Appendix

As part of the effort to apply LCA as a tool for environmental preferable purchasing within FRED, three pilots were undertaken to test how best to perform the FRED LCA system in order to make it:

- § Easy to use
- § Yield results in a timely manner
- § Meet the needs of procurement officials and vendors
- § Conform, as much as possible, to the requirements of DIS 14042 for comparative assertions
- § Support the needs of the EPP program
- Support the needs of the National Institute of Standards and Technology (NIST) in its goals relating to the Technology Transfer Act.

Two of those pilots (found in Appendix A - Motor Oil and Appendix B - Wall Insulation) were based on the inventory data sets collected by the National Institute of Standards and Technology's Building for Environmental and Economic Sustainability (BEES) program. The third pilot (found in Appendix C - Asphalt Coating) was based on original data collection from a small vendor.

The first two pilots, derived from existing BEES life cycle inventory data, were used primarily in evaluating among environment and human health impact indicator models for inclusion in the FRED LCA system. The third pilot, which used predominately original data, was utilized to evaluate the resource requirements for a vendor to provide data for the FRED LCA system as well as to develop an approach to evaluating results from the FRED LCA system. Pursuant to these slightly different goals, the sections on interpretation of results and conclusions for the first two pilots are not as detailed as reported in the third pilot.

Appendix A: Motor Oil Case Study

Goal and Scope Definition

Goal

The goal of this study was to determine the feasibility of evaluating the environmental performance of three different types of motor oil by using the FRED LCA system. The three types of oil evaluated were virgin oil, rerefined oil and bio-based oil.

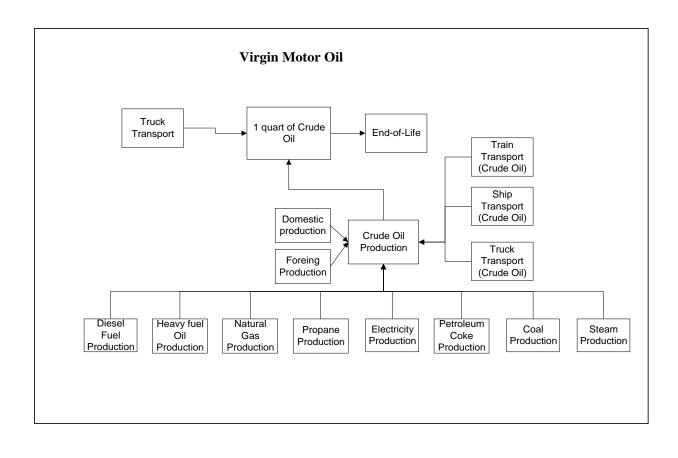
Intended Applications and Audiences

The LCA itself was intended to be used to support a comparative assertion of environmental superiority of a product over a competing product in the context of the Federal requirement for environmentally preferable purchasing. Audiences include purchasing agents as well as other federal and state officials. An ancillary use of the study is to support efforts towards environmental improvement.

Scope

Description of the Product

Motor oil is used to cool the engine and reduce friction. Historically, motor oil was created by extracting and refining crude oil. Due to technological advances, two alternatives to virgin oil are now commercially available: rerefined oil and "bio-based" oil. Rerefined oil is essentially used oil that has undergone the refining process a second time, with additives to remove impurities. Bio-based oil is an all-vegetable (in the case of this pilot project, soybean), highly biodegradable oil that performs comparably to petroleum-based oils.


System Function and Functional Unit

The function provided by the alternative products is automobile engine protection and lubrication for 3,000 mile without viscosity breakdown. The functional unit is one quart,10W30 motor oil.

System Boundaries

Data for all three products came from secondary sources according to the contractor for BEES. Virgin and refined oil data came from petroleum associations representing 90 % of manufacturers. Bio-based data was derived from an average of 14 states. Upstream materials and energy use data came from national sources. All data is less than 10 years old. The flow charts below identify the systems under study.

Figure 1: Virgin Motor Oil Process Flow Diagram

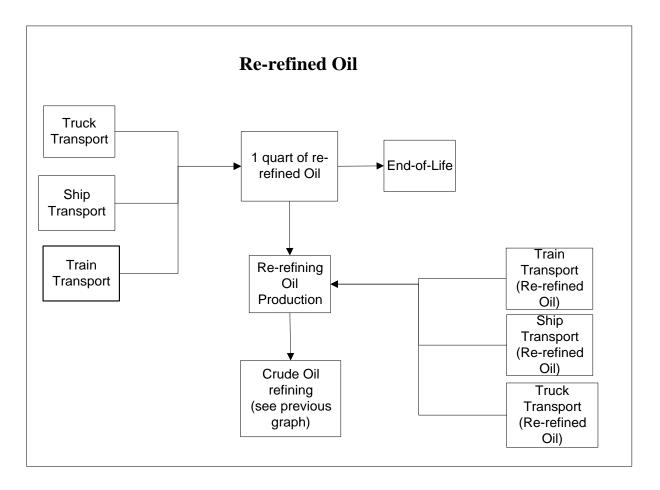
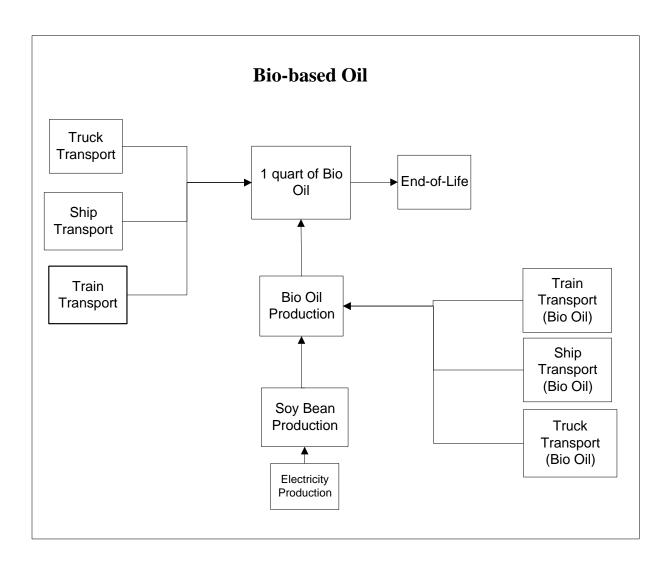



Figure 2: Re-refined Oil Process Flow Diagram

Figure 3: Bio-Based Oil Process Flow Diagram

Data Gathering

The entire data gathering exercise for this project involved extracting data from the BEES database. According to NIST, the BEES database includes both primary data as well as industry average data.

Allocation

All allocation of emissions and resource use was performed based on a mass basis. This was required for the production and transportation inventory results, but not for other inventory data.

Impact Assessment

Impact assessment was performed using the FRED indicators, as described in the body of this work. The assignment of inventory data to impact categories is shown in the table below.

