

EPA'S TOXCAST PROGRAM FOR PREDICTING TOXICITY AND PRIORITIZING CHEMICALS FOR FURTHER SCREENING AND TESTING

American College of Toxicology Annual Meeting Tucson, AZ 9:40-10:05 am November 19, 2008

Keith Houck, Ph.D. National Center for Computational Toxicology, US EPA Research Triangle Park, NC

Office of Research and Development National Center for Computational Toxicology

ToxCast[™] : a significant part of EPA's transformation

- Research program of EPA's National Center for Computational Toxicology
- Addresses chemical screening and prioritization needs for pesticidal inerts, anti-microbials, CCLs, HPVs and MPVs
- Comprehensive use of HTS technologies to generate biological fingerprints and predictive signatures
- Coordinated with NTP and NHGRI/NCGC via Tox21
- Committed to stakeholder involvement and public release of data
 - Communities of Practice- Chemical Prioritization; Exposure
 - NCCT website- <u>http://www.epa.gov/ncct/toxcast</u>
 - ACToR- Aggregated Computational Toxicology Resource

http://actor.epa.gov/actor/

Phased Development of ToxCast

Phase	Number of Chemicals	Chemical Criteria	Purpose	Number of Assays	Number of Cost per Assays Chemical	
Ι	320	Data Rich (pesticides)	Signature Development	552 \$20k		FY08
lb	15	Nanomaterials	Pilot	166	\$10K	FY09
lla	>300	Data Rich Chemicals	Validation	>400	~\$20-25k	FY09
llb	>100	Known Human Toxicants	Extrapolation	>400 ~\$20-25k		FY09
llc	>300	Expanded Structure and Use Diversity	Extension	>400	~\$20-25k	FY10
lld	>12	Nanomaterials	PMN	>200 ~\$15-20K		FY09-10
Ш	Thousands	Data poor	Prediction and Prioritization	>300	~\$15-20k	FY11-12

ToxCast_320 Phase I Chemicals

Classification based on OPPIN

• ToxCast 1.0 (April, 2007)

- Enzyme inhibition/receptor binding HTS (Novascreen)
- NR/transcription factors (Attagene, NCGC)
- Cellular impedance (ACEA)
- Complex cell interactions (BioSeek)
- Hepatocelluar HCS (Cellumen)
- Hepatic, renal and airway cytotoxicity (IVAL)
- In vitro hepatogenomics (IVAL, Expression Analysis)
- Zebrafish developmental toxicity (Phylonix)

ToxCast 1.1 (January, 2008)

- Neurite outgrowth HCS (NHEERL)
- Cell proliferation (NHEERL)
- Zebrafish developmental toxicity (NHEERL)

• ToxCast 1.2 (June, 2008)

- XME Gene Regulation (CellzDirect)
- HTS Genotoxicity (Gentronix)
- Organ toxicity; dosimetry (Hamner Institutes)
- Toxicity and signaling pathways (Invitrogen)
- C. elegans WormTox (NIEHS)
- Gene markers from microscale cultured hepatocytes (MIT)
- 3D Cellular Zebrafish vascular/cardiotoxicity (Zygogen)
- microarray with metabolism (Solidus)
- HTS stress response (NHEERL+NCGC)

20 Assay sources 554 Endpoints

Primary Human Cell Systems (BioSeek, Inc.)

