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Abstract 

Chemicals are dispersed accidentally, deliberately, or by weather-related events. Rapid 

mapping of contaminant distributions is necessary to assess exposure risks, to plan 

remediation, and often to determine the source of dispersed chemicals. Powdered aspirin or 

caffeine was dispersed across a concrete driveway using the exhaust port of a shop vacuum 

cleaner. Water-soaked, cotton-swab, wipe samples were collected to map the dispersant 

distribution. An autosampler/Direct Analysis in Real Time (DARTTM)/time-of-flight mass 

spectrometer was used to acquire an ion chromatogram for the most abundant ion. A semi-

quantitation map for several levels of caffeine was plotted to demonstrate the feasibility of 

applying this technology to contaminated sites. 

 

Introduction  

Mapping a contaminated site semi-quantitatively into high, moderate, low, and non-detect levels 

would aid in assessing risks posed by the site to humans and the environment, in planning 

thorough remediation, and in identifying or confirming sources of dispersed chemicals. 

Assuming adequate sample density, four requirements must be met to provide rapid analyses for 

semi-quantitatively delineating with high spatial resolution the distribution of chemicals resulting 
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from deliberate, accidental, or weather-related dispersion of chemicals: 

● Samples must require little or no preparation prior to analysis, 

● Samples must be analyzed in seconds, 

● Samples must be analyzed sequentially after a short intra-sample time, and 

● Software to rapidly plot semi-quantitation maps must be written. 

An inexpensive autosampler that provides mass-spectral analyses of 76 cotton-swab wipe 

samples in 7.5 min was built previously (Grange, 2008a, 2008b) to provide rapid analysis with a 

short intra-sample time. The cotton-swab wipe samples were pulled through the flow of hot, 

energized helium from a Direct Analysis in Real Time (DARTTM) ion source. Operation of the 

DART is simple relative to ambient-air sources that require adjustment of numerous variables 

and continuous delivery of solutions to the ionization region during analyses (Takáts et al., 

2005). To limit sample preparation, a field sample carrier was built to simplify wipe sample 

collection and label bookkeeping and to provide the swabs to the laboratory nearly ready for 

analysis (Grange, 2008c). The macro procedures required to rapidly plot multi-color, semi-

quantitation maps based on individual ion chromatograms obtained for sets of swabs is briefly 

described herein. To investigate the feasibility of semi-quantitation using cotton-swab wipe 

samples, a small-scale, dispersive event was simulated by expelling powdered NoDozTM 

(caffeine) tablets upon a driveway with a shop vacuum cleaner operated as a blower.  

 

Experimental 

DART/oa-TOFMS  

The DART ion source directed a gas stream of metastable helium atoms nominally heated to 
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300ºC at the cotton swabs. Analyte was desorbed, ionized by a process similar to atmospheric 

pressure chemical ionization (APCI)(Cody, 2005), and mass analyzed after being pulled through 

a cone orifice into a JEOL AccuTOFTM orthogonal-acceleration, Time-of-Flight Mass 

Spectrometer (oa-TOFMS) (JEOL USA, Inc., Peabody, MA). Researchers have detected 

numerous compounds (Williams et al., 2006; Vail et al., 2007; JEOL, 2008) using this 

instrument, including chemical warfare agents (Laramée et al., 2008).  

 

Instrument Parameters 

Only the positive-ion mode was used. Instrument parameters were chosen based on manufacturer 

recommendations, tuning the instrument for high resolution and high ion abundance, and limited 

observation of the effect of ranges of variables on ion abundances. The instrument settings were: 

ring lens: 5 V; orifice 1: 15, 20, 30, or 40 V; orifice 2: 5 V; cone temperature: 120ºC; peaks 

voltage: 600 V; bias: 28 V; pusher bias: -0.50 V; focus voltage: -120 V; focus lens: -5 V; 

quadrupole lens: 7 V; right/left: -15 V; top/bottom: -2 V; reflectron: 800 V; pusher voltage: 778 

V; pulling voltage: -778 V; suppress voltage: 0.20 V; flight tube: -7.0 kV; detector: 2.3 kV, He 

temperature: 300ºC; and spectrum accumulation time: 0.97 s. The He flow was set to 2.6 L/min 

to minimize the risk of particles being blown off swabs and plugging orifice 1. The resolving 

power was 4400 and 5500 (FWHM) at m/z 121 and 195, respectively. 

 

Autosampler 

The autosampler seen in Figure 1 consisted of a 3-ft-long, ¼-in-square aluminum bar with 76 

holes to support cotton swab heads mounted on two N-scale model railroad flatcars that were 
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pulled along N-scale track (Bachmann Industries, Philadelphia, PA) by a nylon, monofilament 

fish line. Up to 6 ft of travel for the bar was provided by 6-ft wooden posts on each end of the 

horizontal track support. Two pairs of pulleys provided direction changes for the fish line. 

