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Abstract

Studies have linked increased levels of particulate air pollution with decreased auto-
nomic control, as measured by heart rate variability (HRV) particularly in susceptible
populations such as the elderly. In the present study we utilize data from the 1998
USEPA epidemiology-exposure longitudinal panel study of elderly adults in a Balti-
more retirement home to examine the relationship between heart rate variability and
PMy 5 personal exposure. We consider PMy 5 personal exposure in the aggregate as
well as personal exposure to the components of PM, 5 as estimated in two ways using
receptor models by Hopke et al. (2003). We develop a Bayesian hierarchical model
for heart rate variability as a function of personal exposure to PMj 5 which integrates
heart rate variability (HRV) measurements as well as data from personal, indoor and
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outdoor PM5 s monitoring and meteorological data. We found a strong relationship
between decreased HRV (HF, LF, r-MSSD, and SDNN) and total personal exposure
to PMas at lag one day. Using the personal exposure monitoring (PEM) apportion-
ment results of Hopke et al. (2003), we examined the relative importance of ambient
and non-ambient personal PMs 5 exposure to HRV and found the effect of internal
non-ambient sources of PMs 5 on HRV to be minimal. Using the PEM apportionment
data, a consistent effect of soil at short time scales (lag 0) was found across all five
HRV measures, and an effect of sulfate on HRV was seen for HF and r-MSSD at the
moving average of lags 0 and 1 day. Hopke et al. (2003)’s ambient site apportionment
data indicated effects of nitrate on HRV at lags 1 day, and moving averages of days 0
and 1 and days 0-2 for all but the ratio LF/HF. Sulfate had an effect on HRV at lag 1
day for four HRV measures (HF, LF, r-MSSD, SD of NN) and for LF/HF at a moving
average of days 0-2.. '
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1 Introduction

Studies have linked increased levels of particulate air pollution with increased cardiovascular
mortality and morbidity in susceptible populations such as the elderly (Dockery et al., 1993;
Dockery, 2001). However, the potential physiological mechanisms of this association are still
unknown. One hypothesis is that particulate exposure may alter cardiac autonomic control
as measured through heart rate variability (HRV), a measure of naturally occurring, beat-
to-beat variations in heart rate. Declines in HRV have been associated with increased risk of
myocardial infarction and sudden cardiac death in the elderly and those with compromised
cardiovascular health (La Rovere et al., 1998; Dekker et al., 1997).

Animal studies (Godleski et al., 2000) and a number of panel studies have shown an
association between increased exposure to total airborne particulate matter of diameter less
than 2.5 microns (PM;5) mass and lowered HRV over time scales of up to 48 hours. Magari
et al. (2001) monitored forty male boilermakers during a work shift using an ambulatory elec-
trocardiogram monitor and a personal exposure monitor (PEM) for PMs 5 and found that
workers experienced decreased HRV (as measured i')y the 5-minute standard deviation of the
normal-to-normal intervals (SDNN)) as a function of moving PM, 5 averages taken from two
hours to seven hours after exposure after adjustment for heart rate. In a study by Devlin
et al. (2003), healthy elderly volunteers exposed to concentrated air pollution particles for
a two hour period were found to have decreased HRV in the time and frequency domains
immedié,tely following exposure, with some changes persisting up to 24 hours later. Pope
et al. (2004) examined the relationship between daily HRV and daily average ambient PMs 5
levels in 88 elderly residents of 3 communities in Utah, using repeated 24-hour ambulatory
ECG monitoring during periods of high and low air pollution. After controlling for tempera-
ture and humidity, consistent declines in HRV were seen as PM; 5 levels increased. Cavallari

et al. (2008) monitored 36 male boilermaker welders using ambulatory electrocardiograms



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

and PEMs, and found an inverse association between SDNN and work-related PMs 5 expo-
sures in ecach of the 14 hours after work ended, suggesting an early phase response, at 2-3
hours, and a later phase response, at 9-13 hours.

More recent studies have examined associations between HRV measures and the compo-

nents of PMy 5. For 497 men in the Normative Aging Study in greater Boston, Park et al.

(2005) examined the relationship between IRV and 4-hour, 24-hour, and 48-hour moving
averages of air pollution at an ambient location and found decreases in HRV measures over
all three time scales. HRV measurements included SDNN, high and low frequency power
(IIF, LF, respectively) and the ratio of LF to HF. Park found several significant associ-
ations between PM,5; mass and ozone, but found no significant association of HRV with
particle number concentration, NOy, SO,, and CO for any of the averaging time periods.
Luttman-Gibson et al. (2006) conducted a panel study of 32 non-smoking senior adults over
two seasons, examining the relationship between 24-hour integrated PM, 5 concentrations
at an ambient site and HRV measures including SDNN, the mean square of differences be-
tween adjacent RR intervals (r-MSSD), and the frequency domain HRV measures (HF and
LF). Luttman-Gibson et al. (2006) also examined concentrations of sulfate (SO;?), clemental
carbon (EC) and gaseous pollutants (O3, NOy, SO,). Findings included (1) an association
between the four HRV measures and mean PM, 5 during the day previous to HRV measure-
ment, (2) a significant association between SO;? and HRV at lag one day, ('%) an association
between nonsulfate PMs 5 and SDNN and r-MSSD, and (4) no association between the el-
emental carbon (EC) fraction or gaseous components with HRV measures. Sarnat et al.
(2008) examined the relationship between source-apportionment estimates and cardiores-
piratory morbidity in Atlanta using Poisson generalized linear models, and found positive
associations between same-day PM, 5 and mobile source and biomass combustion sources, as
well as between sulfate-rich secondary PM, 5 and respiratory emergency department visits.

In the present study we utilize data from the 1998 USEPA epidemiology-exposure lon-



10

11

12

13

14

15

16

17

18

19

20

21

2

23

24

gitudinal panel study of elderly adults in a Baltimore retirement home to examine the rela-
tionship between HRV and PM, 5 personal exposure. Two analyses of USEPA panel study
data for elderly adults in Baltimore have already been published. For 26 elderly residents
of a retirement home, Liao et al. (1999) examined the relationship between IRV and daily
PM, 5 concentrations measured at a central indoor site and an outdoor location over a three
week period in early 1997. Using a series of mixed effects models, Liao et al. (1999) found an
inverse association between daily PMsy 5 concentrations and HRV. Liao’s s_tudy formed the
pilot study for a second panel study conducted on the same population with more extensive
personal PMy 5 moni.toring‘ Full details of the 1998 Baltimore Epidemiology-Exposure Study
are given in Williams et al. (2000b) and Williams et al. (2000a). Briefly, HRV measures were
taken over a period of one month for 56 respondents, 21 of whom wore personal PM; 5 expo-
sure monitors. Creason et al. (2001) reported a small negative association between HRV and
outdoor PM; 5 on the previous day after adjusting for age. sex and cardiovascular status in
mixed effects models. Findings based on PMs 5 concentrations at a central indoor site were
similar. ’ ‘

In the present study, we expand on the work of Liao et al. (1999) and Creason ct al.
(2001) to include personal PMs 5 measurements, and we déve]op our models in a Bayesian
hierarchical framework, which integratés data from personal, indoor and outdoor monitoring
and meteorological data. We develop a sequence of nested probability models that integrate
different types of data at multiple levels and bring together multiple sources of variation in
one probabilistic framework. The joint distribution of the parameters links estimation in
a unified way, such that parameter estimates “borrow strength” from available information
on related parameters elsewhere in the model. Markov Chain Monte Carlo (MCMC) meth-
ods make possible a range of in-ferences about quantitics at different levels of the hierarchy.

Jontrolling for apparent temperature, age and cardiovascular health, we then relate HRV

measures in study subjects to the posterior distribution of personal PM, 5 exposure of am-
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bient and non-ambient origins. We then expand upon the Bayesian hierarchical framework
to relate HRV to particular sources by incorporating receptor modeling results from the
Baltimore study by Hopke et al. (2003).

The paper is organized as follows. In Section 2 we provide more details on the panel
study data and we lay out the hierarchical model, prior distributions and implementation
details. In Section 3, we discuss posterior inference with the hierarchical model, and we
perform model checking and sensitivity analysis. In Section 4, we discuss the implications

of the findings.

2 Metho.ds

2.1 The 1998 Baltimore Epidemiology-Exposure Study

In this analysis, we utilize data on PM, 5 measurements and health endpoints indicative
of cardiac autonomic control for 56 subjects enrolled in the 1998 Baltimore Epidemiology-
Exposure Study. Full details of the design, materials and methods are given in Williams et al.
(2000b), Williams et al. (2000a) and Creason et al. (2001). The study was conducted at an
18-story retirement facility in central Baltimore county (Towson, Maryland), about 15 km
from downtown Baltimore, over a four week period from July 26 to August 21, 1998. The self-
contained retirement facility included its own bank, cafeteria and dining hall, recreational
rooms, on-site medical unit and sundries shop. Apartments in the facility contained 1-2
bedrooms, a kitchen/dining room, living room and bathroom.

