

Molecular-Based Detection Systems for *Cryptosporidium* Oocysts

Giardia & Cryptosporidium

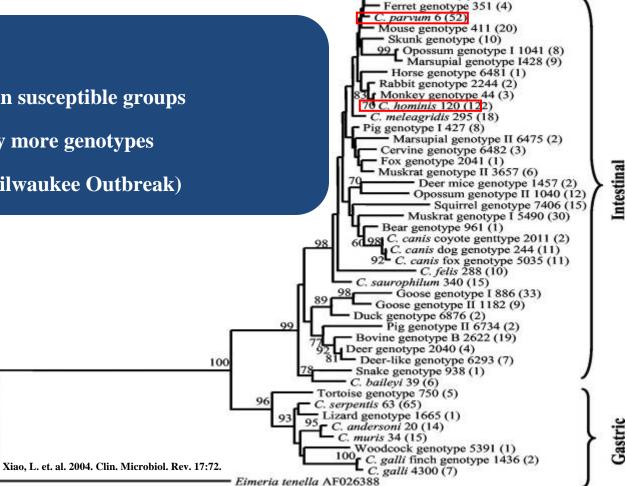
US EPA Office of Water

Eric N. Villegas, Ph.D. STAR Grants Workshop on Innovative Approaches for Detecting Microorganisms and Cyanotoxins in Water US EPA Region 3, Philadelphia, PA May 20-21, 2009

Office of Research and Development

Overview

1. Brief introduction to waterborne *Cryptosporidium*


- Biology and diversity of *Cryptosporidium* species
- Current detection methodologies
- 2. US EPA-NERL's waterborne protozoan research program
 - Building a "Protozoan Detection Toolbox"
- 3. Perspectives on the future of the "Protozoan Detection Toolbox"
 - Future directions and considerations

Office of Research and Development

Cryptosporidium species

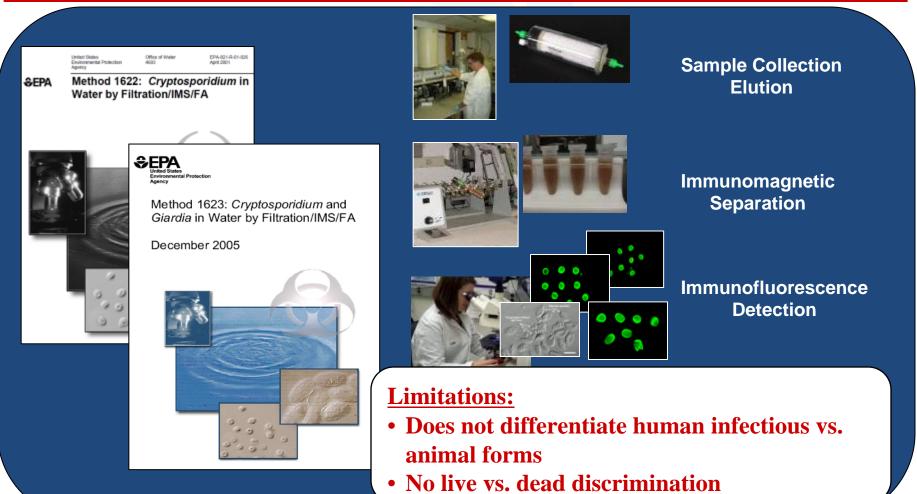
- Enteric protozoan parasite
- Chronic diarrhea and death in susceptible groups
- At least 20 species, with many more genotypes
- Waterborne transmission (Milwaukee Outbreak)

C. wrairi 517 (5)

2

Office of Research and Development

Cryptosporidium Species Infecting Humans and Selected Animals


Host	Major Species	Minor Species
Humans	C. hominis and C. parvum (90% of all infections)	<i>C. meleagridis, C. felis, C. canis,</i> <i>C. suis, cervine genotype</i>
Cat	C. felis	
Cattle	C. parvum, C. bovis, C. andersoni, deer-like genotype	C. suis
Chickens	C. baileyi	C. meleagridis
Deer	C. parvum, deer genotype	
Dog	C. canis	
Turkey	C. meleagridis, C. baileyi	
Pig	C. suis	Pig genotype II
Sheep	Cervine genotype 1-3, bovine genotypes	

Modified from Fayer and Xiao. 2008.