Weights (bolts) on each end of the fish line kept the line taut about the drive wheel on the shaft 

of a 7-rpm DC motor powered by a model railroad transformer, which provided a variable 

speed. The speed was usually set to 0.2 cm/sec for the cotton swabs as they traversed the 

ionizing gas stream. Additional autosampler details are provided by Grange (2008a and 2008b). 

Unlike the commercially available autosampler for a DART ion source (IonSense, 2008), the 

autosampler in Figure 1 allowed use of cotton-swab wipe samples and provided a short intra-

sample time (~3 s between swab edges) for sets of up to 76 swabs.      

 

Field Sample Carrier 

The core element of the field sample carrier in Figure 2 was the 3-ft-long support bar for the 

swabs. A linear cell array made from manila folders and packaging tape held inverted, wide-

mouth, 1.8-mL glass vials in place that protected the swab heads from contamination before and 

after wipe samples were collected. The swab sticks were clipped off at the base of the cell 

assembly to avoid using a swab for multiple wipe samples and to ready the swabs for analysis. 

Vial and cell array removal required only a few minutes. Field sample carrier details are 

provided in by Grange (2008c). 

 

pH Measurement 

pH paper (Panpeha, Sigma-Aldrich, St. Louis, MO) was used to estimate the pH of water and of 
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water to which concentrated HCl (A.C.S.Certified Plus, Fisher Scientific, Fair Lawn, NJ) or 

NaOH (Food Grade, J. T. Baker, Phillipsburg, NJ) was added. 

 

Standards 

The 2-aminobiphenyl (99+%) and caffeine (99%) on-hand were previously purchased from 

Aldrich (Milwaukee, WI). Aspirin tablets (325 mg) were purchased from Costco, Inc. (Issaquah, 

WA), and NoDoz tablets (Novartis Consumer Health Inc, Parsippany, NH) were purchased from 

a supermarket. 

 

Cotton Swabs 

Two sizes of glueless cotton swabs with wood sticks (Puritan Medical Products, Guilford, ME) 

were used. The sticks were 6-in long and the cotton head diameters were about 0.26 in or 0.20 

in. By visual comparison, the larger diameter heads contained about twice as much cotton. 

 

Methodology, Results, and Discussion 

Wipe Sampling Techniques 

Direct analysis of surfaces collected from the field would provide greater sensitivity than any 

wipe sample (Laramée et al., 2008), but could require considerable effort for collection and 

leave damaged surfaces behind, such as holes in cement or plaster surfaces that were not 

contaminated. For dispersive events, a large amount of the dispersed compounds will provide 

sufficient material for their detection using wipe samples. Gauze pads are more commonly used 

to acquire wipe samples than cotton swabs (ASTM International, 2006; U.S. Environmental 
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Protection Agency [USEPA], 2007). However, Q-tips® provided a higher recovery than cotton 

cloth for distilled mustard from painted surfaces and similar recoveries for distilled mustard and 

sarin from concrete in a Norwegian study (Opstad et al., 1999). Wet swabs provided higher 

recoveries than dry swabs. In our study, wet-cotton-swab wipe samples were acquired to take 

advantage of the high throughput afforded by the autosampler and field sample carrier. An area 

10 x 10 cm was delineated by fish line or a template as described below. Each cotton swab was 

dipped into a solvent and rolled back and forth across the area from left to right such that all of 

the area was contacted. The swab was rotated 90º and the rolling was repeated in the orthogonal 

directions. This sampling technique tended to spread out small specks of analyte throughout the 

area and to provide a more uniform level of the analyte around the circumference of the swab. 

Because only analyte from the leading and trailing edges of the swab is desorbed, ionized, and 

mass analyzed, a uniform distribution around the swab should provide lower RSDs. Rubbing the 

swab without rotation across rough surfaces such as concrete would wear away cotton and fail to 

distribute the analyte around the swab. 

 

Mirror Test Surface 

For solvent selection and dynamic range tests, a 36- x 30- x ¼-in, polished-edge mirror was 

placed on a sheet of ¼-in-thick fiberboard that provided a 1-in margin around the mirror. Holes 

were drilled and tapped (6-32) into the fiberboard to accept screws spaced alternatively 2 cm 

and 10 cm apart on all four sides and ½-in from the mirror edges. Fish line was tied to one 

screw and then treaded around the screws to provide a grid of 42 squares, 10 x 10 cm, separated 

from each other on all sides by 2 cm.  
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Driveway Grid Delineation 

Because marking grids using pegs and fish line is impractical in the field, especially on rugged 

terrain or paved surfaces, a 10- x 10-cm template was constructed for simulated dispersion 

events. An 18-cm square frame was made from a larger cardboard frame normally used to 

support a transparency for overhead projection. An unexposed transparency was wiped free of 

film using methanol and taped over the frame. A 10- x 10-cm square was then cut from the 

center using a hobby knife. The frame sides were 2.5-cm wide and a 1.5-cm border of clear 

transparency surrounded the 10-cm-square sampling area. The non-absorbant transparency 

border was wiped clean with water-soaked and dry tissues between wipe samples. 