All 56 subjects were self-sufficient and ambulatory white non-smokers ranging .inl age
from 72-97 with a mean age of 82. Subjects excluded from the study included those with
physician-diagnosed uncontrolled hypertension, coronary bypass surgery and/or heart attack
within the past year, episodes of syncope in the past year, dementia, dialysis treatment, need

for supplemental oxygen, having a pacemaker or being a current cigarette smoker. Of the 11
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men and 45 women in the study, 36 were classified as having some degree of cardiovascular
compromise, which included thyroid disease (13%), coronary disease (16%) and hyperten-
sion (43%). Eight subjects had physician-diagnosed chronic obstructive pulmonary discase.
Eighteen subjects had none of the above conditions. Cooking and use of tobacco products,

the two major indoor sources of PMy s ((")zkaynak et al., 1996), were rarely performed by

‘study participants (Williams et al., 2000b). Subjects spent 94% of their time either inside

their apartments, the retirement facility or other indoor locations, and exposure to indoor
sources such as cooking, vacuuming, dusting or tobacco products totaled less than 0.5 h/day
(Williams et al., 2000a).

Subjects were scheduled to visit a health-monitoring clinic in a vacant apartment in the
facility in two groups of approximately 30 subjects for examination on alternate days, 3 days
per week at the same time each day over the study period. This paper focuses on 5 measures
of HRV in the time and frequency domain recorded at each daily visit. Six minutes of resting
supine beat-to-beat heart rate data were collected after the subjects had rested in the supine
position for ten minutes. IRV measures included: (1) the Eigh frequency (IIF) and (2) low
frequency (LF) spectral power component of the power spectral density curve and (3) the
ratio of LF/HF, (4) the standard deviation of all normal to normal (NN) beat-to-beat R
wave to R wave (RR) time intervals (referréd to as SDNN), and (5) the square root of the
mean of squared differences between adjacent normal RR (r-MSSD). Summary statistics for
HRV measurements are given in Table 1. Each of the 56 subjects participated in 9 to 12

HRV measurement sessions, with 82% participating in 12 measurement sessions.
p
[Table 1 about here.]

We hypothesize that lowered HRV occurs within 24 hours following exposure to higher
PMs 5 concentrations. Thus, the main model we describe examines the relationship between

each day’s-HRV measurements and unknown mean personal PMs s concentrations at time



11
12
13
14
15
) 16

17

19

21

22

23

24

26

lag of 1 day. We also consider time lags of 0 days, the moving average of days 0 and 1, and
the moving average of days 0, 1 and 2. Further analysis in this paper utilizes the modeled
PM, 5 source apportionment results of Hopke et al. (2003) to examine relationships between
HRV and the components of PMs ;. Below we describe in more detail the available PM, 5
datasets and modeled apportionment results used in the analysis.

A subset of 10 subjects wore personal exposure monitors, or PEMs, which collected daily
personal PMy s measurements using inertial impactor samplers. Personal monitoring was
conducted on 23 days of the 27 day study period. PEMs also provided daily measurements
of sulfur at the personal (10 subjects, 7-10 days/subject), apartment (10 apartments, 7-10
days/apartment) and central indoor locations (28 days). We utilize the ratio of personal to
outdoor sulfur to calculate infiltration of ambient PM, 5 indoors in Subsection 2.2.3. Daily
ambient PM,; and sulfur monitoring were conducted at a site 4 km north of downtown
Baltimore. Hourly relative humidity, temperature and vector averaged wind speed were also
collected at the ambient monitoring site. Each weather variable was averaged into daily
values for this analysis.

Hopke et al. (2003) provide source apportionment results for the personal PEM data
described above, as well as for a dichotomous Versatile Air Pollutant Sampler, or VAPS
(URG Corporation, Chapel Hill, NC), located at the ambient site. To analyze the PEM
data, Hopke et al. (2003) used the multilinear engine (ME) model of Paatero (1999) to
apportion the personal PEM data into three external and three internal sources. The three
external factors were identified as (1) secondary sulfate, (2) soil, and (3) unknown, which
estimated unmeasured nitrate and carbon mass concentration. The three internal factors
were comprised of (1) dust from gypsum board or drywall, with a high concentration of
calcium and sulfur, (2) PM, 5 associated with personal activities including time outside the
facility, which was primarily unknown mass (79%) and sulfur (3%), and (3) personal care

products, with a high concentration of Zn (possibly linked to talc use), Si and Ti. Tables
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respectively, for the PEM samples. Among the externallsour(:es, sulfate predominated, and
among internal sources, PMs; 5 due to personal activities predominated. We will rcf(.}r to this
model output as PEM apportionment data.

To analyze the VAPS data at the ambient site, Hopke et al. (2003) utilized a PMF3 model
(Paatero, 1997), a least squares approach to factor analysis. The four factors identified were
(1) a combination of ammonium sulfate and ammonium nitrate, typically observed as the
product of atmospheric processing of SOy and NO,, (2) secondary sulfate with a small (<1%)
contribution of NOj3, (3) organic carbon, (4) motor vehicle exhaust, which includes organic
carbon, elemental carbon and NO;. Summary statistics for modeled components of the
VAPS data are given in Table 4 in percentage terms, and in Table 5 in units of pg/ m®. We

refer to this model output as ambient site apportionment data.
[Table 2 about here.]
[Table 3 about here.]
[Table 4 about here.]

[Table 5 about here.]

2.2 Bayesian hierarchical model

Three datasets describing PMs 5 exposure are used to explore the relationship between HRV
and PM, 5 and its components: (1) total PMy 5 measured using PEMs worn by respondents
and PEMs located at an ambient site location, referred to as “total personal PM,5,” (2)
modeled output from the multilinear engine 11}6(101 which apportions personal PEM mea-
surements from 10 subjects into 3 internal and 3 external components, referred to as “PEM

apportionment,” and (3) modeled output from the PMF3 model which partitions VAPS data

9
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at the ambient site location into four components, referred to as “ambient site apportion-
ment.” Below we describe in detail the model used in the analyses of the total personal PM, 5
data; modifications to this model to accommodate the otherbtwo datasets are described in
Section 3.

The Bayesian hierarchical model is comprised of nested probability models organized in
stages, and includes measurement error models for recorded measurements, models relating
the unknown means to fixed and random covariates, and prior distributions for parameters.
We lay out the hierarchical model in three parts. First, in Subsection 2.2.1, we model the
unknown mean health effect as a function of personal exposure to PMsy 5, subject-specific
fixed covariates, apparent temperature, random subject effects and a correlated error term.
Second, in Subsection 2.2.2, personal exposure to PMss is modeled as a function of its
personal ambient and non-ambient components, where personal ambient PM, 5 exposure
is expressed as a function of ambient PMy 5 and an indoor infiltration factor. Third, in
Subsection 2.2.3, sulfur concentrations at the personal and outdoor locations are used to
model the indoor infiltration factor.

Each of the three parts of the hierarchical model can be described in térms of a directed
graphical model (Ntzoufras, 2009; Richardson and Best, 2003), as seen in Figures 1, 2, and 3.
In a directed graphical model, all modeled quantities are represented as 1‘10(ies in a directed
graph. Given the parent node, each node is independent of all other nodes in the graph
except the descendants of that node. Ellipses denote either stochastic nodes which have a
distribution or deterministic nodes which are logical functions of other nodes. Rectangles
denote constants which are fixed by the design of the study. Arrows between nodes indicate
which variables directly influence those nodes. A solid arrow indicates stochastic dependence
while two-lined arrow denotes a logical function. Repeated parts of the graph are indicated
with large boxes around relevant quantities, indicating loops through subjects (i) or time

points (t).

10
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2.2.1 Model for the unknown mean health effect

First, we specify a measurement error model for measured HRV. For subjects i = 1,...,1,
measured on days t = 1,...,T, let Z;; be the normally distributed HRV measurement for

subject 7 on day ¢, with unknown mean II;; and variance 7%.

Zt',t|H?l.t:TZ ~ -‘?V(ffi.f.:rz) (1)

Measures of HRV that we consider are log 10 transformed values of SDNN, r-MSSD,
LF and HF as well as the ratio of LF to HF; log 10 transformations of these variables are
common in the literature, reflecting the right skewness of the sampling distribution of l,hesé
measurements. These five measures of HRV are treated in scparate models; for simplicity,
we refer to each of them in general terms as Z;;. In the graphical model shown in Figure 1,
HRV measurements Z;; are represented as a rectangle, with solid arrows indicating stochastic
dependence between Z;; and the parameters of its normal distribution, the mean, 1;;, and

variance, 77.

