

The birds did it!

Mary Schoen Nick Ashbolt

Great Lakes Beach Association Conference,9/30/2009

Al Dufour

Office of Research and Development National Exposure Research Laboratory

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

EPA 600-1-84-004

Is the risk of swimming-associated gastrointestial illness from non-sewage impacted waters different than the risk from sewage impacted waters?

Approach: Quantitative Microbial Risk Assessment (QMRA)

4

United States Environmental Protection 1. Setting: Reference Pathogens

Sewage:

Norovirus Giardia Campylobacter Cryptosporidium Salmonella

Gulls:

Campylobacter Salmonella

For a bathing water enterococci concentration of 104 cfu/100mL, the pathogen dose from seagulls is calculated as:

$$\mu_{sp}^{s} = \frac{C_{ENT} * F^{s}}{R_{FNT}^{s} * 100} * R_{sp}^{s} * p^{s} * I^{s} * V$$

where

S is the source

 C_{ENT} is the surface concentration of ENT using culture method (cfu/100mL)

 F^s is the fraction of total ENT from source s

 R_{ENT}^{s} is the ratio of the count of ENT to the mass of feces for gulls and human shedders (cfu/g) or to the volume of sewage (cfu/L)

V is the volume of water ingested (mL)

 R_{sp}^{s} is the ratio of the count of pathogen species to the mass of feces for gulls and human

shedders (cfu/g) or to the volume of sewage (cfu/L)

 p^s is the fraction of human-infectious pathogen strains from source s

 I_{sp}^{s} is the infection rate in population of source s

•	EPA
	United States Environmental Protection Agency

Parameter	S	Units	Distribution	Reference
Ratio of ENT to	Sw	cfu/L	Uniform	(Tschobanoglous
source			<i>a</i> = 1E7 <i>b</i> = 1E8	et al., 2003)
$R^s_{\scriptscriptstyle ENT}$				
	G	cfu/g	Uniform	(Fogarty et al.,
			<i>a</i> = 1E6 <i>b</i> = 1E8	2003; Haack et
				al., 2003)
Ratio of	Sw	cfu/L	NA	NA
C.jejuni to	G^*	cfu/g	Uniform	(Lévesque et al.,
source (R_{Cj}^{s})			<i>a</i> = 2E3 <i>b</i> = 1E6	2000)
Ratio of	Sw	cfu/L	Uniform	(Karine
Salmonella spp			a = 3E0 $b = 1E3$	Lemarchand,
to source (R_{s}^{3})				2003)
-	G	cfu/g	Uniform	(Lévesque et al.,
			a = 2E2 $b = 1E9$	2000)
Ratio of	Sw	oocysts/L	Uniform	(Rose et al.,
Cryptosporidium			a = 5E - 1 b = 4E4	2004)
spp to source	G	oocysts/g	NA	NA
$\left(R_{c}^{3} \right)$				
Ratio of Giardia	Sw	cysts/L	Uniform	(Rose et al.,
spp to source			a = 7E0 $b = 1E4$	2004)
$\left(R_{G}^{s} \right)$	G	cysts/g	NA	NA
Ratio of	Sw	genome/L	Uniform	(Haramoto et al.,
Norovirus to			a = 9E2 $b = 3E7$	2006; Katayama
source (R_N^s)				et al., 2008)

*C. spp. **Assumed same as C. jejuni ***C. parvum

PA 3. Health Effects United States Environmental Protection .

Pathogen	Units	Dose-Response	Reference
Campylobacter_iejuni	cfu	Adult Beta-Poisson $P_{inf} = 1 - {}_1F_1(\alpha, \alpha + \beta, -\mu) = 1 - \sum_{n=0}^{\infty} \frac{(\alpha)_n}{(\alpha + \beta)_n} \frac{(-\mu)^n}{n!}$	(Black et al., 1988)
		a = 0.145 $B = 7.59P_{illinf} = 0.2$	(Teunis et al., 2005)
Salmonella Bareilly	cfu	Gompertz $P_{iii} = 1 - \exp(-\exp(-\ln(a) + b\ln(u)))$ $\ln(a) = 11.68 b = 0.82$	(Coleman and Marks, 1998; Coleman et al., 2004; Coleman and Marks, 2000: Soller JA et al., 2007)
Cryptosporidium spp	oocysts	exponential $P_{inf} = 1 - e^{-B(r)\mu}$ E(r) = 0.09 $P_{ikkinf} = 0.7$	(EPA 2005)
Giardia spp	cysts	exponential $P_{inf} = 1 - e^{-B(r)\mu}$ E(r) = 0.0199 $P_{iklinf} = 0.9$	(Perz et al., 1998; Rose et al., 1991)
Norovirus	genomes	$P_{inf} = 1 - {}_{2}F_{1}(\alpha, \frac{u(1-\alpha)}{\alpha}, \alpha + \beta, -\frac{-\alpha}{1-\alpha})$ $\alpha = 0.04 \alpha = 0.0001 \beta = 0.055$ $P_{illinf} = 1 - (1 + \eta\mu)^{-r}$ $\eta = 2.55E - 3 r = -0.086$	(Teunis and Havelaar, 2000)

8

9

Agency

Results

Total	Т
Campylobacter jejuni	C.j
Salmonella bareilly	S
Giardia spp.	G
Cryptosporidium spp.	С
Norovirus	Ν

Assuming:

Fresh Contamination 104 CFU/100mL ENT

Sensitivity analysis: Probability of GI illness vs changes in the assumed fraction of gull *Campylobacter* strains that are human infectious

Human-infectious fraction of pathogen species from gulls

12

 Using seagulls as an example non-sewage source, the upper 95% CI probability of illness from ingestion of water containing fresh gull feces at 104 cfu/100mL ENT is greater than the illness benchmark of 0.01

-Assuming that 20% of total *Campylobacter* and *Salmonella* strains from gulls are human infectious

- Risk estimate is sensitive to the fraction of human infectious pathogens in animal feces
- Given the high level of uncertainty in predicting the probability of illness using QMRA, exclusively seagull impacted water may not be significantly lower in risk than sewage impacted water

 The pathogen uncertainty is common with many animal sources of fecal contamination; hence, it is important that future research focus on specifying pathogen densities to allow comparison of risk estimates from epidemiologic studies with QMRA, which may ultimately allow risk characterization from unstudied sources of fecal contamination at recreational beaches.