Figure 3 illustrates how the grid was delineated after 10 NoDoz tablets pulverized in a 

mortar and pestle and placed in the back end of an 18-in-long, 1-in-inner diameter tube from the 

shop vacuum were dispersed. The driveway was hosed off with water and allowed to dry before 

the dispersion to minimize pick up of debris from a nearby pine tree. To start, the template was 

placed just in front of the origin of the expelled analyte at position D1 to ensure that the grid 

would be centered relative to the origin, and marks were made through the holes. The template 

was held in place by masking tape while a sample was collected. Then the template was moved 

to the left so that the two right holes aligned with the marks from the two left holes made 

previously. To skip a column, thereby doubling the width of the grid, marks were made through 

the left holes, the template was again moved to the left, two marks were again made through the 

left holes, and sample C1 was collected. This process was repeated to collect the samples from 

the B1 and A1 positions. This sequence was repeated starting with the D1 reference marks for 
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positions E1, F1, and G1 making marks through the right holes of the template to complete 

sampling of row 1.  

 

After wipe samples were collected for each row, the template was moved away from the 

origin one position by aligning the bottom holes with the top marks made with the template at 

position A#. Then marks were made through the top holes. The template was moved similarly a 

second time and marks were again made through the top holes before samples were collected. 

For rows 2–12, the sampling sequence was A#, B#, ...G# to conform with the order of the swab 

labels on the cell assembly and aluminum bar thereby avoiding possible confusion regarding 

sample locations. The decision to skip both rows and columns was made after observing the 

travel of the cloud of caffeine powder. Sampling a larger area was more likely to map most of 

the deposited analyte. All 84 wipe samples were collected between dawn and noon. 

 

Solvent Selection 

Organic solvents and water were observed to affect the appearance of the swabs differently. To 

characterize the effects, the grid-delineated mirror described earlier was used. The mirror 

provided a smooth, non-porous surface for determining RSDs for cotton swabs that result from 

wipe sampling from a smooth, non-absorbant surface.      

Blank wipe samples were taken from the mirror using the three swabs in Figure 4a. From 

left to right the swabs were first dipped into methanol (Burdick and Jackson, High Purity 

Solvent, Muskegon, MI), 91:9 isopropanol:water (IPA), or distilled water from a supermarket. 

Unlike the swabs dipped into the organic solvents, the water-dipped swab was compacted and 
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cotton fibers extending away from the body of the swab were not observed. 

To determine the influences of cotton fiber compaction on the RSDs of acquired data, a 

small volume (300 µL) of 2-aminobiphenyl solution (100 mg in 100 mL of methanol) was 

deposited in the center of each of 14 mirror squares and allowed to dry before wipe samples 

were taken. The solution covered about half of the area in each square before the solvent 

evaporated. 

In Figure 5 ion chromatograms for m/z 170.0964 " (plus or minus) 0.050 Da (the 

calculated mass for the [M+H]+ ion from 2-aminobiphenyl) acquired with an orifice 1 voltage of 

15 V are shown for sets of seven swabs dipped into isopropanol or water acidified to a pH of 2. 

The ion abundance is zero when the ionizing gas is blocked by the swab. The blockages lasted 

longer for the wider swab heads that had been dipped into isopropanol. Because the compacted 

swab heads dipped into pH 2 water provided a longer time between the swab edges of adjacent 

swabs, the baseline between swabs more closely approached zero. 

The areas of the pair of chromatographic peaks from each swab were calculated by 

setting a threshold to define the onset and end of each peak. The threshold was 55 and 11 times 

the average noise level for the isopropanol- and water-dipped swabs, respectively. The average 

noise from room air was taken as the average of the first 10 points. The data for both sets of 

swabs were recorded during the same data acquisition. The %RSDs (N=7) were 18.2 and 14.5, 

and the maximum/minimum paired area ratios were 1.74 and 1.41 for the isopropanol- and 

water-dipped swabs, respectively. The average paired areas for water were 24% greater than for 

the isopropanol-dipped swabs.  

Water was chosen as the best solvent for additional experiments due to the compaction 
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of swab heads, which provided smaller diameter heads, longer intra-swab times, and the absence 

of extended fibers, which could plug the orifice into the mass spectrometer. If an analyte of 

interest is not well recovered using water, an organic solvent could be used instead. If a 

compound is easily hydrolyzed, an ion from a hydrolysis product could become the semi-

quantitation ion. 