Inventory Result	Impact Category	Justification
Fossil Fuels and Uranium	Resource Depletion	Although Uranium is not truly a fossil fuel, it is "used up" in a precisely comparable fashion
CO_2 , N_20 , Methane	Global Warming	These are important greenhouse gases which do not participate to a great extent in other impact categories
СО	Human Toxicity Photochemical Smog Global Warming;	CO is a human and animal toxicant, as well as a precursor to ozone formation and a greenhouse gas. It can participate in the first two of these environmental mechanisms without losing its potency for the others.
CFC's, HCFC's, Halons	Global Warming 100% Stratospheric Ozone Depletion 100%	These substances participate fully in both of these parallel environmental mechanisms
SO ₂ ,	Acidification 100%	Although SO2 contributes to visibility deterioration, and human health effects through the formation of Particulate Matter, these environmental mechanisms are not addressed by FRED.
HCl, HF	Acidification 100% Human Health 100%	These acid gases have minor human health effects as well as contributing to acidification. It was thought that double counting would not significantly skew results.
Toxic Air and Water Emissions	Human Toxicity 100% Ecotoxicity 100%	Since it was not possible to evaluate the partitioning of these substances, they were double counted so as not to underestimate their impacts.
NOx	Acidification 100%	Since FRED does not currently evaluate

Inventory Result	Impact Category	Justification
	Eutrophication 100%	the fate and transport of NOx, this emission was double counted.
VOC's, ROG's	Photochemical Smog	These are the essential precursors to photochemically produced ozone. Although some of them are also toxic, unspeciated data does not permit a toxic evaluation.
NH ₄	Eutrophication (water emissions); acidification (air Emissions)	Although NH4 is not an acid gas, it undergoes changes in the soil leading to acidification effects.
PO ₄	Eutrophication 100%	Phosphate does not participate in any other environmental mechanism described by the FRED methodology

Inventory

The table below shows the summary inventory for the three products compared. A full inventory by life cycle stage can be found in Tables 7, 8 and 9.

		LCI Totals		
Article	Units	Virgin	Re-refined	Bio
(r) Coal (in ground)	kg	3.6e-02	7.6e-03	2.2e-02
(r) Limestone (CaCO3, in ground)	kg	6.8e-03	1.4e-03	4.1e-03
(r) Natural Gas (in ground)	kg	9.8e-02	1.5e-02	5.4e-02
(r) Oil (in ground)	kg	9.1e-01	2.5e-02	4.6e-02
(r) Perlite (SiO2, ore)	kg	3.2e-04	2.1e-04	8.9e-06
(r) Phosphate Rock (in ground)	kg	0.0e+00	0.0e+00	5.5e-02
(r) Potash (K2O, in ground)	kg	0.0e+00	0.0e+00	3.2e-02
(r) Uranium (U, ore)	kg	8.5e-07	1.8e-07	6.9e-07
Used Oil	kg	0.0e+00	8.6e-01	0.0e+00
Water Used (total)	liter	1.3e-01	3.6e-03	5.9e+02
(a) Aldehydes	g	1.1e-04	2.4e-05	2.9e-04
(a) Ammonia (NH3)	g	2.3e-07	1.3e-07	1.6e-01
(a) Benzene	g	2.0e-04	5.5e-06	8.8e-06
(a) Carbon Dioxide (CO2, biomass)	g	0.0e+00	0.0e+00	-2.5e+03
(a) Carbon Dioxide (CO2, fossil)	g	6.1e+02	3.2e+02	3.4e+02
(a) Carbon Monoxide (CO)	g	4.6e-01	2.6e-01	5.8e-01
(a) Fluorides (F-)	g	2.6e-12	4.5e-13	4.6e-03
(a) Formaldehyde	g	2.7e-03	7.3e-05	1.2e-04
(a) Hydrocarbons (except methane)	g	1.7e-01	3.9e-02	1.8e+00

Table 2 Summary Inventory

		LCI Totals		
Article	Units	Virgin	Re-refined	Bio
(a) Hydrocarbons (unspecified)	g	1.5e+00	8.9e-01	4.8e-01
(a) Hydrogen Chloride (HCl)	g	1.9e-02	4.1e-03	1.0e-02
(a) Hydrogen Fluoride (HF)	g	2.4e-03	5.1e-04	1.2e-03
(a) Hydrogen Sulfide (H2S)	g	6.0e-03	1.8e-04	3.0e-04
(a) Metals (unspecified)	g	2.4e-04	9.0e-05	6.7e-06
(a) Methane (CH4)	g	1.1e+00	1.5e-01	4.6e-01
(a) Nitrogen Oxides (NOx as NO2)	g	1.4e+00	7.0e-01	1.1e+00
(a) Nitrous Oxide (N2O)	g	4.7e-02	1.9e-02	1.8e-02
(a) Organic Matter (unspecified)	g	5.3e-04	1.1e-04	1.2e-02
(a) Particulates (unspecified)	g	9.9e-01	4.9e-01	7.4e-01
(a) Sulfur Oxides (SOx as SO2)	g	4.7e+00	1.6e+00	1.6e+00
(w) Acids (H+)	g	0.0e+00	0.0e+00	1.4e-04
(w) Ammonia (NH4+, NH3, as N)	g	1.4e-01	8.9e-02	4.0e-03
(w) Benzene	g	8.9e-14	1.9e-14	4.3e-14
(w) BOD5 (Biochemical Oxygen Demand)	g	9.5e-01	6.1e-01	3.0e-02
(w) Chlorides (Cl-)	g	1.3e+01	3.5e-01	5.8e-01
(w) COD (Chemical Oxygen Demand)	g	8.0e+00	5.1e+00	2.4e-01
(w) Cyanides (CN-)	g	3.0e-18	6.4e-19	1.5e-18
(w) Dissolved Matter (unspecified)	g	1.3e+00	1.1e+00	1.9e+00
(w) Fluorides (F-)	g	1.3e-04	2.7e-05	1.1e-04
(w) Hydrocarbons (unspecified)	g	8.4e-04	2.3e-05	8.2e-01
(w) Metals (unspecified)	g	2.9e-02	8.0e-03	1.1e-03
(w) Nitrates (NO3-)	g	3.0e-05	6.4e-06	2.5e-05
(w) Nitrogenous Matter (unspecified, as N)	g	0.0e+00	0.0e+00	6.2e+01
(w) Oils (unspecified)	g	4.3e-01	2.4e-01	1.4e-02
(w) Phenols	g	1.8e-02	1.2e-02	5.1e-04
(w) Phosphates (PO4 3-, HPO4, H2PO4-, H3PO4, as P)	g	0.0e+00	0.0e+00	9.7e+00
(w) Sodium (Na+)	g	1.7e+01	4.5e-01	7.4e-01
(w) Sulfates (SO4)	g	2.7e-05	5.7e-06	2.3e-05
(w) Suspended Matter (unspecified)	g	4.3e+00	2.8e+00	1.6e+03
Waste (50 years - prorated)	kg	8.2e-01	8.2e-01	8.6e-01
Waste (End-of-Life)	kg	8.2e-01	8.2e-01	8.6e-01
Waste (Mfg.)	kg	2.1e-02	8.0e-03	1.6e-02
Waste (non-recyclable, 50-year)	kg	8.2e-01	8.2e-01	8.6e-01
E Feedstock Energy	MJ	3.4e+01	-5.0e-02	2.5e-01
E Fuel Energy	MJ	1.0e+01	2.2e+00	5.4e+00
E Non Renewable Energy	MJ	4.5e+01	2.1e+00	5.6e+00
E Renewable Energy	MJ	5.4e-02	1.2e-02	3.9e-02
E Total Primary Energy	MJ	4.5e+01	2.1e+00	5.7e+00

Indicator Results

The table below shows the indicator results for the three systems studied.