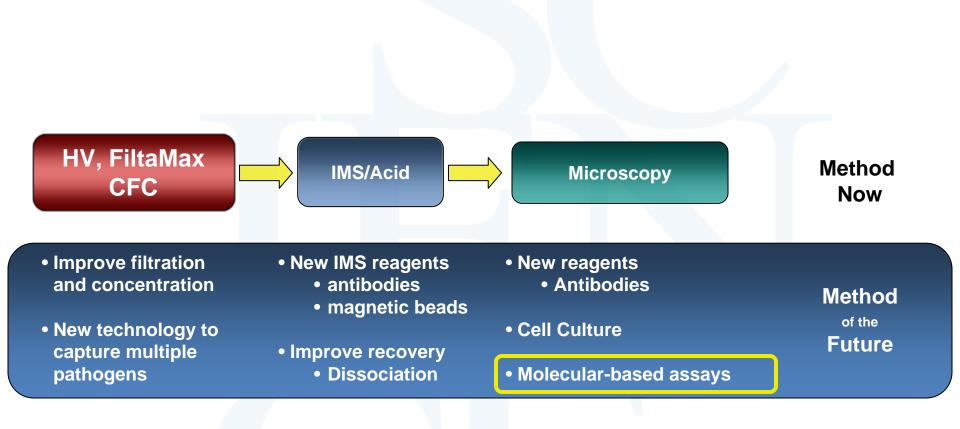
Office of Research and Development

Method 1622/1623: Detection of Cryptosporidium and Giardia "Now"

Office of Research and Development

Challenges for the 21st Century "Water Quality Tricorder"

Protozoan Detection Systems:


- 1. Fast and user friendly
- 2. Sensitive and quantitative
- 3. Species/genotype specific
- 4. Live vs. dead

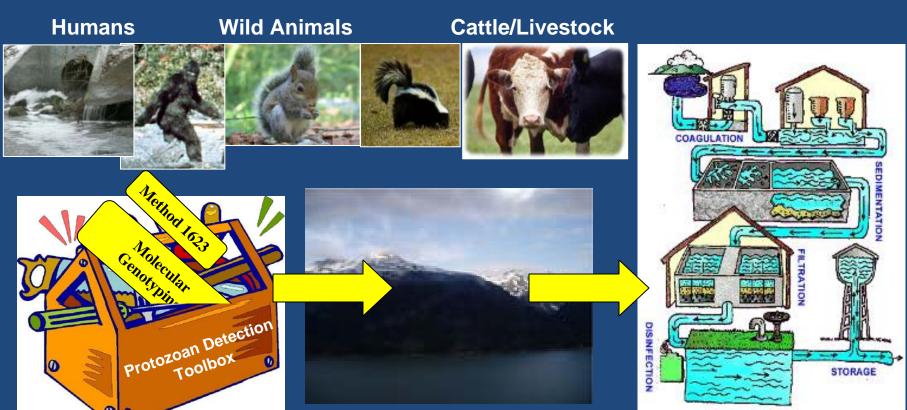
Office of Research and Development

Research Focus Areas

Office of Research and Development

6

Question Driven Research


- 1. What are the total levels of *Cryptosporidium* in the watershed?
- 2. How complex is the *Cryptosporidium* species diversity in the watershed?
- 3. What are the total levels of pathogenic *Cryptosporidium* in the watershed?
- 4. Are the *Cryptosporidium* oocysts in the watershed viable/infectious?
- 5. Other questions...

Office of Research and Development National Exposure Research Laboratory | Microbiological and Chemical Exposure Assessment Research Division | Biohazard Assessment Research Branch

Tools for Source Tracking, Species Identification, and Genotyping

Sources of Contamination

Office of Research and Development National Exposure Research Laboratory | Microbiological and Chemical Exposure Assessment Research Division | Biohazard Assessment Research Branch

Tracking Sources of Contamination in a Watershed

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2008, p. 6495–6504 0099-2240/08/\$08.00+0 doi:10.1128/AEM.01345-08 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Vol. 74, No. 21

Cryptosporidium Source Tracking in the Potomac River Watershed[∇]