 

Test Analytes 

Aspirin and NoDoz tablets were investigated for their suitability for dispersion due to their ease 

of purchase, low cost, and low toxicity. Initially, to provide elemental compositions of the ions 

in the full scan mass spectra and to choose an appropriate semi-quantitation ion, collisionally 

induced dissociation (CID) voltages of 15, 40, and 70 V were applied sequentially to orifice 1 

during a single data acquisition. Aspirin or caffeine was rubbed onto wet swabs in amounts 

sufficient to provide clean mass spectra at the three CID voltages. For aspirin, the [M+H]+ ion 

was not observed, as illustrated by Figure 6a, but a prominent C7H5O2
+ ion at m/z 121 was 

observed. Text files of the m/z ratios and corresponding mass peak areas for the spectra were 

prepared by the data system and imported into in-house, ion correlation software that 

automatically determined the compositions of the ions (Grange and Sovocool, 2008). 

The average weights of three aspirin and three NoDoz tablets were 376 mg and 445 mg, 

respectively. The doses of 325 mg of aspirin and 200 mg of caffeine were 86.4% and 44.9% of 

the tablet weights. Despite the presence of additives, the C7H5O2
+ ion from aspirin (calculated 

m/z of 121.0284) and the caffeine [M+H]+ ion (C8H11N4O2
+, calculated m/z of 195.0876) 

dominated the mass spectra in Figure 6.  
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Semi-Quantitation Ions 

The relative abundances of the m/z 121 ion from aspirin with orifice 1 voltages of 15, 40, and 

70 V were 0.05:1:0.21, respectively, when swabs were dipped into a 100 mg/100 mL solution of 

crushed aspirin tablets in methanol. Hence, the m/z 121 ion and an orifice 1 voltage of 40 V 

were chosen for semi-quantitation. Because aspirin decomposes at its boiling point of 138–

140ºC (Chemical Safety Data, 2005), the m/z 121 ion could result from decomposition followed 

by ionization and/or CID of the precursor ion.  

Spectra were obtained for swabs dipped into a suspension of 111 mg NoDoz/100 mL 

methanol (50 mg caffeine) using orifice 1 voltages of 15 through 50 V in 5 V increments. The 

largest m/z 195 abundance was found using 30 V, and this voltage was used for semi-

quantitation of caffeine. 

 

Choice of pH  

Figure 7 is a 121.0284 " 0.050 Da ion chromatogram from a single data acquisition showing the 

relative heights of the ion abundances observed when sets of seven cotton swabs dipped into 

water with three different pHs were used to collect aspirin wipe samples from the mirror. The 

average paired chromatographic peak areas decreased in the proportions of 100:38:3 for pHs of 

2, 7, and 12, respectively. The %RSDs (N=7) were 24.1, 24.1, and 19.0, and the 

maximum/minimum ratio of areas for the paired chromatographic peaks for each swab were 

2.00, 2.03, and 1.90 for pHs of 2, 7, and 12, respectively. Two factors may account for the low 

ion abundance for a pH of 12. Aspirin decomposes in alkali hydroxide solutions (Merck & Co., 
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1989) and the sodium salt of aspirin would be less volatile than the neutral molecule and 

hydrochloride. 

 

Seven-swab sets were collected using swabs dipped into water with the same three pHs 

for the 111mg NoDoz/100 mL methanol suspension (50 mg of caffeine). The proportions for the 

average paired chromatographic peak areas were 95:100:85 and the %RSDs (N=7) were 18.8, 

21.3, and 22.1 for pHs of 2, 7, and 12, respectively. The corresponding maximum/minimum 

ratios were 1.59, 1.89, and 2.01. The recovery of NoDoz from the mirror was only marginally 

dependent on the pH and thus distilled water was used when NoDoz wipe samples were 

collected.  

 

Volatility and Chromatographic Peak Shape 

The chromatographic peaks for the trailing edge of the swabs obtained after dipping swabs into 

pH 2 water have different appearances in Figure 5b for the m/z 170 ion from 2-aminobiphenyl 

and Figure 7 for the m/z 121 ion from aspirin. The average peak area ratio (N=7) for the leading 

edge to trailing edge of the swabs was 0.39 for the m/z 171 ion and 2.07 for the m/z 121 ion. In 

addition, for the m/z 121 chromatogram, the trailing edge peaks were wide and the baseline 

often was not reached before the leading edge of the next swab reached the ionizing gas. (These 

differences are not explained by the different bar speeds.) The boiling point of 2-aminobiphenyl 

is 299ºC (PTCL, 2005), while aspirin decomposes at its melting point of 138–140ºC. These 