[Figure 1 about here.]

The mean HRV for subject ¢ on day ¢, H;,, is related to fixed and random covariates
via a linear model in equation (2). Fixed effect-s in the model include the overall mean, the
age of subject i, AGE;, an indicator of cardiovascular compromise for subject i, CV;, and
the gender of subject i, SEX;. We include a subject level random intercept, b;, to represent
subject specific permanent effects for subject i.

Unknown mean HRV on day t is also taken to be a function of apparent or “perceived”
temperature on day {, A TEMP,, which we calculate as linear in temperature (TEMP) and

quadratic in dew point temperature (TEMP_.DEV\-") as follows: —2.653 + 0.994(TEMP) +

11
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0.0153(TEMP.DEW)? (O’}Ieﬂl‘ et al., 2003). Here, dew-point temperature was calculated
using the well-known Magnus-Tetens approximation. We represent nonlinearity in tempera-
ture using a natural cubic spline (Hastie and Tibshirani, 1990) as in Park et al. (2005). The
basis, h(), consists of four basis functions with knots at the median and quartiles. € is a
vector of coefficients multiplying the associated véc:tor of the natural spline basis function
h(). Other random terms in equation (2) include unknown total personal PM, 5 exposure

on the day previous to the HRV measurement, MZ797, and an error term, ell.

Hiy = 6o+ 61AGE; + 0,CV; + 6;SEX; + h(A.TEMP;)"Q + 0,MFT0T

+b; + €14 _ | (2)

As seen in Figure 1, the unknown total personal exposure to PM, 5 for subject i at time t—1,

M,‘f TOT impacts measured HRYV, Ziy, through the unknown mean IRV, If;;. In Subsection

2.2.2 we describe how M3T97 depends on its ambient and non-ambient components (Figure
23,
Errors, e/, follow a continuous time AR(1) autocorrelation structure with autocorrelation

function p™(A).

5;1 = pH(A)dﬂ_l + ”t‘;! (3)

We define the function p(A) = exp (- @A), where A is the distance in days between the
HRV measurement at time ¢ and the previous HRV measurement for subject i (Diggle, 1988).
The parameter « is taken to be common across subjects and time. ul! is defined as a white

noise process.
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2.2.2 Model for unknown total personal exposure to PM;;

In Figure 1, we model the links between unknown total personal exposure to PMg 5 (MSE?T),

unknown HRV(11;;), and measured HRV (Z;;). In this subsection, we describe the links be-

tween the indoor infiltration factor (), unknown total personal exposure to PMs 5 (M;197)

measured total personal PMs 5 exposure (Ki‘TOT), as shown in Figure 2. The measured total

personal PMy 5 concentration received by individual 7 at time ¢, Y;f;‘TOT, is represented by a

rectangle in Figure 2. Y7797 is taken to be normally distributed with mean M7;7°7 and

variance 7M-PTOT

PTOT
Yii

TM.P.T()'I‘) (4)

b

; 2 - T
MiIt.TOT’ TM,P,I or _, *M(ﬂJi,-fTOT

[Figure 2 about here.]

Daily personal PM; 5 concentrations for 10 subjects are available, totaling 119 observa-
tions. These observations are used to characterize personal PM, 5 concentrations for the
remaining 46 subjects who had HRV measurements but no personal PM, 5 concentrations.

Measured ambient PM, s concentrations at time ¢, Y{‘, are taken to be normally dis-

tributed with mean M/ and variance 74,

}G‘”;M;‘, TM.A - Ar(.Ml'tA: TM'A (5)

Other distributional choices, such as the lognormal, for values of recorded PM, 5 concentra-
tions and for values of recorded sulfur observations described in Subsection 2.2.3 are possible
and would more appropriately reflect the non-negativity in pollutant measurements and de-

viations from normality across more general situations. However, for the data available in

13
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this 27-day single season study, the normality assumption does not raise serious problems
in terms of capturing the behavior of mean PM, 5 levels and their association with HRV
TEeSPOISES.

As in Wallace and Williams (2005), the unknown total personal exposure to PMy 5 for

subject 7 at time ¢, MF;TOT

, can be broken down into its ambient (M) and non-ambient

components (MPN4).

JMQ{:TOT - M{"A 3 ﬂJP,NA (6)

This logical relationship is depicted in Figure 2 with two-lined arrows. .The ambient com-
ponent is due to outdoor sources, and the non-ambient <:0n1po_rient is due to nonoutdoor
sources, such as indoor sources in the home and other locations, and sources associated with
resuspension of particles on clothes and indoor surfaces.

Unknown personal PMy 5 of non-ambient origin, M4 which is difficult to measure

directly, is taken to have a common distribution across subjects and days.

IMP'NAL{L'MPNAT TMPNA 2 j\)r(“ﬂﬂ’NA

7

TMPNA ) | (7)

The unknown personal PM, 5 exposure of ambient origin, M4, is taken to have a com-
mon distribution across subjects for each day ¢, and is the product of a PM, 5 infiltration
factor, 7, and the concurrent unknown PM, 5 concentration at the ambient monitoring site,

M. Estimation of the infiltration factor is described in Subsection 2.2.3.

MPA = yMA (8)

14
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The unknown ambient PM, 5 concentration time series, M7, is taken to be normally

M.A

distributed with mean, yM4, and variance,7™M-A,

M;W,U,;M'A, Tmu.M.A ~ J{\f*(’ui\d,A, Tmu.M.A) (())

Meteorological covariates determining the unknown mean PM, 5 time series p# include:

vector averaged wind speed (W;) and its one-day lag, which accounts for the magnitude
and direction of particle sources and day-to-day carry-over of PM, 5 concentrations; relative
humidity (U;) and its one-day lag, w.hich may increase available water vapor to condense on
aerosol particles, allowing uptake of sulfates and nitrates (Finlayson-Pitts and Pitts, 1999);
and a weekday/weekend effect (Dt):- which accounts for traffic patterns. In equation (10),

M.A
My

is written- as a linear combination of these covariates. Temperature data were not
incorporated into the model for unknown mean PM, 5 because early model runs incorpo-
rating temperature and its one-day lag showed high posterior cross-correlation between its

cocflicients and the coefficients of humidity and its one-day lag. Autocorrelation in errors is

modeled using an AR(1) structure.

pfA = BM oy g, 4 B¥Us s + BIW, 4 BYWq + BYD; + pMA ML, +ult4 (10)

where p*4 models the autocorrelation between successive observations, and w4 is a nor-

mally distributed white noise sequence. Other models relating outdoor PMy 5 concentrations
to meteorological variables are possible (Huang et al., 2005; Holloman et al.; 2004) and may
more accurately reflect spatial and temporal variation of PM, 5.

Equation (2) as written accounts for an effect due to personal total PMy s at lag one

day. Modification to account instead for an effect at lag 0 is straightforward. We consider a
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moving average of personal total PM, 5 concentrations over lags 0 and 1 by replacing Mﬁff"

in equation (2) with M/§{7, where

\fPTOT _ (AgPTOT | 3rPTOT
M giara = (M + M; ;7 77)/2 (11)
A moving average of personal PM; 5 concentrations over lags 0, 1 and 2 was constructed in

a similar way.

2.2.3 Estimation of the unknown indoor infiltration factor

In the previous section we modeled the links between the indoor infiltration factor (v),

unknown total personal exposure to PMys (MET9T) and measured total personal PMys

if—

exposure (Y5TOT)

As illustrated in Figure 3, we now show how the indoor infiltration
factor is linked to measured personal sulfur concentrations (X/) and at the ambient site
(X#) through the unknown means of sulfur concentrations at the personal level (SF) and at
the ambient site (S7), respectively.

As seen in Figure 2, the indoor infiltration factor, 4 in equation (8), influences the
unknown total personal PM, 5 exposure through the unknown ambient personal PMy s ex-
posure. In this subsection, we- describe estimation of the indoor infiltration factor. The
ratio of unknown indoor to unknown outdoor sulfur concentrations is used to approximate
the PMy 5 infiltration factor (Wilson and Brauer, 2006; Strand et al., 2006; Wallace and
Williams, 2005). This is a valid approximation provided there are no indoor sources of

sulfur and the particle size distributions are similar.

SP = 484 + % (12)

16
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We include a normally distributed white noise error term, €. The logical relationship

between the indoor infiltration factor and its personal and ambient sulfur counterparts is

shown in Figure 3, where unknown personal exposure to sulfur (S}) is influenced by both
the indoor infiltration factor (y) and the unknown ambient sulfur concentration (S{). As
seen in Figure 3, changes in meteorology (daily humidity, vector wind speed and témperature
and their respective one-day lags) are linked to the indoor infiltration factor through the
unknown ambient (S#) and unknown personal (_Stp) sulfur concent_.ratﬁ;ns.

