems in the southeastern highlands (Sutherland et al., 2002).  Streams of 482 

the Etowah are naturally low in conductivity due to the underlying metamorphic geology and 483 

were reportedly clear during low flow prior to human alteration of the landscape (Burkhead et 484 

al., 1997).  Since we detected elevated levels of conductivity and turbidity during baseflow 485 

conditions, we view them as indicators of chronic, long-term (i.e., press) disturbances resulting 486 

from landscape alteration as suggested by others (Bolstad and W.T., 1997; Price and Leigh, 487 

2006a) for the nearby Blue Ridge Mountains province.    488 

4.3. Differential response of macroinvertebrate and fish descriptors to environmental 489 

indicators 490 

Macroinvertebrate and fish impairment were correlated with different watershed and reach-scale 491 

stressors. Macroinvertebrate descriptors were linked to changes in urban land cover, propagated 492 

through water quality (e.g., conductivity) and sedimentology (% fines in riffles). On the other 493 

hand, fish descriptors were more closely tied to reach-scale variables including embeddedness 494 

and turbidity, which were, in turn, related to reach-scale stream slope (largely a natural factor) 495 

and forest cover. The results also suggest that macroinvertebrates are more sensitive than fishes 496 

to urban effects in streams, at least in newly urbanizing systems. The predictive models were 497 

robust across the various descriptors for each assemblage, lending support to these causal 498 

pathways. Our results also coincide with previous studies of land use effect on multiple biotic 499 

assemblages that indicate that macroinvertebrates are more affected by chemical parameters 500 

(particularly sediment-related contaminants) and depositional sediment, whereas fish impairment 501 

is controlled by geomorphic and erosional (e.g., suspended sediment) alteration (Fitzpatrick et 502 

al., 2004; Burcher et al., 2007; Carlisle et al., 2008).  503 
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 Considering that macroinvertebrates and fishes vary in morphological, behavioral, and 504 

life history traits, it is not surprising that they have different sensitivities to various stressors. 505 

Studies that sample multiple assemblages (e.g., fish, macroinvertebrates, and diatoms) in streams 506 

have repeatedly documented different responses to disturbances (Griffith et al., 2001; Triest et 507 

al., 2001; Fitzpatrick et al., 2004; Passy et al., 2004; Burcher et al., 2007; Feio et al., 2007; 508 

Carlisle et al., 2008). These patterns suggest that complete and accurate assessment stream 509 

ecosystem condition should include multiple assemblages.  In fact, Carlisle et al. (2008) reported 510 

that only half of the sites would have been considered impaired if only one of the three 511 

assemblages (fish, macroinvertebrates, or diatoms) were sampled. Furthermore, primary sources 512 

of stream impairment may be missed by using a single assemblage indicator.  While combining 513 

multiple assemblages into a single index has been recommended (Griffith et al., 2003), we argue 514 

that sampling multiple assemblages and separately examining causal pathways will lead to a 515 

better understanding of the multiple mechanisms by which land cover impacts stream 516 

ecosystems. The suite of stressors will, in combination, provide the best indicators of disturbance 517 

and, in turn, the most comprehensive management recommendations.    518 

4.4. Implementing environmental indicators into a management framework: A tiered 519 

approach 520 

One objective of this research was to compare the predictive capability of indicators collected 521 

with minimal cost and effort to those that are laborious or expensive to collect.  To this end, we 522 

modeled assemblage descriptors using simple, reduced, and full model sets, that included 523 

variables progressively more laborious to collect (Gergel et al., 2002).  Not surprisingly, the 524 

predictive power tended to be highest for full models, intermediate for reduced models, and least 525 

for simple models.  However, many of the reduced and simple models were quite robust (8 of 14 526 
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models explaining >66% of the variance among descriptors), indicating that some ecosystem 527 

properties in urbanizing watersheds can be well predicted without the added expense of intensive 528 