Wenli Yang,¹ Plato Chen,² Eric N. Villegas,³ Ronald B. Landy,⁴ Charles Kanetsky,⁴ Vitaliano Cama,¹ Theresa Dearen,¹ Cherie L. Schultz,⁵ Kenneth G. Orndorff,⁶ Gregory J. Prelewicz,⁷ Miranda H. Brown,⁸ Kim Roy Young,⁴ and Lihua Xiao^{1*}

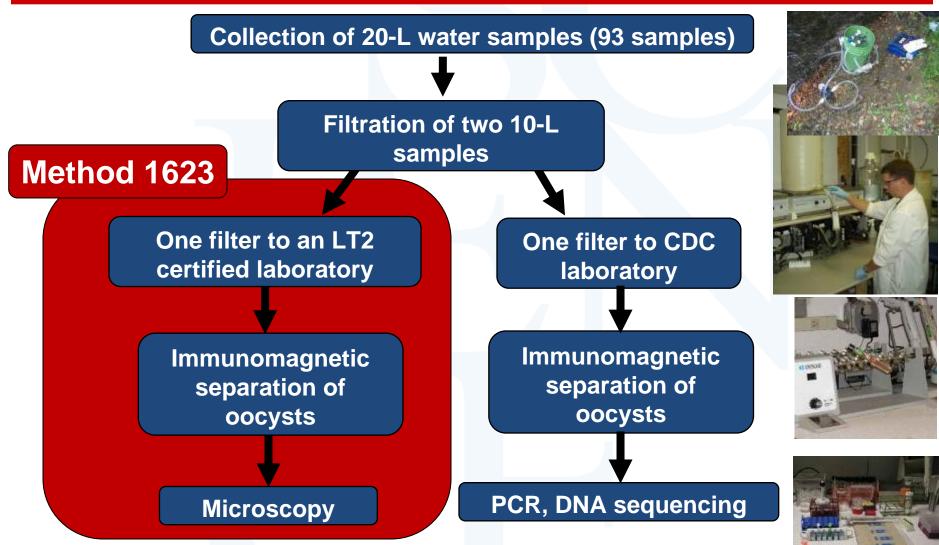
Centers for Disease Control and Prevention, Atlanta, Georgia 30341¹; Washington Suburban Sanitary Commission, Laurel, Maryland 20705²; National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 452683³; EPA Region III, Fort Meade, Maryland 20755⁴; Interstate Commission for the Potomac River Basin, Rockville, Maryland 20850⁶; Frederick County Division of Utilities and Solid Waste Management, Frederick, Maryland 21704⁶; Fairfax Water, Fairfax, Virginia 22031⁷; and Washington Aqueduct, Washington, DC 20016⁸


Received 16 June 2008/Accepted 22 August 2008

<u>Goals</u>

- Identify types of Cryptosporidium oocysts present
- Use PCR-RFLP and Method 1623
- Identify potential sources of *Cryptosporidium* oocysts in the Potomac River

Potential Sources: Storm water runoffs Wastewater treatment discharges Wild animals


Agricultural/animal operations

Office of Research and Development

Methodology

Office of Research and Development

Species and Genotypes Found

	Species or genotype	Major known host(s)	Minor known host(s)	No. of samples positive	No. of detections ^a	Detection site(s)
	C. andersoni	Cattle	Sheep, humans (?)	41	167 (151 type A, 14 type B, and 2 type C sequences)	All except Great Seneca Creek ^b
-	C. felis	Cats	Cattle, humans	2	3	Great Seneca Creek
-	C. meleagridis	Birds	Humans, dogs, deer mice, brown rats	1	1	Great Seneca Creek
	C. serpentis	Snakes, lizards	,	1	1	Potomac WFP
	Deer mouse genotype III (W1)	Deer mice	Squirrels	3	5	Great Seneca Creek, Potomac WFP, Corbalis WTP
	Deer mouse genotype IV (W3)	Deer mice		1	1	Great Seneca Creek
→	Cervine genotype (W4)	Sheep, zoo and wild ruminants, squirrels, chipmunks, woodchucks	Deer mice, beavers, raccoons, lemurs, humans	3	5	Great Seneca Creek
	Muskrat genotype I (W7)	Muskrats, voles		3	4	Corbalis WTP, North Fork Shenandoah River, Monocacy River
	Snake genotype (W11)	Snakes		1	1	Potomac WFP
	W12			1	1	Great Seneca Creek
→	Skunk genotype (W13)	Skunks	Raccoons, otters, opossums, squirrels, humans	4	5	Great Seneca Creek, Potomac WFP, Corbalis WTP
	Vole genotype (W15)	Voles		1	1	North Fork Shenandoah River
	Tortoise genotype	Tortoises		1	1	Great Seneca Creek
	C. bovis-like genotype			1	1	Potomac WFP
	Mouse genotype II-like	Mice		1	3	North Fork Shenandoah River