Available indoor sulfur data include measurements at personal, apartment and.central
indoor locations; Wallace and Williams (2005) state that these three are very similar for
the purposes of determining indoor infiltration of ambient PMs 5. In the analysis, we refer
Lo “personal sulfur concentrations” as measurements taken at the personal, apartment and
central indoor locations.

Multiple human and environmental exposure factors have the potential for influencing
daily PM, 5 residential infiltration. Aa discussed in Wallace and Williafns (2005), the indoor
infiltration factor is known to vary across days within seasons for a single detached 1fesidence‘
For the single-season retirement home study considered here, we take 7 to be common
over subjects, apartments and days. An assumption of a common indoor infiltration factor
is reasonable for these data for a number of reasons: (1) the study was conducted in a
communal living situation with interior entry doors indicating good probability of coﬁsistent
study population behavior with respect to residence heating and air conditioning operations
as well'as other personal exposure factors (cooking, cleaning, grooming type of behaviors);
(2) PMs 5 concentrations in individual apartments were highly correlated with those at the
ambient site monitor; (3) there was little overall variability in outdoor temperatures over
the study period (24.7 +/- 3.6 degrees Celsius) (Wallace et al., 2006). In addition, in
another analysis of these data, Léndis et al. (2001) report that the apparent variability of

indoor/outdoor sulfate ratios over the nearly month-long monitoring period rarely differed

17



1 by more than 10% among all participants on a given day.

2 Measurement error models for recorded concentrations of personal and ambient sulfur are
s as follows. Let X/ denote the normally distributed measured personal sulfur concentration
s at time ¢, with mean S} and variance 75, Sulfur concentrations at the ambient monitoring

s site at time ¢, X/}, are’taken to be normally distributed with mean S# and variance 754,

XF|8F,+%F ~ N(SE,#%F) (13)
KO8 ~ NS ) (14)
6 | [Figure 3 about here.]
7 Similar to the modeling of ambient PMy 5 concentrations, the unknown ambient sulfur

s concentration, S7*, is taken to be normally distributed with mean, p$#, and variance, 77454,

S;‘ilﬂf./n: Tmu.S.A o IV(,IL;?'A; Tmu.S.A) (15)

5.A

9 The unknown mean of the ambient sulfur time series, p°4, is modeled as a linear combi-

10 nation of meteorological covariates and their one-day lags including temperature (TEMP,),

Jun

1 vector averaged wind speed (W, ), and relative humidity (U,), as well as a weekday /weekend

2 effect (Dy). An AR(1) structure is used to model autocorrelation in errors.

=

peA = B3+ U+ AU 1 + BSW, + BEW, 1 + BSTEMP; + 85 TEMP;_,

+67D; + p*ASA | +ug? (16)
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where p># models the autocorrelation between successive observations, and uj is a normally

distributed white noise sequence.

2.3 Prior Distributions

Non-informative prior distributions were used in model runs where prior information about
parameter values was not available. To define priors on many of the variance parameters in
our model, we follow Gelman (2006), who suggests using a uniform prior on the hierarchical
standard deviation. The standard deviation of measured HRV responses, V77 inlequation
(1), had a Uniform(0.0,1.0E4) prior. Standard deviation terms for recorded HRV measures
(eq. (1)) and measured pollutant concentrations (eqs. (4), (5), (13), (14)),were taken to be
uniformly distributed on (0.0,1.0E4). Regression coefficients in equations (2), (16) and (10)
had N(0,100) prior distributions. Subject level random intercepts, b;, in equation (2) are
taken to have normal priors with mean 0 and variance 7,, where /7, ~ Uniform(0.0,1.0E4).
The standard deviation of the total measured personal PMy s, \/TM.PTOT , and the standard
deviation of the total measured ambient PMgs, VTMA had Uniform(0.0,1.0E4) priors, as
did the standard deviation of the mean personal PM, 5 of non-ambient origin, MPN4 in

equation (7). Mean personal PMs s of non-ambient origin, pMFPN4

in equation (7), was
taken to have a N(5.0,100) prior, where 5.0 ug/m’was used as a rough estimate of a daily
personal non-ambient PMs 5 exposure. In the error equation (3), the parameter o was given
a Uniform(0,20) prior. PMj 5 indoor infiltration (eqs. (8), (12)) had a Uniform(0.0, 1.0)
prior, with error term £% ~ N(0, 100).

The standard deviations of measured personal sulfur concentrations, v75F in equation
(13), measured ambient sulfur concentrations, V754 in equation (14), and mean sulfur
concentrations, V7454 in equation (15), were each given Uniform(0.0,1.0E4) priors. In

the equation for mean ambient site sulfur concentrations as a function of meteorological

variables (eq. 16), priors were p>4 ~ Uniform(-1.0,1.0) and u34 ~ N(0,100). To achieve
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an AR structure in the error for mean sulfur(eq. 16), a value of mean sulfur at -time 0, p54,

was needed; this value had prior g4 ~ N(2.3,100), where 2.3 pug/m’was the mean of the

sulfur values across the available days.

The standard deviations of measured personal PM, 5 concentrations, v 7M-F in equation
(4), measured ambient site PMs 5 concentrations, \/I 7M-4 in equation (5), and mean PMy 5
concentrations, v/ FmudA ip equation (9), were taken to have Uniform(0.0,1.0E4) priors. In

‘ | M.A

equation (10), priors were p*4 ~ Uniform(-1.0,1.0) and u}’* ~ N(0,100). ud** had a

N(18,100) prior, where 18 ug/ m®was the mean of the available PM, 5 values.

2.4 Implementation Details

Posterior distributions of parameters were obtained using Markov Chain Monte Carlo (MCMC)
methods as implemented in WinBUGS software (Spiegelhalter et al., 2003) using an inter-
face with R, an Open Source system for statistical computing and graphics (Gelman et al.
(2003), http://www.r-project.org/). WinBUGS code is given in Appendix A.

The MCMC algorithm was run using 3 chains for at least 5000 iterations each and up to
10,000 iterations each. For 5000 iteration runs, the first 2500 draws were used to assess burn-
in; sample traces suggested convergence to the stationary distribution for all parameters. To
create approximately independent samples, inferences about model parameters are based
on every 8th sample. For each parameter, 1000 samples from the posterior distribution
were retained for inference. For these 1000 samples, the estimate of Monte Carlo error as
calculated by consistent batch means (Jones et al., 2006) was less than 5% of its respective
standard deviation, indicating that estimation error was significantly less than uncertainty
in the true parameter values. Also calculated for each model variable was the potential scale
reduction factor (Gelman and Hill, 2007), fE, which approximates the variance of the mixture
of the three chains divided by the within chain variance. Values of R less than 1.1 indicate

approximate convergence of the algorithm and adequate mixing of the parallel chains. For
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cach model variable, a crude measure of effective sample size was calculated: values of at
least 100 indicated convergence of the algorithm and usually corresponded to R values less
than 1.1.

Convergence in MCMC p araﬁmtcr estimates was achieved by fixing four parameters which
were poorly identified by the model. In equation (3), sfo, the error in the mean HRV response
at time 0 for subject ¢, was fixed at 0.0 ug/ m®. The mean of the normally distributed first
observation of the unknown ambient site PMy 5 time series, g’ in equation (10), was fixed
at 18 pg/m’. The autocorrelation between successive outdoor PM, 5 observations, p4 in
equation (10), was fixed at 0.0. The variance of the measured ambient site PM, 5 concen-

trations, M4

in equation (5), was fixed at 9.0. Sensitivity analysis of model output from
combinations of these parameters set at different values showed little impact on resultant

posterior HRV estimates.

3 Results

Inference in Bayesian hierarchical models is based on posterior distributions which allow
for direct probability statements about parameters of interest. As a result, we are able to
construct posterior intervals, or Bayesian confidence intervals, which give the probability
that the parameter lies in an interval given the data. We note that the usual frequentist
confidence interval does not allow this type of interpretation. In this section, we quantify and
characterize the strength of the hypothesized inverse relationship between HRV and personal
PM, 5 exposure and its components. In terms of Bayesian inference, we present probabilistic
statements providing evidence that coefficients describing PM, 5 and its components are

negative.
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3.1 Total personal PM; 5
3.1.1 Analysis and model checking for the lag 1 model

We begin with a detailed analysis of the model described in Section 2.2 for total personal
PM; 5 at lag one day. Figure 4 and Table 6 show the posterior percentage change in HRV
associated with a 6.5 ug/m*(1 SD) increase in personal total PMys exposure at lag one
day. For all HRV measures except for the ratio of LF to HF, an effect of lowered HRV with
increased personal exposure to PMs 5 is seen at lag one day; the posterior probability that
the coefficient of personal total PMs 5 (6, in eq. (2)) is negative is at least 0.72 for four HRV

measures.
[Table 6 about here.|
[Figure 4 about here.]