measurements.   529 

Given our results, we suggest a tiered approach to modeling stream response to land use 530 

change depending upon management or research goals (Table 4).  For example, a relatively 531 

simple and inexpensive GIS-based modeling approach would be appropriate if the management 532 

goals are to identify the likely degree of impairment among sites or to identify at-risk 533 

populations of sensitive or endemic species (Tier 1).  As goals increase in complexity or 534 

specificity (e.g., long term monitoring of sites, identifying incipient levels of biotic integrity 535 

loss), a minimal field effort is needed to augment the simple variable set (Tier 2).  This would 536 

include biotic community sampling and collection of geomorphology and water quality variables 537 

(e.g., bed texture and turbidity) that could recorded in a single visit.  Water quality sampling 538 

could be expanded to increase temporal resolution of baseflow conditions (monthly or quarterly 539 

site visits), but should still be limited to indicators like turbidity or conductivity that are easily 540 

measured in the field.  More complex goals, such as restoring impaired streams, would require 541 

collecting the full suite of geomorphic and water quality variables considered in the full model 542 

set, particularly for studies focusing on both fish and macroinvertebrate endpoints (Tier 3).  543 

Tailoring study designs to meet these different goals would help managers maximize financial 544 

and labor resources, a critical element of aquatic resource management in an era of diminishing 545 

budgets.   546 

5. Conclusions 547 

In conclusion, it is appropriate to recall our two general research questions concerning (1) how 548 

well stream biota can be predicted from land cover, geomorphic, and water quality conditions, 549 
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and (2) how well variables collected with minimal cost and effort predict assemblage integrity 550 

compared with variables that are more difficult and expensive to collect.  Our results clearly 551 

indicate that strong predictions (R2 = 0.50 – 0.79 in most cases) of stream assemblages can be 552 

made with separate multivariate models of either land cover, geomorphic or water quality 553 

variables, but that the best models (R2 = 0.63 – 0.81) involve a combination of these variables in 554 

order to capture the full range of natural conditions and stressors structuring stream assemblages.  555 

We were encouraged to find that predictive power of our models remained high when using 556 

variables that were relatively simple and inexpensive to collect.  The Etowah River basin was 557 

selected for this study because it contained a wide range of land cover characteristics and a wide 558 

range of topographic variation; thus, a reasonable level of regional applicability should exist.  559 

However, tests of these models in other regions are necessary to validate their general 560 

applicability.  Even if the indicators we identified lack applicability to certain regions, our 561 

general approach of using multiple landscape components for modeling efforts and adjusting the 562 

complexity and intensity of data collection efforts to suit management goals provides a 563 

structured framework for managing land use effects on stream ecosystems.   564 
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Table 1.  Best bivariate predictors of invertebrate and fish assemblage descriptors.  Only 772 

Pearson's correlation coefficients (r) with p < 0.001 are shown. n = 31 sites except n = 29 sites 773 

for water quality variables in italics. Sed. = suspended sediment.  Land cover variables were 774 

assessed at the catchment (C), network (N), and riparian (R) scale (see methods).  Descriptions 775 

of predictor variables are provided in Supplementary Material, Table 1.   776 

    Invertebrate descriptors  Fish descriptors 

Predictors ICI EPT 
Invert 

A1 
Invert 

A2  IBI E:E+C 
Fish 
A2 

Fish 
A3 

Land Cover                  
urban (C) -0.73 -0.64 -0.81 -  - -0.58 - - 
high-density urban (R) - - - -  - - - - 

U
rb

an
 

low-density urban (R) - - - -  - - - - 
forest (C) 0.61 0.56 0.63 -  0.59 0.66 0.60 - 
forest (R) - - - -  - - 0.56 - 
forest (N) 0.64 0.61 0.65 -  - 0.68 0.61 - 
deciduous forest (C) - - - -  - - - - 
deciduous forest (R) - - - -  - - - - 
evergreen forest (C) - - - -  - - - - 
evergreen forest (R) - - - -  - - - - 
mixed forest (C) - - - -  - - - - 

