

Virtual Tissues and Developmental Systems Biology

Thomas B. Knudsen, PhD National Center for Computational Toxicology US Environmental Protection Agency Research Triangle Park NC 27711 Gordon Research Conference, July 31, 2008

- embryogenesis entails a genomic program that orchestrates precise aggregate cell behaviors across time and space
- core developmental processes (Bard, 2008): <u>patterning</u>: sets up future events leading to body structures <u>morphogenesis</u>: tissue rearrangements and movements <u>proliferation and apoptosis</u>: basis of selective growth and shaping <u>cell differentiation</u>: generation of distinct cell types
- virtual tissues: computational (*in silico*) framework for modeling key aspects of this complex biology

- computational modeling of embryonic systems to analyze how 'core developmental processes' are wired together
- knowledgebase (KB) of facts and concepts focused on developmental health and disease
- simulation engine (SE) for multi-scale models to help understand and eventually predict developmental defects
- has the potential to address environmental and human health factors with broad scientific and economic impacts

Modeling catastrophe in silico

small changes in nonlinear system \rightarrow sudden shifts in behavior

STATE A +-----

Gestation →

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$

critical

STATE B

exposure

SOURCE: Saunders, 1980, Cambridge University Press NY

10.

Genomic analysis of a *critical point* rudimentary forebrain 3-6h after chemical exposure

KEGG PATHWAY	LIST	P value
RIBOSOME	55	2.52E-06
FOCAL ADHESION	41	0.010225
CALCIUM SIGNALING PATHWAY	36	0.006316
INSULIN SIGNALING PATHWAY	27	0.034363
PHOSPHATIDYLINOSITOL SIGNALING SYSTEM	23	0.005534
GAP JUNCTION	20	0.037796
LONG-TERM DEPRESSION	18	0.016329
ADHERENS JUNCTION	17	0.045554
GLYCOLYSIS / GLUCONEOGENESIS	16	0.011854
LONG-TERM POTENTIATION	15	0.029993
PROTEASOME	12	0.003279
TYPE II DIABETES MELLITUS	12	0.028197

Based on MW Covert (2006) Integrated regulatory and metabolic models. In: Computational Systems Biology, edited by A Kriete and R Eils, Elsevier Academic Press (page 194)

... our ability to create mathematical models describing the function of biological networks will become just as important as traditional lab skills and thinking - D Butler (2001) Nature 409, 758-760

"Molecular biology took Humpty Dumpty apart ... mathematical modeling is required to put him back together again ..."

- Schnell et al. (2007) Am Sci 95:134

Consequences of perturbing GRNs illustrated in the master gene for eye development

cell-based processes driving the natural system

cell-based processes driving the formal system

NETWORK LOGIC information flow

CELLULAR AUTOMATA discrete state machines AGENT FIELDS signal-response gradients

PHASE TRANSITIONS trajectories to cell types

Self-regulating gene network:

3954 PMIDs mouse, rat, zebrafish, human eye development

7 transcription factors 3 receptor systems 3 signal ligands network size (n) = 13 nodes network connectivity (k) = 3 Boolean states $(2^n) = 8192$

Discrete Dynamical Networks (DDNs)

network size (n) = 13 nodes network connectivity (k) = 3 Boolean states $(2^n) = 8192$ basin of other oth

DDNs: 'state machines' to analyze GRN trajectories following chemical exposure:

- run network forward to find attractor states
- run backwards to disclose historical paths

MODEL: DDLab (A Wuensche, http://www.ddlab.org)

Executable *(in silico)* **model:** lens vesicle abstracted from mouse embryos

prototype: 72h period of initial lens development

In silico teratogenesis: prototype being developed for v-Embryo[™]

eye defects produced *in vivo* and *in silico* following altered signaling of the lens placode (day 8)

- virtual tissues and artificial life simulators as models to study morphogenesis and predict defects *in silico*
- systems-based approach integrates vast amounts of data with computational (*in silico*) models
- models address how mechanisms at one scale (cellular) can interact to produce higher level (tissue) phenomena
- myriad of agents that disrupt development calls for systems-level understanding of dynamical networks

Acknowledgements

University of Louisville

Caleb Bastian Maia Green Ken Knudsen **Reetu Singh** Nafeesa Owens **Bruno Ruest** Amar Singh **Reetu Singh**

NIEHS National Institute of **Environmental Health Sciences** ATIONAL INSTITUTE ON

> OHOL ABUSE AND ALCOHOLISM Whe NATIONAL INSTITUTES OF HEALTH

Grant sponsors

RO1 ES09120 (NIEHS) **RO1 AA13205 (NIAAA)** R21 ES13821 (NIEHS) P30 ES014443 (NIEHS)

NCCT/EPA

Jerry Blancato David Dix Keith Houck **Richard Judson Bob Kavlock** Matt Martin Imran Shah Amar Singh (LHM) **Michael Rountree Richard Spencer (EMVL)** Sid Hunter (NHEERL)

UNITED STATE

http://www.epa.gov/ncct

Disclaimer: the views expressed are those of the presenter and do not necessarily represent those of the U.S. EPA. No official Agency endorsement should be inferred