Runs of the model for the five health effects at lag 1 gave the posterior distribution of the
unitless indoor infiltration rate, v in equations (8) and (12), meal,n 0.38, standard deviation
0.02, and 95% posterior interval (0.35, 0.42). Consideration of other lags (lag 0, and moving
averages of lags 0 and 1 as well aQ 0-2 days) gave posterior means for v between 0.37-0.39,
with posterior standard deviation 0.02. These agree well with previous calculations of indoor
infiltration that were based only on indoor/outdoor PM, 5 concentrations (not sulfur data)
reported in McBride et al. (2007); posterior mean infiltration values for individual residences
had overall mean 0.37, with standard deviations between 0.04-0.06, and infiltration -at the
central indoor site had posterior mean 0:38 with standard deviation 0.03.

Across the five HRV measures, the non-ambient component of personal PM, 5 exposure,

pMPNA in equation (7), had posterior mean between 4.90 - 5.25 pg/m®, with posterior

standard deviation between 8.02 - 8.52 ug/ m®. Partitioning the effects of personal PM, 5

of ambient origin and of non-ambient origin on IRV is difficult using this dataset for total
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personal PMs 5 exposure because personal PMs s of non-anﬂﬂent origin was not measured
directly. Runs of the model with separate regression coefficients in equation (2) for ambient
and non-ambient personal PM, s were unable to resolve and separately estimate the two
components; high posterior cross-correlations among regression coefficients were seen. We
address the role of ambient and non-ambient personal PM, 5 components in our analysis of
the personal PEM apportionment modeling output in Section 3.2.

- Quality of model fit at different stages of the hierarchical model was assessed by calcu-
lation of posterior distributions of residuals for HRV, total personal PMys exposure, and
PM; 5 exposure at t.h_e ambient site. Draws from the posterior distribution of cach of these
posterior quantities were subtracted from observed values, and 95% posterior intervals were
calculated. Of note, there were 658 posterior intervals calculated for HRV across 56 sub-
jects, while there were 89 posterior intervals for total personal PMsys exposure across 10
subjects. For HRV as well as total personal PM, 5 exposure, across all five HRV measures,
these intervals covered zero roughly half the time, with the remaining half split roughly
equally between underfit (intervals lying above zero) and overfit (intervals lying below zero).
Results were similar when stratifying by day or subject, and patterns in lack of fit by day or
subject were not evident. These results suggest that the model may not reflect the extremes
in individual PM, 5 exposure, likely because total PM, 5 exposure is modeled in equation (6)
as the sum of a non-ambient component, common across days and subjects, and an ambient
component, cominon across subjéc"us and varying across days. More detailed models of total
PM, 5 exposure might attempt separate estimation of total PM, 5 exposure by subject and
day, possibly including interior sources, time varying air exchange rates, as well as individ-
ual activity patterns and individual apartment PMj 5 measurements (McBride et al., 2007).
The inclusion of more subject-specific parameters was not well accommodated in the current
modeling framework due to poorly identified parameters, but could likely be achieved with

more data availability. However, posterior predictive checks using the posterior predictive
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distribution of measured HRV values Z;; in equation (1) showed that across the five HRV
measures, 95% to 96% of posterior predictive intervals for Z;; contained the measured HRV
values, indicating that the HRV values could plausibly have come from the model.

For PM, 5 exposure at the ambient site location, all posterior residual intervals covered
zero. Figure 5 shows the time series of measured PMs 5 at the ambient site (dots) coplotted
with 95% posterior intervals for PMy 5 at ambient site (grey bands) and modeled mean PM, 5
at ambient site (dotted line). Varying degrees of uncertainty in posterior estimates of PM; 5

at the ambient site are reflected in the width of the grey bands.
[Figure 5 about here.]

Across the five HRV measures, positive biases were seen in the posterior distributions of
the white noise sequences in the models for the mean of ambient PM, 5 (eq. (10)) and for

the mean of ambient sulfur (eq. (16)). The posterior mean of u*-4

ranged from 7.8 - 8.5
pg/ m®, with standard deviations between 8.9-9.2 ug/ m®. The posterior mean of ©54 ranged
from -7.5 to -7.1 ug/ m®with standard deviations between 7.2-7.7 pg/m®. The cause of the
bias is likely that the regression models for mean pollutant concentrations as a function of
meteorology are underspecified given the complexity of pollutant formation.

While relationships were apparent between the four time HRV responses and personal
total PMs 5 at lag one day, consideration of other lags only showed a relationship between
the ratio of low to high frequency heart rate variability (LF/IIF) and personal total PM, 5.

Effects were found for total personal PMs 5 at lag zero, at the moving average of lag zero

and lag one day, and at the moving average of lags zero, lag one and lag two days. Results

“for LF/HF are shown in Table 7.

[Table 7 about here.]
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3.2 Personal PEM apportionment

Hopke et al. (2003) calculated source apportionment results for personal PEM data, iden-
tifying three external and three internal factors. We begin our analysis by comparing the
relative importance of the total internal versus total external sources in order to assess the
impact on HRV of PMy 5 of non-ambient origin versus PM, 5 of ambient origin, an important
question from a régulatory policy perspective. For a subset of 10 subjeéts, 20 days on average
of apportionment data are available (a range of 12 - 23 days per subject). We adapt the
model for the unknown total personal exposure to PM, 5 in Subsection 2.2.2 as follows. We
replace the equation for measured total personal PMy 5 (eq. (4)) and measured total ambient
PMys (eq. (5)) with equations for measured personal external and personal internal source

PM, 5 concentrations.

n.i,EXT|ﬂ/thP,A1 TM.P.EXT _ i\;(ﬁ/ftf’.A, TMT,P.EXT) (17)

}/?:';.INT|M£P.NA: TM,P.INT i N(JVIF‘NA, ,I_HJ.P.INT') (18)

where the variance terms 7"-"EXT and 7M-PINT gre given non-informative uniform priors. In
the regression equation (2), we include separate coefficients for iﬁtcrnal MPNA and external
M4 factors. MM is then modeled as in equation (7). M4 is modeled as in equation (9),
with mean driven by meteorology as in equation (10). Since the measured personal internal |
and external PM; 5 components account for personal PMys exposure after infiltration of
PM; 5 indoors, we omit modeling of sulfur infiltration as described in Subsection 2.2.3 (egs.
(13), (14), (8), (12), (13), (16)).

In terms of the graphical model, we alter Figure 2 by eliminating links to Y5797 as well

as the link to the indoor infiltration factor vy and the link to Figure 3. Two new data sources,

YFPEXT and YPINT are incorporated, as seen in Figure 6. Figure 1 is unchanged.
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[Figure 6 about here.]

Results from the adapted model for four time lags and five HRV response variables (20
models) are given in Table 8. Posterior estimates are given for the percentage change in
HRV asso(:iate;l with a 4 pg/m®(1 SD) increase in personal PMs 5 exposure due to external
sources. Also shown are posterior probabilities that coefficients of external personal and
internal personal PMs 5 concentrations are negative. Across the four lags for the responses
HF. LF , LF/IF and SDNN, the posterior probabilities that the internal source coefficients
are negative are at most 0.56, providing little evidence to suggest that personal PM, 5 of
non-ambient origin has an effect on these HRV responses. For the HRV response variables
SDNN and r-MSSD, there may be some association between increased personal PM, 5 of
non-ambient origin and lowered r-MSSD values, with posterior probabilities ranging between
0.64-0.70 across the four lags. Given the overall weak association between personal PM, 5
of non-ambient origin and HRV for the majority of the HRV measures, we drop the internal

source component from further modeling.
[Table 8 about here.]

We next consider the relationships between HRV and the three external factors in the
PEM apportionment data, identified as (1) secondary sulfate, (2) soil, and (3) unknown,
which estimated unmeasured nitrate and carbon mass concentration. We modify the adapted
model described above by dropping equation (18) for personal PM, 5 of non-ambient ori-
gin, and substituting measurements for each of the three external components in equation
(17). Table 9 shows posterior estimates of percentage change in HRV associated with a 1
pg/ m’increase in personal exposure to PM; 5 components based on personal PEM apportion-
ment. A 1 pg/m’increase was chosen since the standard deviations of the three components
ranged from 0.2 - 4.6 ,f;g/le:i(rl’a})lfz 3). Also shown are posterior probabilities that coef-

ficients of personal PMs 5 component concentrations are negative. Of 60 possible models

26



10

11

13

14

15

16

19

20

21

24

(5 HRV measures, 4 time lags, 3 PMy 5 components), the 11 models shown have posterior
probabilities greater than 70% that coefficients of personal PM, 5 component concentrations
are negative. Based on these results, there appearS to be a relationship between the five
HRV measures and the soil complonent of personal PM, 5 of ambient origin at lag 0 days,
with posterior probabilities ranging from 0.73 - 0.91. There appears also to be an association

between LF /HF and soil for a moving average of lags 0 and 1 day. Sulfate shows an effect for

‘the HRV measures HF and r-MSSD at a moving average of lags 0 and 1 day. ‘The component

labeled unknown, comprised of unmeasured nitrate and carbon mass concentration, appears

to have an effect on LF/HF at 3 different lags.