TABLE 5. Cryptosporidium genotypes found in water samples in the Potomac watershed

^a Total number of positive samples for five PCR replicates of all samples.

^b Detected in one PCR replicate of one storm flow water sample from the Great Seneca Creek.

Yang, et.al. 2008. Applied and Environmental Microbiology

Office of Research and Development

Summary and Impact:

Summary

- A cattle specific species (*C. andersoni*) was the predominant oocyst detected tested
- Pathogenic *C. hominis* and *C. parvum* were not detected in all 93 samples analyzed
- Only minor species/genotypes infecting humans were detected (10 samples)
- Molecular-based detection technique used in this project proves to be sensitive to detect and genotype oocysts in source waters

Impact

- Helped Utilities and Region 3 understand that oocysts in the surrounding county's source water are predominantly non-pathogenic
- Utilities are setting out to work with the agricultural community by encouraging and implementing better management practices (BMPs) in the local cattle/dairy industry

Office of Research and Development

What Lies Ahead for the Waterborne *Cryptosporidium* Research Program?

Multiple Pathogen Detection Systems

Office of Research and Development

Quantitative PCR-Based Detection of *Cryptosporidium spp.*

- Many species and genotypes found in source water
- Most quantitative PCR published have varying degrees of specificities
- Development of multiplex qPCR assays

species	All Cryptosporidium spp.	<i>C. parvum</i> specific	C. hominis specific
C. parvum	+	+	-
C. hominis	+	-	+
C. muris	+	-	-
C. meleagridis*	+	-	-
C. felis*	+	-	-
C. canis*	+	-	-
T. gondii	-	-	-

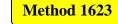
* Purified genomic DNA from CDC

Office of Research and Development

Molecular Detection Technologies: A Perspective

- 1. Molecular-based detection of *Cryptosporidium* is in its infancy
- 2. A better understanding of the differences between zoonotic and human-specific *Cryptosporidium/Giardia* is possible
- 3. Advances in the "Protozoan Detection Toolbox" will improve our understanding of these parasites and their relationship to public health

Office of Research and Development


Using the Protozoan Detection Toolbox To Address our Questions

STORAGE

- 1. What are the total levels of *Cryptosporidium/Giardia* in the watershed?
- 2. What are the total levels of pathogenic *Cryptosporidium/Giardia* in the watershed?
- 3. How complex is the *Cryptosporidium/Giardia* species diversity in the watershed?
- 4. Are the *Cryptosporidium/Giardia* oocysts in the watershed viable/infectious?
- 5. Other questions...

Cillod J

Protozoan Detection Toolbox

PCR-RFLP, qPCR

Acknowledgements

US EPA

Ann Grimm Rich Haugland Michael Ware Jim Ferretti Charles Kanetsky Ron Landy Marie O'Shea Kim Roy Young

<u>CDC</u>

Lihua Xiao Wenli Yang Vitaliano Cama Theresa Dearen

Washington Suburban Sanitary Commission Plato Chen

Dynamac, Corp. Erin Beckman Reena Mackwan Abu Sayed

17

<u>Frederick County Division of Utilities and Solid Waste</u> <u>Management</u> Kenneth G. Orndorff

Fairfax Water, Fairfax, VA Gregory J. Prelewicz Washington Aqueduct Miranda H. Brown

Interstate Commission for the Potomac River Basin Cherie L. Schultz

Office of Research and Development

Questions?

Eric N. Villegas (513) 569-7017 villegas.eric@epa.gov

Office of Research and Development