values suggest that volatility and/or thermal stability differences may account for the observed 

appearances of the peaks. As the leading edge of a swab is grazed by the nominally 300ºC He 
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gas (Grange, 2008a), some fraction of the aspirin molecules are desorbed, ionized, and pulled 

into the mass spectrometer. Initially, most of the heating occurs at a small spot. The swab then 

blocks the gas, and a larger volume of the cotton fibers is heated. Aspirin and its decomposition 

products, if any, could be desorbed, transported to surfaces, and condensed on the orifice cone 

and elsewhere. Ions could then continue to be observed after a swab has left the ionizing gas due 

to desorption and ionization of aspirin and possibly its products condensed onto the cone as the 

gas passes between adjacent swabs giving rise to a high m/z 121 ion abundance baseline 

between swabs. A large portion of the aspirin exposed to the heated helium may have been 

desorbed, dispersed, or thermally decomposed from the trailing edge, before the swab cleared 

the gas and ions from the trailing edge reached orifice 1. 

 

Description of Dispersion Experiments and Results 

A small-scale, dispersive event was simulated by first pulverizing ten aspirin tablets in a mortar 

and pestle. The powder was inserted into the back end of an 18-in-long, 1-in inner diameter 

section of straight tubing affixed to a 75-in-long accordion tube that was inserted into the 

exhaust port of a shop vacuum. With the end of the straight tube about an inch above the 

driveway, the aspirin powder was blown across the driveway when the shop vacuum was run for 

about 2 sec. Wipe samples were acquired in a 7 x 12 grid pattern as described earlier. 

A portion of the semi-quantitation ion chromatogram obtained for the aspirin wipe 

samples is displayed in Figure 8. A high level of carryover was evident. At this time, the 

literature was consulted and the low melting point and thermal lability of aspirin became 

apparent. Caffeine, with a sublimation point of 178ºC and a melting point of 237ºC (Merck & 
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Co., 2008), did not decompose as evidenced by the predominant [M+H]+ ion in Figure 6b. 

Hence, it was substituted in additional simulated dispersive event experiments to avoid the 

possibility that the carryover was due to aspirin=s thermolability. However, the observed 

carryover problem persisted. 

 

Excessive Analyte 

An earlier simulated dispersion experiment used 10 times as much aspirin. Aspirin or a 

decomposition product was clearly visible close to the discharge point, and swabs rolled across 

a thick layer of visible powder were caked with aspirin after wipe sample collection. The ion 

abundances from these swabs were saturated for the leading and trailing edges and also between 

the swabs. The carryover signal was saturated. Cleanup of a very visible white film on the cone 

and the DART and replacement of the ceramic outlet for the He source were required to remove 

the aspirin m/z 121 ion from mass spectra of air after this ill-advised experiment. Clearly, if a 

powder is visible, a relatively large amount is present and in a real-world situation such visible 

contamination would be included in remediation. A fifth category, "visible analyte present", was 

added to “high,” “moderate,” “low,” and “non-detect” and the grid squares containing such large 

amounts of analyte were left unsampled. The field sampler marked the swab head with a 

labeling pen to alert the analyst that visible analyte was present. The corresponding squares on 

the semi-quantitation map were later colored in black by the analyst. 

 

Automated cleaning of the orifice cone 

A visible film of caffeine on the orifice cone was also noticed after several swabs with high 
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levels of analyte had been sampled by the ionizing gas even though little caffeine was visible 

within grid squares that were sampled. For both aspirin and caffeine, the carryover was probably 

due to desorption, ionization, and mass analysis of analyte that had previously condensed on the 

cone near the orifice. In hope of diminishing the carryover effect by cleaning the cone near the 

orifice, intervening swabs soaked with methanol or water were placed between wipe samples 

collected from the mirror onto which 375 µg of caffeine had been deposited on each square. 

Wipe samples collected for 10 different amounts of deposited caffeine provided 400 µg as the 

ion abundance saturation limit for the m/z 195 semi-quantitation ion. Both methanol and water 

decreased the carryover effect. Water was preferred due to its slower evaporation rate, which 

ensured that the first swabs wetted would remain so as the last swab was wetted immediately 

prior to a data acquisition. Figure 9 displays the m/z 195 ion chromatogram recorded with three 

adjacent wipe samples and three samples separated by air (empty holes) or swabs wetted with 

one, two, and three drops of water, respectively. The bottom of the trace has been magnified to 

better inspect the baselines between swabs. The carryover problem was most reduced when 

three drops of water were used, while the ion abundance from the m/z 195 ion was not 

noticeably depressed. After collecting data for the Al bar supporting the swabs with the highest 

levels of caffeine, interspersed with water-soaked swabs, a shiny region 0.5–1 cm around the 

orifice was observed, while film was evident farther from the orifice. We speculate that hot 

water vapor generated by the 300ºC helium gas washed away analyte deposited near or on the 

edges of the orifice, partially cleaning the cone between wipe sample analyses. For the caffeine 

dispersion experiment, a water soaked swab was placed between all wipe samples. Even so, 

very large amounts of caffeine, well in excess of the 400-µg saturation level, on one or more 
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swabs can still cause carryover. A software solution was necessary to deal with the remaining 

carryover. 