Syst	tem	Cell Types	Environment	Readouts
3C	8	Endothelial cells	IL-1β+TNF-α+IFN-γ	MCP-1, VCAM-1, ICAM-1, Thrombomodulin, Tissue Factor, E-selectin, uPAR, IL-8, MIG, HLA-DR, Prolif., Vis., SRB (13)
4H	00	Endothelial cells	IL-4+histamine	VEGFRII, P-selectin, VCAM-1, uPAR, Eotaxin-3, MCP- 1, SRB (7)
LPS		Peripheral Blood Mononuclear Cells + Endothelial cells	TLR4	CD40, VCAM-1, Tissue Factor, MCP-1, E-selectin, IL- 1a, IL-8, M-CSF, TNF-a, PGE2, SRB (11)
SAg		Peripheral Blood Mononuclear Cells + Endothelial cells	TCR	MCP-1, CD38, CD40, CD69, E-selectin, IL-8, MIG, PBMC Cytotox., SRB, Proliferation (10)
BE3C		Bronchial epithelial cells	IL-1β+TNF-α+IFN-γ	uPAR, IP-10, MIG, HLA-DR, IL-1a, MMP-1, PAI-1, SRB, TGF-b1, tPA, uPA(11)
HDF3CGF		Fibroblasts	IL-1β+TNF-α+IFN-γ +bFGF+EGF+PDGF-BB	VCAM-1, IP-10, IL-8, MIG, Collagen III, M-CSF, MMP-1, PAI-1, Proliferation, TIMP-1, EGFR, SRB (12)
KF3CT		Keratinocytes + Fibroblasts	IL-1β+TNF-α+IFN-γ +TGF-β	MCP-1, ICAM-1, IP-10, IL-1a, MMP-9, TGF-b1, TIMP-2, uPA, SRB (9)
SM3C	-	Vascular smooth muscle cells	IL-1β+TNF-α+IFN-γ	MCP-1, VCAM-1, Thrombomodulin, Tissue Factor, IL- 6, LDLR, SAA, uPAR, IL-8, MIG, HLA-DR, M-CSF, Prolif., SRB (14)

Office of Research and Development National Center for Computational Toxicology

Reference Compound Variability

Functional Similarity Map of ToxCast Library

Office of Research ar National Center for Co

Functional Similarity Map of ToxCast Library

NFkB Inhibition and cAMP Stimulation Classes

Dimethyl fumarate

atrazine

cyanazine

DSSTex_R3D_4004

Office of Research and National Center for Com

Mitochondrial Dysfunction and Endoplasmic Reticulum Stress Classes

Environmental Protection Agency μ_{a} myxothiazol

United States

pyraclostrobin

 \square

trifloxystrobin

DSSTex. RID. 4062

benomyl

D557ax_R3D_4039

KF3CT

SM3C

Correlation of BioSeek Mitochondrial Dysfunction Class with HCS Mitochondrial Function Endpoints

SEPA Hierachical Cluster Attagene Results

				t Liver Tumors	t Tumorigen	t Multigender Tumorigen	t Multisite Tumorigen	use Liver Tumors	use Tumorigen	use Multigender Tumoriger	use Multisite Tumorigen	ltispecies Tumorigen
CAS No.	Chemical Name	ΡΡΑRα	PPARγ	Ra	Ra	Ra	Ra	Mo	Σ	Mo	Mo	Mu
77501-63-4	Lactofen	Х	Х	76	19	76	76	7.1	7.1	7.1		19
51338-27-3	Diclofop-methyl	Х	Х	25	25	32	25	2.5	2.5			25
1689-84-5	Bromoxynil	Х	Х					3.1	3.1			
69377-81-7	Fluroxypyr	Х			500							
10453-86-8	Resmethrin		Х		400.9	450.3		169.3	169.3			400.9
82-68-8	Quintozene		Х		150	300						
584-79-2	d-cis,trans-Allethrin		Х									
66332-96-5	Flutolanil		Х									
36734-19-7	lprodione		Х		69			604	604	793	793	604
19666-30-9	 Oxadiazon		Х	50.9	50.9			12	12	14		50.9
23031-36-9	 Prallethrin		Х									
62476-59-9	Acifluorfen, sodium		Х					119	119	711		

<mark>-1.6 0 4.</mark>9

Fold Induction (log 2)

Nuclear Receptor Screening (NCGC)

- 10 Nuclear Receptors (more in queue)
- Cellular Reporter Assays
- Agonist and Antagonist modes
- Concentration-Response Format (15 conc)