	LCIA Totals				
Indicator	Virgin Oil	Rerefined Oil	Bio-based Oil		
GWP (kg CO2 equiv)	649	332	353		
ODP (kg CFC-11)	0	0	0		
Acidification (kg SO2)	5	2	2		
Eutrophication (kg PO4)	2	1	36		
Photochemical Smog (kg O3)	0.74	0.17	7.16		
Human Toxicity					
Cancer	2.12E-04	5.66E-06	9.13E-06		
NonCancer	2.83E-02	4.29E-03	5.23E-01		
Ecotoxicity	8.08E-03	4.31E-03	4.06E-02		
Resource Depletion					
Fossil (tons oil equivalent)	1.70E+00	1.05E-01	3.23E-01		
Mineral (equiv tons)	0	0	0		
Precious(equiv tons)	0	0	0		
Other Indicators:					
Land Use (ha)	0	0	0		
Water Use (kg)	1.35E-01	3.59E-03	5.89E+02		
Solid Waste (kg)	8.19E-01	8.19E-01	8.55E-01		

 Table 3: LCIA Results

Interpretation

As one would expect, selecting either rerefined or bio-based oil potentially appears to reduce fossil fuel depletion. Comparing the two alternatives to Virgin Oil, rerefined oil leads (as preferable) in the categories for Eutrophication, Photochemical Smog, Non-Cancer, and Water Use, when looking at order of magnitude differences. Also, a decrease in cancer effects is indicated when moving from selecting virgin oil to either alternative product system. The differences are negligible in the other categories.

It is possible to evaluate the sources of the various impacts in order to identify opportunities for improvements. The table below shows the indicators for each product in term of percentage of the indicators in the different life cycle stages.

	Virgin Oil - by LC Stage						
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal		
GWP	17	73	10	0	0		
ODP	0	0	0	0	0		
Acidification	28	70	2	0	0		
Eutrophication	0	98	1	0	0		
Photochemical Smog	78	5	17	0	0		
Human Health							
Cancer	97	1	2	0	0		
NonCancer	78	20	2	0	0		
Eco Health							
Resource Depletion							
Fossil	83	15	2	0	0		
Mineral	0	0	0	0	0		
Precious	0	0	0	0	0		
Other Indicators:							
Land Use	0	0	0	0	0		
Water Use (kg)	97	1	2	0	0		
Solid Waste (kg)	0	0	0	0	100		

Table 4: Percentage of Indicator by Life Cycle Stage, Virgin Oil

	Rerefined Oil - by LC Stage						
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal		
GWP	4	76	20	0	0		
ODP	0	0	0	0	0		
Acidification	1	93	6	0	0		
Eutrophication	0	98	2	0	0		
Photochemical Smog	16	11	74	0	0		
Human Health							
Cancer	16	7	76	0	0		
Non-Cancer	3	85	13	0	0		
Eco Health							
Resource Depletion							
Fossil	7	62	31	0	0		
Mineral	0	0	0	0	0		
Precious	0	0	0	0	0		
Other Indicators:							
Land Use	0	0	0	0	0		
Water Use (kg)	15	13	72	0	0		
Solid Waste (kg)	0	0	0	0	100		

 Table 5: Percentage of Indicator by Life Cycle Stage, Rerefined Oil

	Bio-Based Oil - by LC Stage						
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal		
GWP	30	51	19	0	0		
ODP	0	0	0	0	0		
Acidification	32	62	5	0	0		
Eutrophication	100	0	0	0	0		
Photochemical Smog	11	88	2	0	0		
Human Health							
Cancer	50	0	50	0	0		
Non-Cancer	100	0	0	0	0		
Eco Health							
Resource Depletion							
Fossil	24	65	11	0	0		
Mineral	0	0	0	0	0		
Precious	0	0	0	0	0		
Other Indicators:							
Land Use	0	0	0	0	0		
Water Use (kg)	100	0	0	0	0		
Solid Waste (kg)	0	0	0	0	100		

Table 6: Percentage of Indicator by Life Cycle Stage, Bio-Based Oil

For the most part, the majority of the three products indicator results can be found in the manufacturing and the transportation phases of the life cycle. This result supports the guidance of the FRED methodology, which recommends more intensive data gathering efforts in the manufacturing phase for products which are durable goods which are not energy intensive in the use phase.

Conclusions

This pilot project proved that existing LCA data sets can be used in the FRED LCA system. Concern that arose during this pilot project centered around lack of information regarding the LCA data sets. For example, more information regarding data sources, specificity, age, quality, etc. would have been useful in framing the applicability of the FRED LCA system results.

		Virgin Oil- LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(r) Baryte (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bauxite (Al2O3.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bentonite (Al2O3.4SiO2.H2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Borax (Na2O.2B2O3.10H2O)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Clay (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Coal (in ground)	kg	1.6e-02	1.9e-02	5.8e-04	0.0e+00	0.0e+00
(r) Copper (Cu, Ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Diabase Rock	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Dolomite (CaCO3.MgCO3, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Feldspar (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Granite (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gravel (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gypsum (CaSO4: in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Ilmenite Ore (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Iron (Fe, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Jute	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Kaolin (Al2O3.2SiO2.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Limestone (CaCO3, in ground)	kg	3.1e-03	3.6e-03	1.1e-04	0.0e+00	0.0e+00
(r) Natural Gas (in ground)	kg	4.6e-02	5.1e-02	1.6e-03	0.0e+00	0.0e+00
(r) Oil (in ground)	kg	8.8e-01	5.5e-03	1.9e-02	0.0e+00	0.0e+00
(r) Perlite (SiO2, ore)	kg	1.1e-06	3.2e-04	4.2e-06	0.0e+00	0.0e+00
(r) Phosphate Rock (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pine Rosin	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potash (K2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potassium (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pyrite (FeS2, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sand (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sodium Chloride (NaCl, in ground or in sea)		0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Uranium (U, ore)	kg	3.9e-07	4.5e-07	1.4e-08	0.0e+00	0.0e+00
(r) Wastepaper	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Wood (standing)	m3	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Cullet (from stock)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Fly Ash	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Iron Ore Slag	kg	0.0e+00	0.0e+00		0.0e+00	
Recovered Solids (iron scraps)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Used Oil	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00