 

Lotus 123 Data Processing Macros 

Text files of ion abundance vs. time were prepared by the JEOL data system for a calibration ion 

and for the analyte semi-quantitation ion for each data acquisition. Two data acquisitions were 

made for each of the three bars that supported 36, 36, and 14 wipe samples interspersed with 

water-soaked swabs and with calibrant swabs in the end positions. The bar speed was 0.2 cm/sec 

and the scan rate was 10/sec. Data were acquired for about 7 min or 2.5 min for the bar with 14 

wipe samples. The text files were imported into a Lotus 123 version 9.6 (Lotus Development 

Corp., Cambridge, MA) spreadsheet that contained an in-house Lotus-macro-language 

procedure, which evolved toward greater simplicity during these experiments. The four 

chromatographic peak times for the calibration ion were found by examining ion abundances 

starting with a scan earlier than the peak time. After a scan was found with an abundance that 

exceeded 15% of the maximum abundance listed in the calibration ion text file, the abundances 

for the next 18 scans were examined to find the chromatographic peak maximum. The leading 

edge times for the first calibration swab in the first hole in the bar and for the second calibration 

swab in the last hole used (position 75, 75, or 27) and the average time width of swab heads 

(0.054 min) were used to predict the locations of the leading and trailing edge peaks for each 

wipe sample swab. Narrow time windows about the expected peak times ("0.021 min or "10 

scans) were examined for peaks with a threshold exceeding 500 counts. If a peak was found, the 

maximum for the 20-scan range was saved and compared to abundances 6 and 7 scans earlier 
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and later. If the maximum was less than 1.5 times any of these four abundances, a carryover 

plateau was being considered and the time for the expected peak and zero abundance were 

saved. If the peak was real, the larger of the average abundance for scans in the ranges 6-13 

earlier or later were used as the average noise. The peak area was calculated as the sum of the 

abundance of the maximum scan and the abundances of scans recorded up to 8 scans earlier and 

later that exceeded the average noise (up to 17 scans). The average noise was subtracted from 

each abundance that was included in the sum. In this way, the larger of the two average noise 

values from before and after each peak was used as its baseline. The found peak and its area 

were saved in the list of swab times and areas. The use of narrow windows around expected 

times for peak maxima discriminated against artifact peaks that appeared elsewhere in the 

analyte ion chromatogram. As required by the mapping procedure, the completed list of times 

and areas contained entries for the trailing and leading edge of each swab, even if no 

chromatographic peak was observed. After the data for each bar was processed, the summary list 

was saved as a text file or appended to the previously saved list. 

Figure 10 shows semi-quantitation ion chromatograms and the areas of the integrated 

chromatographic peaks for swabs B5-G5 from duplicate data acquisitions. The shaded areas 

correspond to those calculated by the Lotus procedure. The reduction in carryover for the second 

data acquisition was much greater than the reduction in peak areas, which was not large for the 

analytes investigated (Grange, 2008a). With proportionally less interference from carryover, 

greater weight should be assigned to the semi-quantitation map plotted from the second data 

acquisition.  

Also notice that the carryover was much less for leading edges than for the trailing edges 
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in Figure 10b. Before sampling a leading or trailing edge, the hot ionizing gas bathes a region to 

the left or right of the orifice, respectively. Because more caffeine was desorbed for the trailing 

edge, more carryover was observed.     

 

Repeat Analyses and Debris Removal 

Occasionally during a data acquisition, a piece of debris on a swab was blown off and plugged 

the orifice, which severely decreased the observed ion abundances for later swabs. To reduce the 

likelihood of orifice plugging for the caffeine dispersion experiment reported here, the swabs 

were first run through a gas of unheated and unenergized helium with a flow of 2.6 L/min from 

the DART to blow off debris. The orifice was then cleaned with a methanol-soaked swab and 

the data was collected with the 300ºC ionizing gas with the same flow. Debris removal will be 

more critical when flat surfaces are sampled without prior flushing with water.  

