

EPIDEMIOLOGIC EVIDENCE: ENTERIC VIRUSES

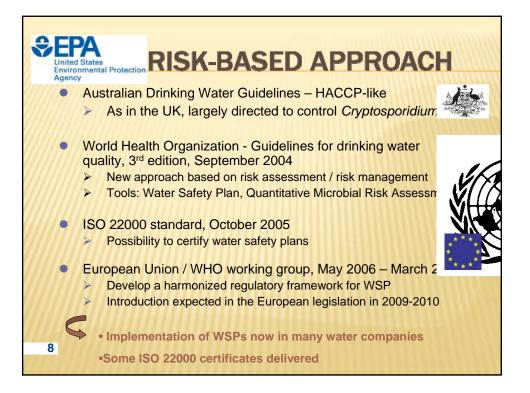
Recent epidemiological evidence indicates that enteric viruses, in particular noroviruses (but also hepatitis A virus & rotavirus [bovine too]), are the leading cause of foodborne illness

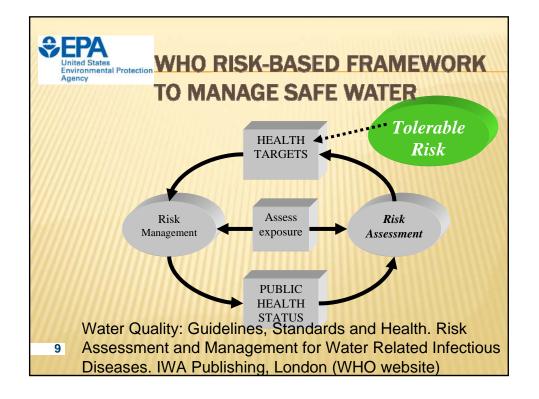
SEPA

 + E.g. viruses implicated in U.S. foodborne diseases increased from 4.7% in 1997 to 52% in 2004
 × Mostly due to increased virus analyses/understanding

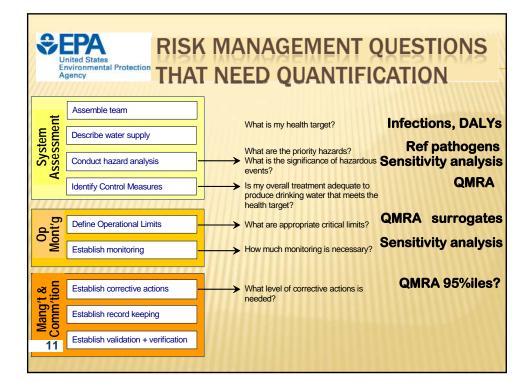
Butot *et al.* (2007) Appl. Environ. Microbiol. 73:186–192 5 Vega *et al.* (2008) J. Fd Prot. 71:522-9

EPIDEMIOLOGIC EVIDENCE: PARASITIC PROTOZOA

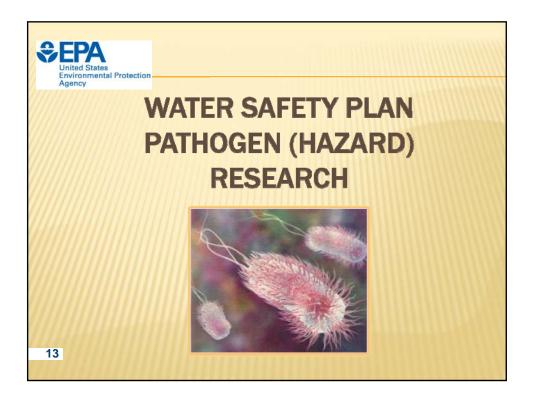

 A number of Cyclospora, Cryptosporidium, Giardia & Toxoplasma outbreaks from fresh berries from central America and also dairy products generally