Table 7: Life Cycle Inventory, Virgin Oil

			Virgin Oi	il- LC Stage		
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
Water Used (total)	liter	1.3e-01	1.2e-03	2.6e-03	0.0e+00	0.0e+00
(a) Aldehydes	g	4.9e-05	5.8e-05	1.9e-06	0.0e+00	0.0e+00
(a) Ammonia (NH3)	g	7.4e-08	8.1e-08	7.9e-08	0.0e+00	0.0e+00
(a) Benzene	g	2.0e-04	1.1e-06	4.2e-06	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, biomass)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, fossil)	g	8.5e+01	4.6e+02	6.2e+01	0.0e+00	0.0e+00
(a) Carbon Monoxide (CO)	g	8.7e-02	3.2e-01	5.4e-02	0.0e+00	0.0e+00
(a) Fluorides (F-)	g	9.5e-13	1.6e-12	4.0e-14	0.0e+00	0.0e+00
(a) Formaldehyde	g	2.7e-03	1.5e-05	5.6e-05	0.0e+00	0.0e+00
(a) Hydrocarbons (except methane)	g	1.4e-01	3.5e-03	3.1e-02	0.0e+00	0.0e+00
(a) Hydrocarbons (unspecified)	g	1.5e-01	1.4e+00	2.4e-02	0.0e+00	0.0e+00
(a) Hydrogen Chloride (HCl)	g	8.7e-03	1.0e-02	3.1e-04	0.0e+00	0.0e+00
(a) Hydrogen Fluoride (HF)	g	1.1e-03	1.3e-03	3.9e-05	0.0e+00	0.0e+00
(a) Hydrogen Sulfide (H2S)	g	5.9e-03	4.8e-05	1.4e-04	0.0e+00	0.0e+00
(a) Lead (Pb)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Metals (unspecified)	g	6.5e-06	1.9e-05	2.5e-05	0.0e+00	0.0e+00
(a) Methane (CH4)	g	6.8e-01	4.0e-01	2.1e-02	0.0e+00	0.0e+00
(a) Nitrogen Oxides (NOx as NO2)	g	2.6e-01	9.7e-01	1.4e-01	0.0e+00	0.0e+00
(a) Nitrous Oxide (N2O)	g	2.7e-02	9.4e-03	1.1e-02	0.0e+00	0.0e+00
(a) Organic Matter (unspecified)	g	2.4e-04	2.8e-04	8.8e-06	0.0e+00	0.0e+00
(a) Particulates (unspecified)	g	2.4e-01	6.0e-01	1.5e-01	0.0e+00	0.0e+00
(a) Phenolics	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Sulfur Oxides (SOx as SO2)	g	1.3e+00	3.3e+00	9.1e-02	0.0e+00	0.0e+00
(a) Volatile Organic Compounds (VOCs)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Acids (H+)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Ammonia (NH4+, NH3, as N)	g	5.2e-04	1.4e-01	1.8e-03	0.0e+00	0.0e+00
(w) AOX (Adsordable Organic Halogene)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Benzene	g	4.0e-14	4.7e-14	1.4e-15	0.0e+00	0.0e+00
(w) BOD5 (Biochemical Oxygen Demand)	g	3.4e-03	9.3e-01	1.2e-02	0.0e+00	0.0e+00
(w) Calcium (Ca++)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Chlorides (Cl-)	g	1.3e+01	7.9e-02	2.7e-01	0.0e+00	0.0e+00
(w) COD (Chemical Oxygen Demand)	g	2.9e-02	7.9e+00	1.1e-01	0.0e+00	0.0e+00
(w) Cyanides (CN-)	g	1.4e-18	1.6e-18	4.9e-20	0.0e+00	0.0e+00
(w) Dissolved Matter (unspecified)	g	2.4e-01	2.5e-01	8.4e-01		
(w) Fluorides (F-)	g	5.8e-05	6.8e-05		0.0e+00	
(w) Hydrocarbons (unspecified)	g	8.2e-04	5.1e-06		0.0e+00	
(w) Metals (unspecified)	g	1.7e-02	1.2e-02	5.1e-04	0.0e+00	
(w) Nitrates (NO3-)	g	1.4e-05	1.6e-05		0.0e+00	
(w) Nitrogenous Matter (unspecified, as N)		0.0e+00	0.0e+00		0.0e+00	0.0e+00

		Virgin Oil- LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(w) Oils (unspecified)	g	6.7e-02	3.6e-01	6.2e-03	0.0e+00	0.0e+00
(w) Phenols	g	6.5e-05	1.8e-02	2.4e-04	0.0e+00	0.0e+00
(w) Phosphates (PO4 3-, HPO4, H2PO4-, H3PO4, as P)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Sodium (Na+)	g	1.6e+01	1.0e-01	3.4e-01	0.0e+00	0.0e+00
(w) Sulfates (SO4)	g	1.2e-05	1.4e-05	4.4e-07	0.0e+00	0.0e+00
(w) Suspended Matter (unspecified)	g	1.5e-02	4.2e+00	5.7e-02	0.0e+00	0.0e+00
1 quart (Bio-Oil)	quart	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
1 quart (Re-refine Oil)	quart	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
1 quart (Virgin Oil)	quart	0.0e+00	0.0e+00	0.0e+00	1.0e+00	0.0e+00
Bio-oil	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Component 2	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Component 3	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Lubricants (kg)	kg	0.0e+00	8.2e-01	8.2e-01	0.0e+00	0.0e+00
Waste (50 years - prorated)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.2e-01
Waste (End-of-Life)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.2e-01
Waste (first replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (installation)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (Mfg.)	kg	5.9e-03	1.5e-02	3.2e-04	0.0e+00	0.0e+00
Waste (non-recyclable, 50-year)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.2e-01
Waste (second replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
E Feedstock Energy	MJ	3.8e+01	-3.1e+00	0.0e+00	0.0e+00	0.0e+00
E Fuel Energy	MJ	2.6e+00	6.7e+00	8.9e-01	0.0e+00	0.0e+00
E Non Renewable Energy	MJ	4.0e+01	3.6e+00	8.8e-01	0.0e+00	0.0e+00
E Renewable Energy	MJ	2.5e-02	2.9e-02	8.8e-04	0.0e+00	0.0e+00
E Total Primary Energy	MJ	4.0e+01	3.6e+00	8.9e-01	0.0e+00	0.0e+00

		Rerefined Oil - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(r) Baryte (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bauxite (Al2O3.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bentonite (Al2O3.4SiO2.H2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Borax (Na2O.2B2O3.10H2O)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Clay (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Coal (in ground)	kg	1.2e-04	6.9e-03	5.8e-04	0.0e+00	0.0e+00
(r) Copper (Cu, Ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Diabase Rock	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Dolomite (CaCO3.MgCO3, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Feldspar (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Granite (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gravel (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gypsum (CaSO4: in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Ilmenite Ore (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Iron (Fe, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Jute	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Kaolin (Al2O3.2SiO2.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Limestone (CaCO3, in ground)	kg	2.3e-05	1.3e-03	1.1e-04	0.0e+00	0.0e+00
(r) Natural Gas (in ground)	kg	3.4e-04	1.3e-02	1.6e-03	0.0e+00	0.0e+00
(r) Oil (in ground)	kg	3.9e-03	2.0e-03	1.9e-02	0.0e+00	0.0e+00
(r) Perlite (SiO2, ore)	kg	8.9e-07	2.0e-04	4.2e-06	0.0e+00	0.0e+00
(r) Phosphate Rock (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pine Rosin	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potash (K2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potassium (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pyrite (FeS2, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sand (iound)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sodium Chloride (NaCl, in ground or in sea)		0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Uranium (U, ore)	kg	2.9e-09	1.6e-07	1.4e-08	0.0e+00	0.0e+00
(r) Wastepaper	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Wood (standing)	m3	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Cullet (from stock)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Fly Ash	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Iron Ore Slag	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Recovered Solids (iron scraps)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00