F
or

es
t 

mixed forest (R) - - - 0.60  - - - - 
agriculture (C) - - - -  - - - - 
cultivated (C) - - - -  - - - - 
cultivated (R) - - - -  - - - - 
cultivated (N) - - - -  - - - - 
cropland (R) - - - -  - - - - 
golf course (C) - - - -  - - - - 

A
gr

ic
ul

tu
re

 

golf course (R) - - - -  - - - - 
water (C) - - - -  - - - - 
water (R) - - - -  - - - - 
water (N) - - - -  - -0.66 - - 
ponds (C)  - - - -  - - - -0.56 
pond density (C) -0.67 -0.65 - -  - -0.57 - - 

W
at

er
 

pond density (>1ha), (C) - - - -  - -0.56 - - 
road density (C) - -0.59 -0.60 -  - - - - 

In
de

x 

disturbed land index (C) - - - -  - - - -0.56 
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Geomorphology                  
drainage area - - - -  - - - - 
compactness - - - -  - - - - 
drainage density - - - -  - - - - 
total relief - - - -  - - - - 
local relief 0.60 0.61 0.72 -  - - - - 
trunk stream slope - - - -  - 0.64 - - 
map slope - - - 0.67  - 0.63 - 0.70 M

or
ph

om
et

ry
 (

G
IS

) 

erosion index - - - -  - - - - 
slope - - - 0.71  - 0.71 0.61 - 
sinuosity - - - -  - - - - 
riffle - - - -  - - - - 
pool - - - -  - - - - 
glide - - - -  - -0.56 - - 
entrenchment ratio - - - -  - - - - 
baseflow width - - - -  0.57 - - - 
baseflow depth - - - -  - - - - 
baseflow width:depth - - - -  - - - - 
bankfull width:depth - - - -  - - - - 
depth variability (t)1 - - - -  0.65 - 0.64 - 
depth variability (c)1 - - - -  - - - - 
baseflow Q - 0.56 - -  - - - - 
bankfull Q - - - -  0.56 - - - 
stream power - - - -  - - 0.71 - 

C
ha

nn
el

 m
or

ph
ol

og
y 

large wood - - - -  - - - - 
bedrock - - - 0.56  - - - - 
bed texture variability - - - 0.58  - - - - 
riffle bed texture - - - -0.60  - -0.67 -0.72 - 
fines in riffles -0.70 -0.56 - -0.81  - -0.69 -0.65 - 
embeddedness -0.65 -0.56 -0.56 -0.67  - -0.79 -0.75 - 

S
ed

im
en

to
lo

gy
 

bed mobility - - - -0.63  - -0.78 -0.63 - 
Water Quality                  

SRP -0.59 - - -  - - - - 

NH4
+ - -0.59 -0.68 -  -0.73 -0.73 -0.82 - 

NO3
- + NO2

- - - - -  - - - - 
DO 0.60 0.56 - -  - 0.67 0.68 - 
conductivity -0.70 -0.71 -0.64 -  - - - - 

C
he

m
is

tr
y 

pH - - - -  - - - - 



 37

turbidity - - - -  -0.66 -0.74 -0.69 - 
S

ed
. 

TSS - - - -  - -0.61 - - 
baseflow temp -0.64 - - -0.60  - - - -0.59 
annual temp - - - -  - - - - 
summer temp - - - -  - - - -0.60 

T
em

pe
ra

tu
re

 

winter temp - - - -  - - - - 
 777 

1.  Depth variability was assessed for the thalweg (t) and entire channel (c).  778 
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Table 2.  Multiple linear regression analysis models (stepwise procedure, forward selection, p < 779 

0.05) for invertebrate and fish assemblage descriptors for land cover, geomorphology, and water 780 

quality. Adjusted R2 and F values are reported for ≤ 3-variable models (i.e., predictors in italics 781 

excluded). Land cover variables were assessed at the catchment (C), network (N), and riparian 782 