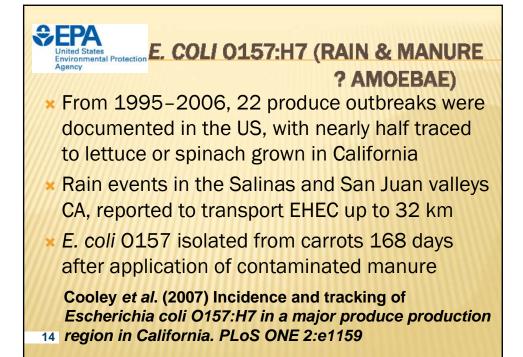

€PA

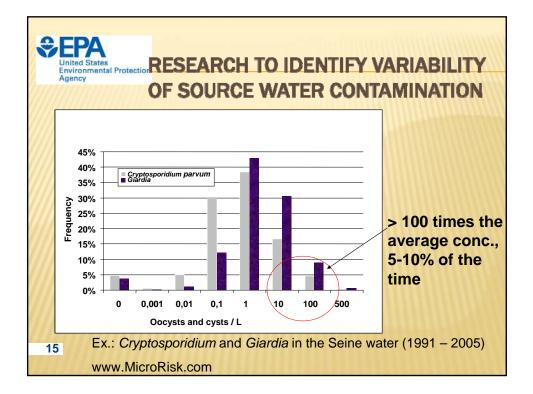
Rose & Slifko (1999) Giardia, Cryptosporidium, and Cyclospora and their impact on foods: A review. J. Fd Prot. 62:1059-1070

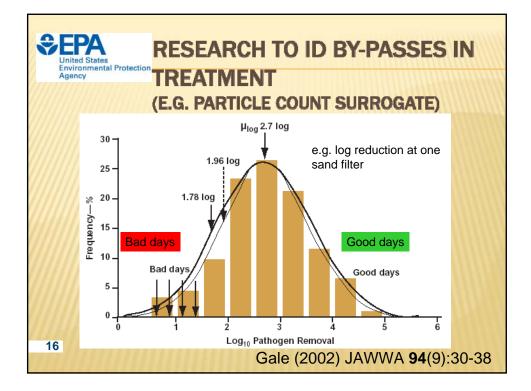

Smith & Nichols (2006) Zoonotic protozoa - food for 6 thought. Parasitologia 48:101-4.