  

Smaller Swab Tips 

Figure 4b shows aspirin wipe samples acquired using swabs with 0.26-in-diameter cotton swab 

heads. Such large heads were subject to greater shape distortion and diameter variability during 

wipe sampling. Bent-over swabs altered the intra-swab distance when aligned with the support 

bar and could contaminate the orifice or helium gas source when rotated 90º. Figure 4c shows 

the smaller, 0.20-in-diameter swab heads used to collect caffeine from the driveway and 

interspersed swabs that were water-soaked using a pipette before analysis. These problems were 

reduced, and care was taken during wipe sampling to avoid bending over the cotton. The analyte 

was collected on a smaller amount of cotton, which should provide a larger signal, although this 
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hypothesis was not tested. The smaller heads were raised off the flatcars by pieces of brass rail 

from excess track to ensure the helium gas did not graze the top of the swabs, rather than the 

sides. The base of the heads of the intervening water soaked swabs were outfitted with a steel 

wire collar to elevate them slightly above the bar. 

 

Dynamic Range 

Figure 11 is a plot of the sum of the two chromatographic peak areas for each swab as a function 

of the amount of NoDoz deposited on mirror squares before triplicate wipe samples were 

acquired for each amount of analyte. The dynamic range was 50 over NoDoz levels between 6 

and 300 µg. The plot was for the second data acquisition to minimize the effect carryover. A 

second experiment provided a dynamic range of 32 over levels of 12.5 to 400 µg. The average 

dynamic range was 41. Based on this dynamic range, a factor of 3.45 (the cube root of 41) was 

chosen to differentiate between high, moderate, and low levels of analyte. The high level 

corresponded to the maximum summed chromatographic peak area to 1/3.45 of this level, the 

moderate level from 1/3.45 to 1/(3.45)2 of the maximum, and the low level from 1/(3.45)2 to 

1/(3.45)3 of the maximum. 

 

Plotting the semi-quantitation map 

A second Lotus 123 macro procedure plotted a semi-quantitation map after importing the text 

file of chromatographic peak times and areas saved by the first procedure. The user inputted 

only the dimensions of the sampling grid as the coordinates for the cell in the last row and last 

column (in this example, “G12”). The macro supports up to 25 columns and as many rows as 
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desired. The pairs of peak areas for each swab were summed to provide a table of cell labels, 

times, and areas that were used to plot the semi-quantitation map. A portion of the table is 

shown in Figure 12a, and maps for the first and second data acquisitions in Figures 12b and 12c, 

respectively.  

One of four colors was copied from empty cells with these background colors based on 

the sums of paired areas. Red, magenta, orange, or yellow was copied into a map cell when the 

area from the corresponding swab was greater than 1/3.45, 1/(3.45)2 to 1/3.45, 1/(3.45)3 to 

1/(3.45)2, or less than 1/(3.45)3 of the maximum swab area, respectively. These threshold factors 

of 3.45 were larger than the maximum/minimum summed area ratios observed for the sets of 

seven wipe samples from the mirror cells coated with a single concentration of aspirin. The cell 

for which a large amount of NoDoz was observed, D1, was manually colored black. 

The ideal distribution of expelled NoDoz powder would be bilaterally symmetrical about 

the origin in the direction of the discharge and display zones of decreasing analyte levels. 

However, dispersion of the analyte was non-ideal. A slight breeze that blew toward the right 

shifted the plume in that direction. Despite vigorous and prolonged grinding with a mortar and 

pestle, a uniform, fine powder was not dispersed. Small clumps up to about 0.5 mm in diameter 

were seen. The clumps would be diverted less by the breeze and travel a shorter distance than 

the fine powder. The sampling grid might not have extended far enough to sample lower levels 

of analyte deposited only as powder. And finally, with a dynamic range of about 40, a wide 

range of analyte levels above the saturation level cannot be differentiated and will provide 

summed chromatographic peak areas from wipe sample swabs that all fall into the high level 

category. 
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In light of these observations, the semi-quantitation maps are reasonable. This simulated 

dispersion experiment provides evidence that a semi-quantitation map can be plotted by wipe 

sampling a grid pattern for compounds that are ionized by a DART ion source.  

 

Future Work 

 Freshly rinsed concrete provided an ideal outdoor surface for determining the feasibility 

of plotting a semi-quantition map, but does not represent real-world situations. Future 

experiments are planned to collect cotton-swab wipe samples from un-rinsed concrete, sand, 

soil, and grass. Wipe samples will be acquired through an aluminum screen resting on the 

surface to minimize or avoid picking up debris, sand, or soil with the swab. 

 

Conclusion        

A semi-quantitative map of chemicals dispersed by accidental, deliberate, or weather-

related events can aid remediators in delineating contaminated areas, in documenting the 

thoroughness of the clean up with high spatial resolution, and in tracking dispersed chemicals to 

their source. For this work, software to plot two-dimensional semi-quantitation maps was 

written to complement the autosampler and field sample carrier previously built to provide rapid 

analyses of hundreds of samples. 