[Table 9 about here.]

3.3 Ambient site apportionment

We consider the relationships between HRV and the four PMsy 5 componénts identified in
Iopke et al. (2003)’s analysis of the ambient site VAPS data. The four factors identified
were (1) a combination of ammonium sulfate and ammonium nitrate, typically observed as
the product of atmospheric processing of SO, and NO, (2) secondary sulfate with a small
(<1%) contribution of NOj, (3) organic carbon, (4) motor vehicle exhaust, which includes
organic carbon, elemental carbon and NO; .

To accommodate the ambient site apportionment data, we make minor modifications to
the model for unknown total personal exposure to PM, 5 in Subsection 2.2.2. First, equation
(4) is eliminated since component-wise ‘personal PM, 5 concentrations are not available from
VAPS monitors. Based on the findings of Subsection 3.2 on the weak relationship between
internal sources and HRV, we do not consider PMs 5 of non-ambient origin in this analysis,
thus eliminating equations (6) and (7). In each model run we let the term M:;f?l in

regression equation (2) refer to unknown mean personal concentration for a single PMy 5
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component, and we let Y, refer to the measured ambient concentration for that component.
We thus modify the graphical model in Figure 2 by removing the link to Y797 as well as
the link to MPNA,

Of 80 possible models (5 HHRV measures, 4 time lags, 4 PMs 5 components), 17 models had

posterior probabilitics greater than 759

v that the coefficients of personal PM; 5 component
concentrations are negative. For these 17 models, Table 10 shows posterior estimates of
percentage change in IRV associated with a 3 ug/ m’increase in personal exposure to PMs 5
components based on ambient site apportionment. A 3 ug/m’increase was chosen because
standard deviations for the four components ranged from 0.14 ;;.g/meor organic carbon to
9.57 ug/ m®*for sulfate (Table 5). Nitrate is seen to have an effect at all lags except lag 0
for the HRV measures of HF, LF, r-MSSD and SDNN. Sulfate appears to have an effect
on HRV at lag one day for all effects except LF/HF. A relationship between LF/HF and
sulfate is seen for the moving average of days 0, 1 and 2. One other result of note was
an effect of nitrate at lag 0 for r-MSSD, which showed a posterior probability of 0.72 that
the coeflicient of personal nitrate concentrations was negative. The effect of organic carbon
(OC) on HRV was not c:iear from model results, since 8 of 20 models incorporating OC

showed some issues with convergence even after 20,000 iterations. All other OC models gave

posterior probabilities less than 0.68 that the coefficient of personal OC concentrations were

negative. None of the models involving motor vehicles showed a relationship with HRV.

[Table 10 about here.]

4 Discussion

The Bayesian hierarchical model presented here integrates data from personal HRV mea-
surements, PM, 5 concentrations on personal monitors and at an ambient site, and sulfur

data from indoor and ambient site locations. In this way, the model allows for propagation
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of all sources of uncertainty iﬁ each of the three parts of the model seen in Figures 1, 2, 3
onto estimation of key exposure and health effect parameters. |

We found a strong relationship between decreased HRV, as measured by HF, LF, r-
MSSD, and SDNN, and total personal exposure to PMy 5 at lag one day. This agrees with
and expands upon the mixed effects modeling results for the same data by Creason et al.
(2001), who found a relationship at lag one day for HF and LF. These results also agree with
the panel study analysis conducted by Luttman-Gibson et al. (2006) which found associations
for non-smoking seniors between HRV at lag 1 day and SDNN, r-MSSD, LF and HF. We
also found an effect on LF/HF due to total personal PMy 5 at shorter lags (lag 0 days) and
longer lags (moving averages of days 0-1 and days 0-2).

The PEM apportionment modeling results of Hopke et al. (2003), which break personal
PM, 5 exposure into internal and external sources, allow characterization of the relative
influences of ambient and non-ambient personal PM,s exposure on HRV. In Wilson and
Brauer (2006)’s examination of panel study data from Vancouver, Canada, a method based
on the mass balance equation was developed to estimate separately the ambient and non-
ambient components of personal PM,s exposure. Wilson and Brauer (2006) report that
for some health effects, resolution of total personal PMy s exposure into its ambient and
non-ambient parts showed that the ambient component was significantly associated with
health effects. We also found that under the Bayesian hierarchical model, for a majority of
the measured health effects and lags considered, the effect of internal non-ambient sources
of PMy 5 on IRV was minimal. Thus, our further modeling omitted personal exposure to
non-ambient sources of PM, 5.

The PEM apportionment data were then used to assess the relative importance of external
sources of soil, sulfate and unknown source categories to IIRV. A consistent effect of soil at
short time scales (lag 0) was found across all five HRV measures, with an additional cffect

found for LF/IIF at a longer lag (moving average of days 0 and 1). An effect of sulfate on
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HRV was seen for HF and r-MSSD at the moving average of lags 0 and 1 day. An analysis of
PM, 5 data from the Harvard Six Cities study by Laden et al. (2000) did not find a similar
association of crustal material with mortality.

Consideration of the ambient site apportionment data of Hopke et al. (2003) indicated
effects of nitrate on HRV at lags 1 day, and moving averages of days 0 and 1 and days
0-2 for all but the ratio LF/HF. Sulfate had an effect on HRV at lag 1 day for four HRV
measures (HF, LF, r-MSSD, SD of NN) and for LF/HF at a moving average of days 0-2.
This is consistent with Luttman-Gibson et al. (2006)’s analysis of a panel study of 32 senior
adults, which found a significant association between SO;* and HRV at lag one day. In their
analysis of the relationship between daily mortality in Phoenix, AZ and apportioned PMy 5
using a number of methods, Mar et al. (2006) found secondary sulfate and traffic to have
the largest cardiovascular mortality effect size.

In the analyses presented here, we fit separate models for each PMy 5 component contri-
bution, using diffuse priors to represent prior uncertainty about modeled PM, 5 component
concentrations. A more robust approach to propagating uncertainty in estimated source
contributions through to estimation of health effects would be to jointly fit receptor models
and health effects models. Such an approach is pursued by Nikolov et al. (2007), who used
data from a concentrator study investigating the rel'ationship between ST-segment, a cardio-
vascular outcome, and major sources of PMy 5 in Boston; in this study a Ba)-fesian structural
equation approach was used to jointly fit a multivariate receptor model and health outcome

model.
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A WinBUGS code

model;
{
## model for first 119 obs with both HRV and PM personal mmts
## separate ioop for first observation since this is a lag 1 model and
## an observation at time O is not available; see defn of errorfirst.
for (obsnum in 1:1){:
## measurement error model for observed HRV observations
Z[obsnum] ~“dnorm(H[obsnum] ,tau.H) ;
## regression equation for unknown HRV
H[obsnum] <- beta[Person[obsnum]] + Hcoef[1]+ Hcoef [2]*age [obsnum] +
Hcoef [3] *cvcompro [obsnum] + Hcoef [4] #sex[obsnum] + Hcoef [5]*
M.P.tot.lagl[obsnum] + Tcoef[1]*a.templ[day.num[obsnum]] +
Tcoef [2] *a.temp2[day.num[obsnum]] + Tcoef [3]*
a.temp3[day.num[obsnum]] + Tcoef [4]*a.temp4[day.num[obsnum]]+
error [obsnum] ;
## first observation of error is set to be random and issame for
## all individuals
error [obsnum] <-errorfirst;
## measurement error model for observed PM2.5
Y.P.lagl [obsnum] “"dnorm(M.P.tot.lagl [obsnum],tau.M.P.tot);
## unknown total personal PM2.5 exposure as sum of ambient and
## non-ambient compdnents
M.P.tot.lagl[obsnum]<-M.P.NA.lagl + M.P.A.lagl[obsnum];
## unknown personal PM2.5 of ambient origin as product of infiltration
## and unknown ambient PM2.5
M.P.A.lagl [obsnum] <-gamma1*PMC[day.num[obsnum]] ;
),