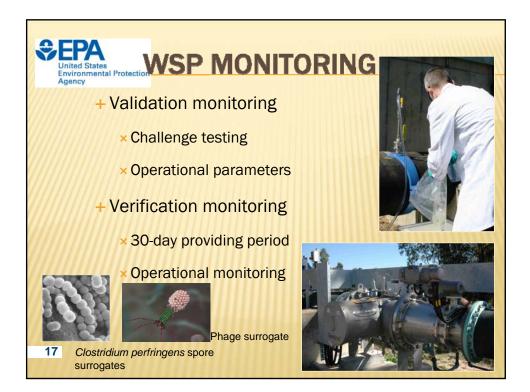
<text><image><image><section-header>

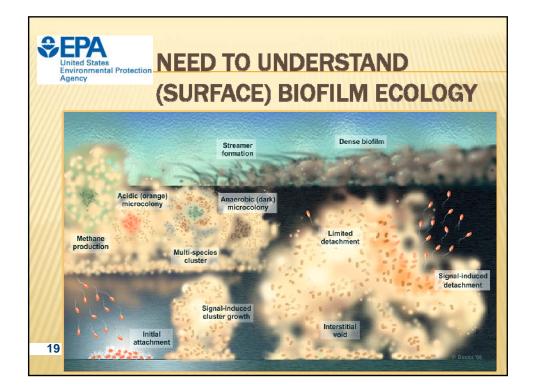


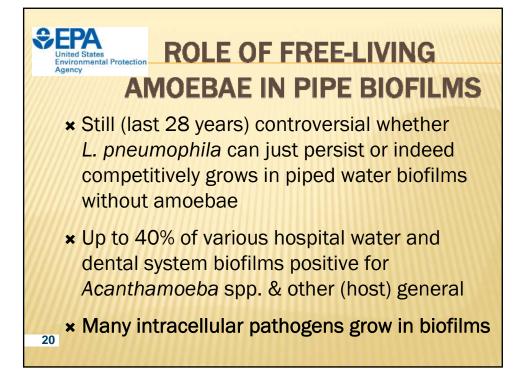


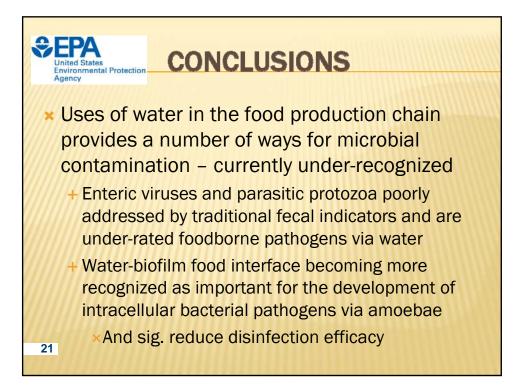


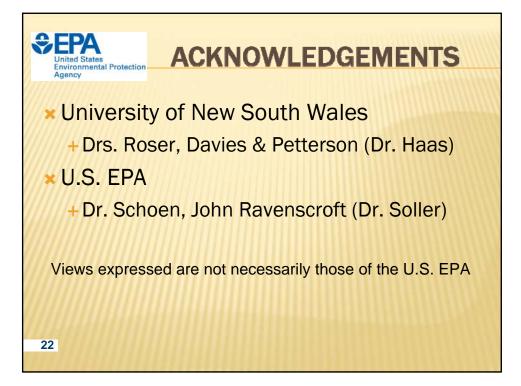

MONITORING REQUIRED TO VERIFY AT THE 95% CONFIDENCE LEVEL THAT FAILURE EVENTS DO NOT SIGNIFICANTLY ADD TO RISK


	Nominal log ₁₀ reduction	#/year	Monitoring interval				
	0.05	1	1 year				
	1	30	1 week				
	2	300	1 day				
	3	3,000	3 hours				
/	4	30,000	15 min				
	5	300,000	2 min				
	6	3,000,000	10 sec				
	7	30,000,000	1 sec				
12	 i.e. a 100,000 m³/d plant treatment designed for 4 log inactivation of viruses, must monitored every 3000 liters to be 95% confident that all water was sufficiently treated Smeets (200 						









EXAMPLE OPERATIONAL								
CRITICAL LIMITS								
Operational and critical limits allowing to meet (>95%) an objective of 1 case of infection / 10 000 consumers . Year								
ССР	Operational Limits	Critical limits	Conditions					
	//////////////////////////////////////							
Clarification	T < 0.2 NTU 95% T < 0.5 NTU 100%	T < 1 NTU						
Ozonation	0.15 <o<sub>3< 0.5 95% 0.05<o<sub>3<1 100%</o<sub></o<sub>	O ₃ <0.05 (<35days)	O ₃ >0.15 mg/L					
Chlorination	0.2 <cl<sub>2<0.5 95% 0.05<cl<sub>2<0.8 100%</cl<sub></cl<sub>	Cl ₂ < 0.05 mg/L	NTU < 0.2 Cl ₂ > 0.20 mg/L					
Chlorination	0.2 <cl<sub>2<0.5 95%</cl<sub>	Cl ₂ < 0.05						

Impact	Source	Dry Weather/	Baseline Event-	Large Event -		
Level		Baseline	Small Event	Extreme Event		
Low -	Large	Very Low	Low	Moderate		
protected	Reservoir	[0]*	[1]	[3-4]		
catchment	Small	Low	Moderate	High		
	Reservoir	[0]	[2-3]	[5]		
	River/	Low	Moderate-High	High		
	Stream	[2-3]	[3-4]	[5]		
Moderate-	Large	Low	Moderate-High	High		
partly	Reservoir	[1]	[2-3]	[4]		
impacted	Small	Low	High	High-Very High		
catchment	Reservoir	[1-2]	[3-4]	[5-6]		
cutomient	River/	Moderate	High	Very High		
	Stream	[2-3]	[3-5]	[5-6]		
High -	Large	Low-Moderate	High	Very High		
heavily	Reservoir	[1-2]	[2-3]	[5-6]		
impacted	Small	Moderate	Very High	Extreme		
catchment	Reservoir	[1-2]	[5-6]	[6-7]		
23	River/	High	Very High-Extreme	Extreme		
	Stream	[3-4]	[5-6]	[6-7]		
CRC-WQT *[magnitude of effect to fully-protected, 1=10 fold, 2=100 fold etc.]						