201 Assays

Relationship Between Biochemical Target Promiscuity and Cytotoxicity

No good correlation between target promiscuity and cytotoxicity; however most chemicals hitting >10% targets are cytotoxic

Office of Research and Development National Center for Computational Toxicology

Parent vs Metabolite Activity in Biochemical Assays

% Activity

United States

Capturing Legacy Toxicity Data: ToxRefDB

Office of Research and Development National Center for Computational Toxicology

Martin et al., EHP 2008

No Effect 2048 0.015625 mg/kg/day mg/kg/day Lowest Effect Level (LEL): -Log₂(LEL)

Find "Signatures" from in vitro & in silico assays that predict in vivo endpoints.

Analysis Approaches

Association Analysis / Signatures

- Use Machine Learning methods
 - SLR: Stepwise Logistic Regression
 - LDA: Linear Discriminant Analysis
 - SVM: Support Vector Machines
 - Many others
- For each binary endpoint, build models of form
 - Predictor = F(assay values)
 - If
 - Predictor for a chemical meets criteria
 - Then
 - Predict endpoint to be positive for the chemical

ToxCast Screening and Prioritization

Office of Research and Development National Center for Computational Toxicology

http://www.epa.gov/comptox/toxcast Internal EPA use- do not copy, distribute or cite.

The ToxCast Team

Office of Research and Development National Center for Computational Toxicology

www.epa.gov/ncct/toxcast

Microelectronic Kinetic Cell Growth Analysis ACEA Biosciences

- Objective: Determine kinetic effects of chemicals on cell growth/phenotype
- Technology: Real-Time Cell Electronic Sensing (RT-CES) microelectrodes in microtiter plate monitoring cell effects on electrical impedance
- Methods:
 - Monitor growth of A549 human lung carcinoma cell line
 - 8-point, half-log dilution series starting at 100 μM
 - Cells grown 24 hr in plate, treated with chemical and impedance monitored for 72 hr
 - Analyze growth pattern and cluster with toxicants having known mechanism of cytotoxicity

Office of Research and Development National Center for Computational Toxicology **Examples of Kinetic Growth Response**

United States Environmental Protection Agency

€PA

Categories of ACEA Kinetic Response Profiles

990

Group 8-10 (Nuclear Receptor Modulators)

Designation Mechanism Compound A Emetine Protein Synthesis Inhibitor В Cycloheximide Protein Synthesis Inhibitor Nuclear Receptor G Hydrocortisone Modulator Nuclear Receptor Fludrocortisone Н Modulator С Fluphenazine Calcium modulator D Tamoxifen Calcium modulator Е Carmofur DNA Damaging F DNA Damaging 5-Fluorouracil Picropodophyllotoxin Anti-mitotic Nacadazole Anti-mitotic J Κ Oloumoucine Cvtotstatic

Figure 13. Representative cell response curves from the different groups

High-Content Screening of Cell Health United States Environmental Protection Agency Parameters (Cellumen, Inc.)

- Technology: automated fluorescent microscopy
- Objective: Determine effects of chemicals on toxicity biomarkers in a cell culture of human liver hepatoma

CellCiphr[™] Cytotoxicity Panel

- 10-point conc-response (200 µM-39 nM)
- Three time points (1 hr, 24 hr, 72 hr)
- 11 endpoints per assay

Biomarker	Positive Control	Z'
Stress Pathway Oxidative Stress Mitochondrial Function Mitochondrial Mass Cell Loss Cell Cycle DNA Degradation Nuclear Size DNA Damage Mitotic Arrest Cytoskeletal Integrity	Anisomycin Camptothecin CCCP CCCP Camptothecin Paclitaxel Paclitaxel Paclitaxel Camptothecin Paclitaxel Paclitaxel Paclitaxel	.63 .7 .55 .35 .56 .54 .6 .63 .43 .63 .3

National Center for Computational Toxicology