(R) scale (see methods). 783 

Descriptors Predictors 
Adj. 
R2 

F 
value

 Land cover   
ICI - urban (C), - pond density (C), - deciduous forest (C), + agriculture 

(C), + water (R)   
0.69 22.8 

EPT - pond density (C), - urban (C)  0.52 17.0 
Invert A1 - urban (C), + mixed forest (R) 0.70 35.2 
Invert A2 + mixed forest (R), - ponds (C)  0.47 14.0 
IBI + forest (C), - ponds (C)  0.41 11.2 
E:E+C + forest (N), + road density (C), - water (N), + water (C) 0.58 15.1 
Fish A2 + forest (N), + mixed forest (R), - ponds (C) 0.50 11.2 
Fish A3 - disturbed land index (C), - ponds (C), - deciduous forest (R) 0.58 14.7 
    
 Geomorphology   
ICI - fines in riffles, + local relief, + large wood, + bedrock  0.66 20.1 
EPT + local relief, + entrenchment ratio 0.56 20.3 
Invert A1 + local relief 0.51 31.9 
Invert A2 - fines in riffles, + map slope, - trunk stream slope 0.79 37.8 
IBI + depth variability (t), + bankfull Q, + local relief 0.58 14.9 
E:E+C - embeddedness, + map slope, + local relief, + slope 0.74 29.2 
Fish A2 - embeddedness, + baseflow Q, - pool 0.74 28.8 
Fish A3 + map slope, - erosion index, - pool, + trunk stream slope, + large 

wood 
0.60 16.1 

    
 Water quality   
ICI - SC, + DO  0.52 17.5 
EPT - SC, + pH  0.56 20.3 
Invert A1 - SC, - turbidity 0.50 16.2 
Invert A2 - baseflow temp  0.34 16.5 
IBI - turbidity 0.41 22.2 
E:E+C - turbidity, - baseflow temp  0.66 30.0 
Fish A2 - turbidity, + DO  0.60 23.6 
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Fish A3 - baseflow temp 0.33 15.5 
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Table 3. Multiple linear regression models (stepwise procedure, forward selection, p < 0.05) for invertebrate and fish descriptors based 784 

on full, reduced (minimal cost and effort), and simple (least cost and effort) model sets. Land cover variables were assessed at the 785 

catchment (C), network (N), and riparian (R) scale (see methods). 786 

  Full  Reduced  Simple 

  Predictors 
Partial 

r2 
Adj. 
R2 

F 
value  Predictors 

Partial 
r2 

Adj. 
R2 

F 
value  Predictors 

Partial 
r2 

Adj. 
R2 

F 
value 

ICI              
 - urban (C)  0.54 0.77 34.0  - urban (C) 0.54 0.71 25.1  - urban (C) 0.54 0.68 22.6 
 - fines in riffles  0.19    + embeddedness 0.12    - pond density (C) 0.11   
 + large wood 0.07    - decid. forest (C) 0.08    + map slope 0.07   
EPT              
 - conductivity 0.51 0.73 28.6  - pond density (C) 0.43 0.55 19.3  - pond density (C) 0.43 0.63 17.7 
 + local relief  0.18    + local relief 0.15    + local relief 0.15   
 + bankfull Q 0.07         + agriculture (C) 0.08   
Invert A1              
 - urban (C) 0.66 0.78 36.5  - urban (C) 0.66 0.79 38.6  - urban (C) 0.66 0.79 38.6 
 + large wood 0.07    + map slope 0.07    + map slope 0.07   
 + map slope 0.07    + baseflow Q 0.09    + drainage area 0.09   
Invert A2              
 - fines in riffles 0.66 0.79 39.6  - embeddedness 0.46 0.66 20.3  + map slope 0.45 0.43 23.6 
 + map slope 0.12    + map slope 0.16        
 - pH 0.04    + mixed forest (R) 0.08        
IBI              
 - turbidity 0.43 0.63 18.4  + forest (C) 0.35 0.48 10.4  + forest (C) 0.35 0.49 10.5 
 + bankfull Q 0.18    + baseflow Q 0.10    + drainage area 0.11   