Table 8: Life Cycle Inventory, Rerefined Oil

			Rerefined	Oil - LC Stag	je	
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
Used Oil	kg	8.6e-01	8.6e-01	0.0e+00	0.0e+00	0.0e+00
Water Used (total)	liter	5.5e-04	4.6e-04	2.6e-03	0.0e+00	0.0e+00
(a) Aldehydes	g	4.0e-07	2.1e-05	1.9e-06	0.0e+00	0.0e+00
(a) Ammonia (NH3)	g	1.7e-08	3.0e-08	7.9e-08	0.0e+00	0.0e+00
(a) Benzene	g	8.8e-07	4.0e-07	4.2e-06	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, biomass)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, fossil)	g	1.3e+01	2.5e+02	6.2e+01	0.0e+00	0.0e+00
(a) Carbon Monoxide (CO)	g	1.1e-02	1.9e-01	5.4e-02	0.0e+00	0.0e+00
(a) Fluorides (F-)	g	8.5e-15	4.0e-13	4.0e-14	0.0e+00	0.0e+00
(a) Formaldehyde	g	1.2e-05	5.4e-06	5.6e-05	0.0e+00	0.0e+00
(a) Hydrocarbons (except methane)	g	6.6e-03	1.3e-03	3.1e-02	0.0e+00	0.0e+00
(a) Hydrocarbons (unspecified)	g	5.2e-03	8.6e-01	2.4e-02	0.0e+00	0.0e+00
(a) Hydrogen Chloride (HCl)	g	6.6e-05	3.7e-03	3.1e-04	0.0e+00	0.0e+00
(a) Hydrogen Fluoride (HF)	g	8.2e-06	4.6e-04	3.9e-05	0.0e+00	0.0e+00
(a) Hydrogen Sulfide (H2S)	g	2.9e-05	1.8e-05	1.4e-04	0.0e+00	0.0e+00
(a) Lead (Pb)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Metals (unspecified)	g	5.4e-07	6.9e-05	2.5e-05	0.0e+00	0.0e+00
(a) Methane (CH4)	g	4.5e-03	1.2e-01	2.1e-02	0.0e+00	0.0e+00
(a) Nitrogen Oxides (NOx as NO2)	g	3.1e-02	5.2e-01	1.4e-01	0.0e+00	0.0e+00
(a) Nitrous Oxide (N2O)	g	2.4e-03	5.4e-03	1.1e-02	0.0e+00	0.0e+00
(a) Organic Matter (unspecified)	g	1.9e-06	1.0e-04	8.8e-06	0.0e+00	0.0e+00
(a) Particulates (unspecified)	g	3.2e-02	3.1e-01	1.5e-01	0.0e+00	0.0e+00
(a) Phenolics	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Sulfur Oxides (SOx as SO2)	g	1.9e-02	1.5e+00	9.1e-02	0.0e+00	0.0e+00
(a) Volatile Organic Compounds (VOCs)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Acids (H+)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Ammonia (NH4+, NH3, as N)	g	3.8e-04	8.7e-02	1.8e-03	0.0e+00	0.0e+00
(w) AOX (Adsordable Organic Halogene)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Benzene	g	3.0e-16	1.7e-14	1.4e-15	0.0e+00	0.0e+00
(w) BOD5 (Biochemical Oxygen Demand)	g	2.6e-03	5.9e-01	1.2e-02	0.0e+00	0.0e+00
(w) Calcium (Ca++)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Chlorides (Cl-)	g	5.6e-02	2.9e-02	2.7e-01	0.0e+00	0.0e+00
(w) COD (Chemical Oxygen Demand)	g	2.2e-02	5.0e+00	1.1e-01	0.0e+00	0.0e+00
(w) Cyanides (CN-)	g	1.0e-20	5.8e-19	4.9e-20	0.0e+00	0.0e+00
(w) Dissolved Matter (unspecified)	g	1.8e-01	9.2e-02	8.4e-01	0.0e+00	0.0e+00
(w) Fluorides (F-)	g	4.4e-07	2.5e-05	2.1e-06	0.0e+00	0.0e+00
(w) Hydrocarbons (unspecified)	g	3.6e-06	1.9e-06	1.7e-05	0.0e+00	0.0e+00
(w) Metals (unspecified)	g	1.1e-04	7.3e-03	5.1e-04	0.0e+00	0.0e+00
(w) Nitrates (NO3-)	g	1.0e-07	5.8e-06	4.9e-07	0.0e+00	0.0e+00

		Rerefined Oil - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(w) Nitrogenous Matter (unspecified, as N)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Oils (unspecified)	g	1.3e-03	2.3e-01	6.2e-03	0.0e+00	0.0e+00
(w) Phenols	g	5.1e-05	1.1e-02	2.4e-04	0.0e+00	0.0e+00
(w) Phosphates (PO4 3-, HPO4, H2PO4-, H3PO4, as P)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Sodium (Na+)	g	7.2e-02	3.7e-02	3.4e-01	0.0e+00	0.0e+00
(w) Sulfates (SO4)	g	9.3e-08	5.2e-06	4.4e-07	0.0e+00	0.0e+00
(w) Suspended Matter (unspecified)	g	1.2e-02	2.7e+00	5.7e-02	0.0e+00	0.0e+00
1 quart (Bio-Oil)	quart	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
1 quart (Re-refine Oil)	quart	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
1 quart (Virgin Oil)	quart	0.0e+00	0.0e+00	0.0e+00	1.0e+00	0.0e+00
Bio-oil	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Component 2	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Component 3	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Lubricants (kg)	kg	0.0e+00	8.2e-01	8.2e-01	0.0e+00	0.0e+00
Waste (50 years - prorated)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.2e-01
Waste (End-of-Life)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.2e-01
Waste (first replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (installation)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (Mfg.)	kg	6.7e-05	7.6e-03	3.2e-04	0.0e+00	0.0e+00
Waste (non-recyclable, 50-year)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.2e-01
Waste (second replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
E Feedstock Energy	MJ	0.0e+00	-5.0e-02	0.0e+00	0.0e+00	0.0e+00
E Fuel Energy	MJ	1.9e-01	1.1e+00	8.9e-01	0.0e+00	0.0e+00
E Non Renewable Energy	MJ	1.9e-01	1.0e+00	8.8e-01	0.0e+00	0.0e+00
E Renewable Energy	MJ	1.9e-04	1.0e-02	8.8e-04	0.0e+00	0.0e+00
E Total Primary Energy	MJ	1.9e-01	1.0e+00	8.9e-01	0.0e+00	0.0e+00