 

Simulated dispersive events consisted of expelling powdered aspirin or NoDoz across a 

concrete driveway. Successful use of solvent-soaked, cotton swabs to acquire wipe samples 
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required selection of a solvent to pick up analytes from contaminated surfaces. Two factors were 

considered: the effects of a solvent on swab shape and dislocation of cotton fibers, and after 

water was chosen in preference to methanol and IPA, the effect of pH on the ion abundances 

was observed. Water with a pH of 2 provided more ion abundance for the semi-quantitation ion 

produced from aspirin than water with a pH of 7 or 12. The ion abundance from caffeine was 

independent of pH.  

 

Wipe samples were acquired for a 7 x 12 grid pattern, by rotating the cotton swab in 

contact with the concrete within a 10- x 10-cm template, first from left to right and right to left, 

and then in the orthogonal directions of bottom to top and top to bottom. This practice evened 

the distribution of the analyte around the circumference of the swab.  

 

Mass spectra were acquired from the wipe samples using the 

autosampler/DART/TOFMS, and newly written software was used to successfully plot a semi-

quantitation map for the NoDoz distribution across the driveway. High, moderate, low, and non-

detect levels of caffeine were found using ion abundance thresholds of 1/3.45, 1/(3.45)2, 

1/(3.45)3, and less than 1/(3.45)3 of the maximum area for the m/z 195 semi-quantitation ion 

observed from all swabs. Most of the 7 x 12 grid points corresponded to non-detect or high 

levels due to the limited size of the grid and limited dynamic range. These results justify further 

investigation of the feasibility of applying this technology to real-word contaminated sites: 

Superfund and Brownfields sites (U.S. Environmental Protection Agency, 2008a and 2008b), 

explosive events, and areas contaminated by weather-related events. 



 23 

 

Notice: The United States Environmental Protection Agency (US EPA), through its Office of 

Research and Development (ORD), funded and performed the research described. This 

manuscript has been subjected to the US EPA's peer and administrative review and has been 

approved for publication. 
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Figure Captions: 

 

Figure 1. a) the autosampler and b) the ion source with cotton swab heads inserted 
  
through an aluminum bar that is transported through the source on two N-scale model  
 
railroad flatcars. 
 

 

Figure 2. The field sample carrier. Four wipe samples have been collected and the fifth  
 
cotton swab is about to be removed to acquire a wipe sample. 
 

 

Figure 3. Grid pattern (7 x 12) used to collect wipe samples from the driveway. 
 

 

Figure 4. a) Blank wipe samples for swabs dipped into methanol, IPA, and water; b)  
 
driveway wipe samples acquired with the larger-head swabs; and c) driveway wipe  
 
samples acquired with the smaller-head swabs. The top of swab D1 was marked to  
 
indicate that no sample was taken due to the large amount of analyte present. 
 

 

Figure 5. 170.0964 ± 0.050 Da ion chromatograms for C12H12N minus the mass of an 
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electron for sets of seven wipe samples for 2-aminobiphenyl on the mirror using the 
 
larger-head swabs dipped into a) isopropanol or b) water with a pH of 2. The bar speed 
 
was 0.1 cm/sec. 
 
Figure 6. Measured masses for ions a) from aspirin with an orifice 1 voltage of 40 V and  
 
b) from NoDoz with an orifice 1 voltage of 30 V. 
 
 
 
Figure 7. 121.02841 ± 0.050 Da ion chromatograms for sets of seven wipe samples for 
 
125 µg of aspirin on each mirror square using swabs dipped into water with pHs of 2, 7,  
 
and 12. The bar speed was 0.2 cm/sec. 
 
 
 
Figure 8. A portion of the semi-quantitation ion chromatogram for driveway wipe  
 
samples of aspirin. 
 
 
 
Figure 9. Wipe samples from 375 µg of caffeine on the mirror squares not separated,  
 
separated by air, or by swabs wetted with 1, 2, or 3 drops of water. The lower portion of  
 
the trace is magnified on the y-axis to better view the baseline. Carryover is greatest for  
 
the three adjacent wipe samples and least for the three wipe samples separated by swabs  
 
soaked with three drops of water. 
 
 
 
Figure 10. Partial semi-quantitation ion chromatograms for NoDoz wipe samples from  
 
the driveway with time and area labels. a) and b) are the first and second data  
 
acquisitions, respectively. 
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Figure 11. Average (N=3) of summed leading and trailing edge peak areas for wipe  
 
samples of NoDoz deposited on mirror squares. 
 
 
Figure 12. a) A portion of the table containing the cell addresses and paired areas, b) the  
 
semi-quantitation map for the first data acquisition, and c) the map from the second data  
 
set. The horizontal arrow estimates the wind direction and the vertical arrow indicates the  
 
dispersal direction. 
 
 

 

 

 

 

 

 

 

 

 