 
+ depth 
variability (t) 0.06    - embeddedness 0.08    + map slope 0.08   
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E:E+C              
 - embeddedness 0.62 0.78 36.8  - embeddedness 0.62 0.77 35.3  + forest (N) 0.46 0.70 23.9 
 - turbidity 0.10    + map slope 0.09    + map slope 0.22   
  + map slope 0.09    + forest (C) 0.09    + road density (C) 0.04   
Fish A2              
 - embeddedness 0.57 0.74 28.8  - embeddedness 0.57 0.73 27.4  + forest (N) 0.37 0.42 11.9 
 + baseflow Q 0.14    + baseflow Q 0.14    + total relief 0.09   
 - pool 0.05    + mixed forest (R) 0.04        
Fish A3              
 + map slope 0.49 0.81 43.1  + map slope 0.49 0.73 42.2  + map slope 0.49 0.73 42.2 

 
- disturbed land 
index (C) 0.26    

- disturbed land 
index (C) 0.26    

- disturbed land 
index (C) 0.26   

  - pool 0.08                       
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Table 4. Application of a tiered approach for assessing stream responses to land use change based on management goals.  As 787 
management goals become more complex or specific (Tier 1 – 3), variables that are more intensive, laborious, and relatively 788 
expensive to collect may be required for modeling efforts. 789 
 790 
Tier Datasets required Management goals 

1 Land cover 

Morphometry 

Species distributions1 

Identify areas where biotic integrity is severely compromised 

Identify intact or minimally impaired systems (i.e., “reference” sites) 

Identify at-risk populations of sensitive, protected or endemic species 

Guide development plans for local or regional planning commissions 

2 Land cover 

Morphometry 

Easily collected geomorphology (e.g., bed texture) 

and water quality variables (e.g., turbidity) 

Biotic community data 

Monitoring 

Identification of incipient levels of decline for specific regions or 

watersheds 

Assessment of temporal changes in stream habitat, water quality, or 

biotic assemblages 

3 Land cover 

Morphometry 

Full geomorphic survey 

Full water quality survey including field measures 

and laboratory analytical chemistry (e.g., 

nutrients) 

Hydrology2  

Biotic community data 

Regional assessment or condition studies 

Restoration of impaired streams 

Evaluation of best management practice (BMP) implementation 

programs 

Mechanistic or experimental studies of land use effects on stream 

ecosystems 

Development of Habitat Conservation Plans3 
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1 Spatial data not used in this study, but often readily available through state agencies. 791 

2 Can be expanded to include a broader set of hydrologic variables than those considered in this study. 792 

3 Formal plans submitted to the U.S. Fish and Wildlife Service by private landowners, corporations, states, or local governments who 793 

wish to conduct activities on their land that might incidentally harm (or "take") Endangered or Threatened species protected under the 794 

Endangered Species Act. 795 
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Figure List 796 

Figure 1.  Sample sites (filled circles) in the Etowah River basin.  The shaded area in the center 797 

of the basin is Lake Allatoona, a reservoir on the mainstem Etowah River.  Inset graph 798 

shows temporal changes for cropland and population density in Cherokee County, which 799 

is centrally located in the basin.    800 

 801 

Figure 2.  Predictive power (adjusted R2) of land cover, geomorphology, and water quality 802 

models for the best predicted descriptors of macroinvertebrate (ICI) and fish (E:E+C) 803 

biotic integrity. 804 

 805 

Figure 3.  Predictive power (adjusted R2) of full, reduced, and simple models for selected 806 

macroinvertebrate and fish measures of biotic integrity. 807 