## loop for remaining 118 observations for which both HRV and PM2.5 are
## available (same code as above except for defn of "error[obsnum]")
for (obsnum in 2:119){
Z [obsnum] “dnorm(H [obsnum] , tau.H) ;.
Hlobsnum] <- beta[Person[obsnum]] + Hcoef[1]+ Hcoef [2] *age [obsnum] +
Hcoef [3] *cvcompro [obsnum] + Hcoef [4] #sex[obsnum] + Hcoef [5]*
M.P.tot.lagl[obsnum]+ Tcoef[1]*a.templ[day.num[obsnum]] + Tcoef [2]*
a.temp2[day.num[obsnum]] + Tcoef [3]*a.temp3[day.num[obsnum]] +
Tcoef [4] *a.temp4 [day.num[obsnum]] + error[obsnum];
##Definition of error term in terms of previous observations
##Indicator variable "Frst" indicates whether this observation
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##is the first in the time series for a given individual.
error [obsnum] <-Frst [obsnum] *xerrorfirst+(1-Frst [obsnum] ) *
(exp(-alphax*delta[obsnum])*error [obsnum-1]) ;

Y.P.lagl [obsnum] “"dnorm(M.P.tot.lagl [obsnum] ,tau.M.P.tot);
M.P.tot.lagl[obsnum]<-M.P.NA.lagl + M.P.A.lagl[obsnum];
' M.P.A.lagl[obsnum] <-gammal*PMC [day.num[obsnum] ] ;

} 3
### model for remaining measurements with HRV only, no personal PM mmts
for (obsnum in 120:658){

Z [obsnum] “dnorm (H [obsnum] , tau.H) ;

H[obsnum] <- beta[Person[obsnum]] + Hcoef[1]+ Hcoef [2] xage[obsnum] +

Hcoef [3] *cvcompro [obsnum] + Hcoef [4] *sex[obsnum] +

Hcoef [6]*M.P.tot.lagl [obsnum] + Tcoef[1]*a.templ[day.num[obsnum]]+

Tcoef [2] *a.temp2[day.num[obsnum]] + Tcoef [3] *

a.temp3[day.num[obsnum]] + Tcoef [4]*a.temp4[day.num[obsnum]] +

error [obsnum] ; _
error [obsnum] <-Frst [obsnum] *errorfirst+(1-Frst [obsnum] ) *
(exp(-alpha*delta[obsnum])*error [obsnum-1]);

M.P.tot.lagl[obsnum]<-M.P.NA.lagl + M.P.A.lagl[obsnum] ;
M.P.A.lagl[obsnum] <-gammal*PMC [day.num[obsnum]];
+

## random subject specific effect
for (i in 1:56){
beta[i] "dnorm(0.0,tau.b);
}

## non-ambient PM2.5 personal
M.P.NA.lagl"dnorm(mu.MPNA,tau.MPNA);

## personal sulfur measurements are X.Ind

## gammal is the infiltration factor

for (i in 1:N.sulfur){ _

X.Ind[i] “"dnorm(Sulfur.Ind[i],tau.meas.sulfurlnd);
Sulfur.Ind[i]<-gammal*SulfurC[day.num.sulfur[i]] + errgammal;

}

## submodel for outdoor sulfur; mean is linear function of meteorology
## outdoor sulfur measurements are X.C

## separate models for day 1 and days 2-29 since for day 1

## a mean of sulfur at day O is needed; this is set to be random

for (t in 1:1){
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X.C[t] "dnorm(SulfurC[t] ,tau.meas.sulfurC);

SulfurC[t] "dnorm(mu.sulfurC[t],tau.mean.sulfurC);

mu.sulfurC[t] <- Scoef[1] + Scoef[2]*humid[t] + Scoef [3]*humid.lagl[t] +
Scoef [4]*vws[t] + Scoef[5]*vws.lagl[t] + Scoef[6]*temp[t] + Scoef[7]*
temp.lagl[t] + rho.sulfurc * mu.sulfurc.t0 + eps.sulfur;

} _

for (t in 2:29){

X.C[t] "dnorm(SulfurC[t] ,tau.meas.sulfurC);

SulfurC[t] “dnorm(mu.sulfurC[t],tau.mean.sulfurC);

mu.sulfurC[t] <- Scoef[1] + Scoef[2]*humid[t] + Scoef[3]*hum1d lagi[t] +
Scoef [4]*xvws[t] + Scoef[5]*vws.lagl[t] + Scoef[6]*temp[t] + Scoef[7]x
temp.lagl[t] + rho.sulfurc * mu.sulfurC[t-1] + eps.sulfur;

}

## submodel for outdoor PM2.5 observations

## outdoor PM2.5 measurements are Y.C

for (t in 1:1){ ## for PM2.5

Y.C[t] © dnorm(PMC[t],tau.meas.pmc);

PMC[t] ~ dnorm(mu.pmc([t],tau.mean.pmc);

mu.pmc[t] <- PMCcoef[1] + PMCcoef[2]*humid[t] + PMCcoef [3]*humid.lagl[t
1 + PMCcoef [4] *vws[t] + PMCcoef [5]*vws. lagi[t]+PMCcoef[6]*dow[t]+ rho.

‘pmc * mu.pmc.tO + eps.pmc;

}

for (t in 2:29){

Y.C[t] © dnorm(PMC[t],tau.meas.pmc);

PMC[t] ~ dnorm(mu.pmc[t],tau.mean.pmc);

mu.pmc[t] <- PMCcoef[1] + PMCcoef [2]*humid[t] + PMCcoef [3]*humid. lagi[t
] + PMCcoef [4] *vws[t] + PMCcoef [5]*vws.lagl[t]+PMCcoef [6]*dow[t]+ rho.
pmc * mu.pmc[t-1] + eps.pmc;

}

HHSR R

### PRIORS ###

SRR

## coefficients in regression equation for HRV
for (i in 1:5) {

Hcoef [1] "dnorm(0.0,1.0E-2);

¢

## error term in regression equation for HRV
alpha”dunif (0.0,20.0);

tau.H <- pow(sigma.tau.H,-2);

sigma.tau.H ~ dunif(0.0,100.0);
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## scale parameter for random subject effect
tau.b <- pow(sigma.tau.b,-2);

sigma.tau.b ~ dunif(0.0,100.0);
errorfirst~dnorm(0,1.0E-2);

## coefficients in cubic splines for temperature
for (i in 1:4){
Tcoef [i] "dnorm(0.0,1.0E-2);
\;

## scale parameter for measured personal sulfur
tau.meas.sulfurlnd<-pow(sigma.tau.meas.sulfurlnd,-2);
sigma.tau.meas.sulfurInd ~ dunif(0.0, 100.0);

## scale parameter for total personal PM2.5 exposure
tau.M.P.tot<-pow(sigma.tau.M.P.tot,-2);
sigma.tau.M.P.tot ~ dunif(0.0, 100.0);

## parameters in non-ambient personal PM2.5 exposure
mu.MPNA~dnorm(5.0,1.0E-2) ;
tau.MPNA<-pow(sigma.tau.MPNA,-2);

sigma.tau.MPNA ~ dunif(0.0, 100.0);

## infiltration factor
gammal~dbeta(1.0,1.0);
errgammal~“dnorm(0.0,1.0E-2);

## priors for terms in model for outdoor sulfur
eps.sulfur dnorm(0.0,1.0E-2);

rho.sulfurc dunif(-1,1);

mu.sulfurc.t0 dnorm(2.3,1.0E-2);

for (i in 1:7){

Scoef [1] "dnorm(0.0,1.0E-2);

+
tau.meas.sulfurC<-pow(sigma.tau.meas.sulfurC,-2);
sigma.tau.meas.sulfurC ~ dunif(0.0,100.0);
tau.mean.sulfurC<-pow(sigma.tau.mean.sulfurC,-2);
sigma.tau.mean.sulfurC ~ dunif(0.0, 100.0);

## priors for terms in model for outdoor PM2.5
eps.pmc ~ dnorm(0.0,1.0E-2);
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tho.pmc ~ dunif(-1,1);

mu.pmc.t0 ~ dnorm(18,1.0E-2);

for (i in 1:6){

PMCcoef [i]~. dnorm(0.0, 1.0E-2);

}
tau.meas.pmc<-pow(sigma.tau.meas.pmc,-2);
sigma.tau.meas.pmc dunif (0.0,100.0);
tau.mean.pmc<-pow(sigma.tau.mean.pmc,-2) ;
sigma.tau.mean.pmc dunif (0.0,100.0);

}
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Figure 1: Model for the unknown mean health effect (H;;) for subject ¢ on day t as a
function of unknown total personal exposure to PMy 5 on day t — 1 (M£T0T), fixed subject-
specific covariates (age, AGE;; cardiovascular status, CV;; sex, SEX;), apparent temperature
(A.TEMP,,), random subject effects (b;) and correlated error terms (e2).
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Table 1: Summary statistics for heart rate variability (HRV) measures for 56 subjects
Heart rate variability measure Average Median Std. Dev. 5%  95%

High freq. HRV (HF) 3.1 2.9 08 20 4.5
Low freq. HRV (LF) = 2l 2.9 0.7 21 4.5
LF/HF 1.0 1.0 0.1 038 1.3
SDNN 43.8 29.5 1389 125 1121
r-MSSD 52.4 28.7 59.7 6.9 162.5
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Table 2: Source contribution estimates (%) identified by Hopke et al. (2003) for PEM per-
sonal indoor samples