			Bio-Based	Oil - LC Stag	ge	
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(r) Baryte (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bauxite (Al2O3.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bentonite (Al2O3.4SiO2.H2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Borax (Na2O.2B2O3.10H2O)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Clay (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Coal (in ground)	kg	5.3e-03	1.6e-02	6.0e-04	0.0e+00	0.0e+00
(r) Copper (Cu, Ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Diabase Rock	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Dolomite (CaCO3.MgCO3, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Feldspar (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Granite (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gravel (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gypsum (CaSO4: in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Ilmenite Ore (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Iron (Fe, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Jute	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Kaolin (Al2O3.2SiO2.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Limestone (CaCO3, in ground)	kg	9.2e-04	3.0e-03	1.1e-04	0.0e+00	0.0e+00
(r) Natural Gas (in ground)	kg	9.3e-03	4.3e-02	1.7e-03	0.0e+00	0.0e+00
(r) Oil (in ground)	kg	2.4e-02	2.6e-03	1.9e-02	0.0e+00	0.0e+00
(r) Perlite (SiO2, ore)	kg	4.5e-06	0.0e+00	4.4e-06	0.0e+00	0.0e+00
(r) Phosphate Rock (in ground)	kg	5.5e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pine Rosin	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potash (K2O, in ground)	kg	3.2e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potassium (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pyrite (FeS2, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sand (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sodium Chloride (NaCl, in ground or in sea)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Uranium (U, ore)	kg	3.0e-07	3.8e-07	1.4e-08	0.0e+00	0.0e+00
(r) Wastepaper	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Wood (standing)	m3	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Cullet (from stock)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Fly Ash	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Iron Ore Slag	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Recovered Solids (iron scraps)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Used Oil	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00

Table 9: Life Cycle Inventory, Bio-Based Oil

			Bio-Based	Oil - LC Stag	ge	
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
Water Used (total)	liter	5.9e+02	3.5e-03	2.7e-03	0.0e+00	0.0e+00
(a) Aldehydes	g	1.7e-04	1.2e-04	2.0e-06	0.0e+00	0.0e+00
(a) Ammonia (NH3)	g	1.6e-01	4.0e-05	8.3e-08	0.0e+00	0.0e+00
(a) Benzene	g	4.4e-06	0.0e+00	4.4e-06	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, biomass)	g	-1.4e+03	-1.1e+03	0.0e+00	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, fossil)	g	1.0e+02	1.7e+02	6.5e+01	0.0e+00	0.0e+00
(a) Carbon Monoxide (CO)	g	4.7e-01	5.2e-02	5.7e-02	0.0e+00	0.0e+00
(a) Fluorides (F-)	g	4.6e-03	1.4e-12	4.2e-14	0.0e+00	0.0e+00
(a) Formaldehyde	g	6.0e-05	2.6e-12	5.8e-05	0.0e+00	0.0e+00
(a) Hydrocarbons (except methane)	g	1.8e-01	1.6e+00	3.3e-02	0.0e+00	0.0e+00
(a) Hydrocarbons (unspecified)	g	4.5e-01	1.3e-03	2.6e-02	0.0e+00	0.0e+00
(a) Hydrogen Chloride (HCl)	g	1.4e-03	8.6e-03	3.2e-04	0.0e+00	0.0e+00
(a) Hydrogen Fluoride (HF)	g	4.1e-05	1.1e-03	4.1e-05	0.0e+00	0.0e+00
(a) Hydrogen Sulfide (H2S)	g	1.4e-04	1.0e-05	1.4e-04	0.0e+00	0.0e+00
(a) Lead (Pb)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Metals (unspecified)	g	2.8e-07	2.5e-08	2.7e-07	0.0e+00	0.0e+00
(a) Methane (CH4)	g	1.2e-01	3.2e-01	2.2e-02	0.0e+00	0.0e+00
(a) Nitrogen Oxides (NOx as NO2)	g	6.7e-01	3.2e-01	1.5e-01	0.0e+00	0.0e+00
(a) Nitrous Oxide (N2O)	g	4.7e-03	1.6e-03	1.2e-02	0.0e+00	0.0e+00
(a) Organic Matter (unspecified)	g	1.1e-02	2.4e-04	9.2e-06	0.0e+00	0.0e+00
(a) Particulates (unspecified)	g	3.6e-01	2.3e-01	1.6e-01	0.0e+00	0.0e+00
(a) Phenolics	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Sulfur Oxides (SOx as SO2)	g	3.2e-01	1.2e+00	9.5e-02	0.0e+00	0.0e+00
(a) Volatile Organic Compounds (VOCs)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Acids (H+)	g	1.4e-04	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Ammonia (NH4+, NH3, as N)	g	2.1e-03	5.1e-05	1.9e-03	0.0e+00	0.0e+00
(w) AOX (Adsordable Organic Halogene)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Benzene	g	1.5e-15	4.0e-14	1.5e-15	0.0e+00	0.0e+00
(w) BOD5 (Biochemical Oxygen Demand)	g	1.7e-02	2.2e-04	1.3e-02	0.0e+00	0.0e+00
(w) Calcium (Ca++)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Chlorides (Cl-)	g	2.9e-01	7.7e-03	2.8e-01	0.0e+00	0.0e+00
(w) COD (Chemical Oxygen Demand)	g	1.2e-01	1.8e-03	1.1e-01	0.0e+00	0.0e+00
(w) Cyanides (CN-)	g	5.2e-20	1.4e-18	5.1e-20	0.0e+00	0.0e+00
(w) Dissolved Matter (unspecified)	g	9.6e-01	4.8e-02	8.8e-01	0.0e+00	0.0e+00
(w) Fluorides (F-)	g	4.7e-05	5.7e-05	2.2e-06	0.0e+00	0.0e+00
(w) Hydrocarbons (unspecified)	g	4.1e-02	7.8e-01	1.8e-05	0.0e+00	0.0e+00
(w) Metals (unspecified)	g	5.5e-04	1.3e-05	5.4e-04	0.0e+00	0.0e+00
(w) Nitrates (NO3-)	g	1.1e-05	1.4e-05	5.1e-07	0.0e+00	0.0e+00
(w) Nitrogenous Matter (unspecified, as	g	6.2e+01	0.0e+00	0.0e+00	0.0e+00	0.0e+00

		Bio-Based Oil - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
N)						
(w) Oils (unspecified)	g	7.3e-03	4.2e-04	6.4e-03	0.0e+00	0.0e+00
(w) Phenols	g	2.5e-04	3.9e-06	2.5e-04	0.0e+00	0.0e+00
(w) Phosphates (PO4 3-, HPO4, H2PO4-, H3PO4, as P)	g	9.7e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Sodium (Na+)	g	3.7e-01	1.0e-02	3.6e-01	0.0e+00	0.0e+00
(w) Sulfates (SO4)	g	1.0e-05	1.2e-05	4.6e-07	0.0e+00	0.0e+00
(w) Suspended Matter (unspecified)	g	1.6e+03	9.4e-04	5.9e-02	0.0e+00	0.0e+00
1 quart (Bio-Oil)	quart	0.0e+00	0.0e+00	0.0e+00	1.0e+00	0.0e+00
1 quart (Re-refine Oil)	quart	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
1 quart (Virgin Oil)	quart	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Bio-oil	kg	0.0e+00	0.0e+00	8.6e-01	0.0e+00	0.0e+00
Component 2	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Component 3	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Lubricants (kg)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (50 years - prorated)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.6e-01
Waste (End-of-Life)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.6e-01
Waste (first replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (installation)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (Mfg.)	kg	2.2e-03	1.3e-02	3.3e-04	0.0e+00	0.0e+00
Waste (non-recyclable, 50-year)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	8.6e-01
Waste (second replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
E Feedstock Energy	MJ	2.1e-01	3.5e-02	0.0e+00	0.0e+00	0.0e+00
E Fuel Energy	MJ	1.6e+00	2.9e+00	9.2e-01	0.0e+00	0.0e+00
E Non Renewable Energy	MJ	1.8e+00	2.9e+00	9.2e-01	0.0e+00	0.0e+00
E Renewable Energy	MJ	1.4e-02	2.4e-02	9.2e-04	0.0e+00	0.0e+00
E Total Primary Energy	MJ	1.8e+00	3.0e+00	9.2e-01	0.0e+00	0.0e+00

Appendix B: Wall Insulation Case Study

Goal and Scope Definition

Goal

The goal of this pilot study was to determine the feasibility of evaluating the environmental performance of four different types of wall insulation by using the FRED LCA system. The four types of wall insulation evaluated were R-13 blown cellulose insulation, R-11 fiberglass batt insulation, R-15 fiberglass batt insulation and R-12 blown mineral wool insulation. Life cycle inventory data for this analysis was taken from NIST's Building for Environmental and Economic sustainability program.

Intended Applications and Audiences

The LCA itself was intended to be used to support a comparative assertion of environmental superiority of a product over a competing product in the context of the Federal requirement for environmentally preferable purchasing. Audiences include purchasing agents as well as other federal and state officials. An ancillary use of the study is to support efforts towards environmental improvement.

Scope

Description of the Product

The products evaluated represented several types of wall insulation with varying levels of thermal resistance. Blown cellulose insulation is produced primarily from post-consumer wood pulp and is treated with fire retardant. Fiberglass batt insulation is made by forming spun-glass fibers into batts. Blown mineral wool insulation is made from forming fibers from either natural rock or iron ore blast furnace slag.

System Function and Functional Unit

The system function for the alternative products is to provide a constant thermal performance (for both heating and cooling) for a house of 9600 cubic feet with an environment of 70 degrees F, given a typical wood frame-residential construction, when the outside annual temperature is 55 degrees F, with average winter temperature of 32 degrees F and average summer temperature of 85 degrees F. The functional unit is quantity of each insulation product required to maintain the desired thermal performance over a 50-year period.

System Boundaries

The system studied included all unit processes for the manufacture of the insulation products as well as the heating/cooling energy requirements associated with their use.

Data Gathering

The entire data gathering exercise for this project involved extracting data from the BEES database. According to NIST, the BEES database includes both primary data as well as industry average data.

Allocation

According to the contractor for BEES, all allocation of emissions and resource use was performed based on a mass basis.

Impact Assessment

Impact assessment was performed based on the FRED LCA system indicators, as described in the body of this work. The assignment of inventory data to impact categories is shown in the table below.

Inventory Result	Impact Category	Justification
Fossil Fuels and Uranium	Resource Depletion	Although Uranium is not truly a fossil fuel, it is "used up" in a precisely comparable fashion
CO_2 , N ₂ 0, Methane	Global Warming	These are important greenhouse gases which do not participate to a great extent in other impact categories
СО	Human Toxicity Photochemical Smog Global Warming;	CO is a human and animal toxicant, as well as a precursor to ozone formation and a greenhouse gas. It can participate in the first two of these environmental mechanisms without losing its potency for the others.
CFC's, HCFC's, Halons	Global Warming 100% Stratospheric Ozone Depletion 100%	These substances participate fully in both of these parallel environmental mechanisms
SO ₂ ,	Acidification 100%	Although SO2 contributes to visibility deterioration, and human health effects through the formation of Particulate Matter, these environmental mechanisms are not addressed by FRED.
HCl, HF	Acidification 100% Human Health 100%	These acid gases have minor human health effects as well as

Table 1: Assignment of Inventory Results to Impact Categories

Inventory Result	Impact Category	Justification
		contributing to acidification. It was thought that double counting would not significantly skew results.
Toxic Air and Water Emissions	Human Toxicity 100% Ecotoxicity 100%	Since it was not possible to evaluate the partitioning of these substances, they were double counted so as not to underestimate their impacts.
NOx	Acidification 100% Eutrophication 100%	Since FRED does not currently evaluate the fate and transport of NOx, this emission was double counted.
VOC's, ROG's	Photochemical Smog	These are the essential precursors to photochemically produced ozone. Although some of them are also toxic, unspeciated data does not permit a toxic evaluation.
NH ₄	Eutrophication (water emissions); acidification (air Emissions)	Although NH4 is not an acid gas, it undergoes changes in the soil leading to acidification effects.
PO ₄	Eutrophication 100%	Phosphate does not participate in any other environmental mechanism described by the FRED methodology

Inventory

The table below shows the summary inventory for the four products compared. A full inventory by life cycle stage can be found in Tables 8, 9, 10 and 11.

		LCI Totals			
Article	Units	Blown Cellulose	R-11 Fiberglass	R-15 Fiberglass	Mineral Wool
(r) Bauxite (Al2O3.2H2O, ore)	kg	2.4e-05	1.0e-06	3.4e-06	3.0e-06
(r) Borax (Na2O.2B2O3.10H2O)	kg	5.1e-02	3.5e-03	1.1e-02	0.0e+00