Source
External Internal
“Statistic | Sulfate Soil Unknown Gypsum Activity Personal Care
Average 46.3 13.6 2.8 36.0 0.7 0.4
Std. Dev. 23.0 9.3 1.9 23.0 0.8 0.9
Median 45.7 11.6 2.1 35.0 0.4 0.2
5% 82 3.3 - 0.9 0.0 0.0 0.0
95% 82.8 30.1 6.3 75 1.8 1.6




Table 3: Source contribution estimates (pg/ m_s) identified by Hopke et al. (2003) for PEM
personal indoor samples '

Source
External Internal
Statistic | Sulfate Soil Unknown | Gypsum Activity Personal Care
Average 6.16 0.30 1.56 0.07 4.54 0.05
Std. Dev. 4.60 0.19 0.99 0.10 3.39 0.08
Median 4.66 0.28 1.34 0.05 4.44 0.02
5% 0.71 0.10 0.34 0.00 0.00 0.00
95% 15.12 0.53 3.41 0.23 10.43 0.20




Table 4: Source contribution estimates (%) identified by Hopke et al. (2003) for VAPS
samples at the ambient site
' Statistic ~ Nitrate Sulfate Organic Carbon Motor Vehicles

Average 207 53.7 8.8 16.8
Std. Dev. 9.2 18.4 3.7 14.0
Median 19.0 58.0 8.0 13.0
5% 8.6 20.3 3.3 0.0
95% 36.0 78.0 14.0 44.0
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Table 5: Source contribution estimates (jg/m?) identified by Hopke et al. (2003) for VAPS
samples at the ambient site :
Statistic =~ Nitrate Sulfate Organic Carbon Motor Vehicles

Average 3.98 12.05 1.43 2.51
Std. Dev. 272 9.57 0.14 1.73
Median 313 10.02 1.39 2.92
5% 1.58 2.22 1.24 0.00
95% 10.43 32.87 1.69 5.14

o4



Table 6: Posterior estimates of percentage change in HRV associated with a 6.5 pg/m*(1
SD) increase in personal total PM, 5 exposure at lag one day.
HRV Posterior 95% Posterior Post. Prob. that

Response Mean Interval 0, <0
HF -0.77 (-3.36, 1.80) 0.72
.LF -0.90 (-3.00, 1.27) . 0.78

LF/IIF -0.00 (-1.65, 1.66) 0.49

SD of NN -3.79 (-9.94, 2.67) 0.89

r-MSSD -3.93  (-11.98, 6.16) 0.80



Table 7: Posterior estimates of percentage change in the ratio of low to high frequency HRV
associated with a 6.5 ;ug/m?’(l SD) increase in personal total PMs s exposure at four time
lag structures.

Personal total PMys Posterior 95% Posterior Post. Prob. that

Lag Structure Mean Interval Gy <0

0 days -0.69 (-3.09, 1.89) 0.71

1 day 0.00 (-1.65, 1.66) 0.49

Mov. avg., days 0-1  -0.90 (-3.25, 1.42) 0.77

Mov. avg., days 0-2 -1.48  (-3.60, 0.89) 0.90
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Table 8: Posterior estimates of percentage change in HRV associated with a 4 pg/m’(1
SD) increase in personal PMs 5 exposure due to exterior sources. Also shown are posterior
probabilities that coefficients of external personal and internal personal PM, 5 concentrations

are negative.

HRV Time Post. 95% Post. Post. Prob. Post. Prob.
measure  lag Mean Interval | Ext. Coef. < 0 Int. Coef. < 0
HF 0 days -0.14 (-3.47, 3.45) 0.52 0.53
1 day -1.51 (-4.06, 1.08) 0.88 0.53
Mov. avg., days 0-1 -1.74 (-4.51, 1.05) 0.89 0.53
Mov. avg., days 0-2  0.00 (-2.47, 2.48) 0.51 0.54
LF 0 days -0.89 (-4.51, 2.61) 0.69 0.52
1 day 219  (-4.82,041) 0.95 0.53
Mov. avg., days 0-1 -2.26 (-4.81, 0.21) 0.97 0.54
Mov. avg., days 0-2 -1.45  (-3.63, 0.57) 0.92 0.56

LF/HIF 0 days -0.78 (-3.48, 2.08) 0.70 0.53
1 day -0.48 (-2.8, 2.03) 0.65 0.50
Mov. avg., days 0-1 -0.40 (-2.85, 1.93) 0.63 0.51
Mov. avg., days 0-2 -1.48 (-3.5, 0.52) 0.92 0.51
SD of NN 0 days -4.58  (-14.16, 6.56) 0.81 0.64
1 day 570 (-13.29, 2.27) 0.91 0.65
Mov. avg., days 0-1 -5.27  (-12.98, 2.54) 0.90 0.65

Mov. avg., days 0-2 -3.53  (-10.77, 3.98) 0.82 0.65
T MSSD 0 days 6.86 (-21.55, 10.14) 0.77 0.70
1 day -9.06  (-19.58, 4.05) 0.93 0.67
Mov. avg., days 0-1 -9.18 (-20.29, 2.73) 0.94 0.67
-5.43  (-16.43, 7.62) 0.83 0.68

Mov. avg., days 0-2




Table 9: Posterior estimates of percentage change in IRV associated with a 1 ug/ m°’increase
in personal exposure to PMs s components based on personal PEM apportionment. Also
shown are posterior probabilities that coefficients of personal PMs 5 component concentra-
tions are negative. Of 60 possible models (5 HRV measures, 4 time lags, 3 PMy s compo-
nents), the 11 models shown have posterior probabilities greater than 70% that coefficients
of personal PM, 5 component concentrations are negative.

PM,s - IRV Time Posterior 95% Post. Post. Prob.
Component Measure  Lag Mean Interval Coef. < 0
Soil HF 0 days -50.83  (-86.59, 90.52) 0.91
LF 0 days -45.16  (-78.74, 23.57) 0.94

LF/HF 0 days - -15.77  (-59.12, 93.68) 0.73

Mov. avg., days 0-1 -26.46  (-71.00, 122.92) - 0.76

r-MSSD 0 days -73.76  (-99.49, 1796.60) 0.80

SD of NN 0 days -63.11  (-96.59, 238.97) 0.84

Sulfate HF Mov. avg., days 0-1 . -2.55 (-7.95, 2.81) 0.86
r-MSSD Mov. avg., days 0-1 -8.38  (-28.32, 12.64) 0.80

Unknown  LF/HF 0 days -6.46  (-19.04, 9.57) 0.86
1 day ' -8.37  (-25.15, 13.40) _ 0.85

Mov. avg., days 0-2 -15.59  (-34.42, 9.63) 0.93




Table 10: Posterior estimates of percentage change in HRV associated with a 3 ug/m®increase
in personal exposure to PMs 5 components based on ambient site apportionment (VAPS).
Also shown are posterior probabilities that coefficients of personal PMy 5 component con-
centrations are negative. Of 80 possible models (5 HRV measures, 4 time lags, 4 PMy;
components), the 17 models shown have posterior probabilities greater than 75% that coef-
ficients of personal PM, 5 component concentrations are negative.

PM, 5 HRV Time Posterior 95% Post. Post. Prob.
Component Measure Lag - Mean Interval Coef. <0
Nitrate HF 1 day -10.23  (-21.20, -0.84) 0.98
Mov. avg., days 0-1 -11.95 (-26.78, -0.98) 0.98

Mov. avg., days 0-2 -12.11  (-27.02, 9.73) 0.96

LF 1 day 788 (-22.22, 4.64) 0.92

Mov. avg., days 0-1 -12.14  (-25.94, 2.07) 0.97

Mov. avg., days 0-2 -11.94  (-26.87, 9.86) 0.97

r-MSSD 1 day -34.92  (-65.48, -3.09) 0.98

- Mov. avg., days 0-1 -32.16  (-66.74, 8.48) 0.96

Mov. avg., days 0-2  -37.41 (-70.47, 2.21) 0.97

SD OF NN 1 day -19.67  (-44.09, 8.56) 0.94

Mov. avg., days 0-1 -19.43  (-46.93, 30.27) 0.89

Mov. avg., days 0-2 -21.15 (-47.46, 24.31) 0.91

Sulfate F 1 day -0.76  (-2.21, 0.98) 0.82
LF 1 day -0.74  (-2.12, 0.61) 0.85

LF/IIF Mov. avg., days 0-2 -0.87  (-2.59, 0.77) 0.85

MSSD 1 day 272 (-8.70,341) - 0.83

SD of NN 1 day _ -3.49  (-7.34, 0.33) 0.97
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