 Table 2: Summary Inventory

		LCI Totals			
Article	Units	Blown Cellulose	R-11 Fiberglass	R-15 Fiberglass	Mineral Wool
(r) Clay (in ground)	kg	2.2e-06	7.8e-08	2.6e-07	2.2e-07
(r) Coal (in ground)	kg	9.3e-02	2.2e-02	6.0e-02	8.9e-02
(r) Diabase Rock	kg	0.0e+00	0.0e+00	0.0e+00	6.7e-02
(r) Iron (Fe, ore)	kg	2.7e-05	7.7e-07	2.5e-06	2.1e-06
(r) Limestone (CaCO3, in ground)	kg	1.7e-02	1.7e-02	5.5e-02	1.3e-03
(r) Natural Gas (in ground)	kg	2.5e-01	4.2e-02	1.1e-01	1.5e-01
(r) Oil (in ground)	kg	1.5e-01	1.8e-01	1.9e-01	1.8e-02
(r) Perlite (SiO2, ore)	kg	1.6e-05	1.7e-05	1.7e-05	1.6e-06
Cullet (from stock)	kg	0.0e+00	3.7e-03	1.2e-02	0.0e+00
Iron Ore Slag	kg	0.0e+00	0.0e+00	0.0e+00	2.7e-01
Water Used (total)	liter	1.2e+00	2.5e-01	4.7e-01	3.0e-01
(a) Aldehydes	g	2.7e-04	1.2e-04	2.5e-04	8.8e-04
(a) Ammonia (NH3)	g	6.4e-06	2.1e-05	2.2e-05	2.0e-05
(a) Benzene	g	1.6e-05	4.0e-05	4.0e-05	1.6e-06
(a) Carbon Dioxide (CO2, fossil)	g	9.4e+02	1.8e+02	4.7e+02	1.2e+02
(a) Fluorides (F-)	g	6.5e-08	5.0e-09	1.6e-08	6.5e-03
(a) Formaldehyde	g	2.1e-04	9.0e-02	3.0e-01	8.0e-03
(a) Hydrocarbons (except methane)	÷	2.5e-01	9.1e-02	1.8e-01	1.9e+00
(a) Hydrocarbons (unspecified)	g	1.1e+00	1.8e-01	2.9e-01	1.6e-01
(a) Hydrogen Chloride (HCI)	g	5.2e-02	1.1e-02	3.1e-02	4.0e-03
(a) Hydrogen Fluoride (HF)	g	5.8e-03	1.4e-03	3.9e-03	5.2e-04
(a) Hydrogen Sulfide (H2S)	g	1.1e-03	1.4e-03	1.5e-03	9.7e-05
(a) Methane (CH4)	g	1.6e+00	4.2e-01	1.0e+00	7.4e-01
(a) Nitrogen Oxides (NOx as NO2)		2.9e+00	5.4e-01	1.4e+00	3.9e-01
(a) Nitrous Oxide (N2O)	g	5.1e-02	9.2e-03	1.3e-02	4.0e-02
(a) Organic Matter (unspecified)	g	1.3e-03	3.9e-04	9.7e-04	1.8e-03
(a) Particulates (unspecified)	g	1.9e+00	2.4e+00	7.8e+00	1.4e+00
(a) Phenolics	g	0.0e+00	5.0e-01	1.6e+00	0.0e+00
(a) Sulfur Oxides (SOx as SO2)	g	5.5e+00	1.7e+00	4.5e+00	3.7e+00
(w) Acids (H+)	g	1.3e-02	2.3e-04	7.5e-04	6.6e-04
(w) Ammonia (NH4+, NH3, as N)		9.7e-03	7.2e-03	7.6e-03	7.8e-04
(w) AOX (Adsordable Organic Halogene)		0.0e+00	1.1e-05	1.1e-05	0.0e+00
(w) Benzene	g	2.2e-13	5.2e-14	1.4e-13	1.7e-14
(w) BOD5 (Biochemical Oxygen Demand)	g	1.1e-01	1.0e-01	2.1e-01	1.0e-01
(w) Chlorides (CI-)	g	1.7e+00	2.5e+00	2.6e+00	1.1e-01
(w) COD (Chemical Oxygen Demand)		6.2e-01	5.2e-01	7.3e-01	2.1e-01
(w) Cyanides (CN-)	g	7.3e-18	1.8e-18	4.9e-18	5.7e-19
(w) Dissolved Matter (unspecified)		3.4e+00	8.0e+00	8.2e+00	3.5e-01

		LCI Totals				
Article	Units	Blown Cellulose	R-11 Fiberglass	R-15 Fiberglass	Mineral Wool	
(w) Fluorides (F-)	g	3.2e-04	7.6e-05	2.1e-04	2.6e-05	
(w) Hydrocarbons (unspecified)	g	9.0e-03	4.9e-04	1.2e-03	9.5e-04	
(w) Metals (unspecified)	g	4.3e-02	5.3e-03	8.1e-03	3.5e-03	
(w) Nitrates (NO3-)	g	6.4e-02	2.6e-05	7.6e-05	3.7e-05	
(w) Nitrogenous Matter (unspecified, as N)	g	1.1e-03	3.9e-05	1.3e-04	1.1e-04	
(w) Oils (unspecified)	g	9.3e-02	3.3e-02	3.5e-02	3.8e-03	
(w) Phenols	g	9.4e-04	9.5e-04	9.9e-04	1.0e-04	
(w) Phosphates (PO4 3-, HPO4, H2PO4-, H3PO4, as P)	g	0.0e+00	4.9e-06	1.6e-05	2.4e-05	
(w) Sodium (Na+)	g	1.5e+00	3.3e+00	3.3e+00	1.4e-01	
(w) Sulfates (SO4)	g	8.9e-02	6.8e-04	2.0e-03	1.2e-03	
(w) Suspended Matter (unspecified)	g	2.6e-01	2.9e-01	4.4e-01	1.5e-01	
Waste (50 years - prorated)	kg	1.3e+00	2.3e-01	3.8e-01	3.3e-01	
Waste (End-of-Life)	kg	1.3e+00	2.3e-01	3.8e-01	3.3e-01	
Waste (installation)	kg	4.0e-01	1.2e-02	2.0e-02	2.2e-02	
Waste (Mfg.)	kg	3.5e-02	1.3e-02	3.8e-02	7.7e-02	
E Feedstock Energy	MJ	5.4e+00	7.4e+00	7.7e+00	7.6e-01	
E Fuel Energy	MJ	1.7e+01	3.4e+00	8.7e+00	1.0e+01	
E Non Renewable Energy	MJ	2.3e+01	1.1e+01	1.6e+01	1.1e+01	
E Renewable Energy	MJ	1.6e-01	1.9e-01	2.5e-01	2.1e-02	
E Total Primary Energy	MJ	2.3e+01	1.1e+01	1.6e+01	1.1e+01	
E Fuel Energy	MJ	1.0e+01	2.2e+00	5.4e+00		
E Non Renewable Energy	MJ	4.5e+01	2.1e+00	5.6e+00		
E Renewable Energy	MJ	5.4e-02	1.2e-02	3.9e-02		
Total Primary Energy	MJ	4.5e+01	2.1e+00	5.7e+00		

Indicator Results

The table below shows the indicator results for the four systems studied.

Table 3	: LCIA	Results	

		LCIA Results					
Indicator	Blown Cellulose	Fiberglass R-11	Fiberglass R-15	Mineral Wool			
GWP (kg CO ₂ equiv)	986	193	492	153			
ODP (kg CFC-11)	0	0	0	0			

	LCIA Results					
Indicator	Blown Cellulose	Fiberglass R-11	Fiberglass R-15	Mineral Wool		
Acidification (kg SO ₂)	8	2	5	4		
Eutrophication (kg PO ₄)	0.1452	0.1169	0.1621	0.0471		
Photochemical Smog (kg O ₃)	1.08	2.10	6.45	7.62		
Human Toxicity						
Cancer	1.66E-05	3.09E-04	9.27E-04	2.57E-05		
NonCancer	2.19E-03	6.52E-01	2.14E+00	5.64E-02		
Ecotoxicity	1.94E-02	1.49E-02	4.69E-02	2.84E-03		
Resource Depletion						
Fossil (tons oil equivalent)	1.40E+00	4.48E-01	7.99E-01	7.42E-01		
Mineral (equiv tons)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Precious(equiv tons)	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Other Indicators:						
Land Use (ha)	0	0	0	0		
Water Use (kg)	1.15E+00	2.53E-01	4.73E-01	3.00E-01		
Solid Waste (kg)	1.26E+00	2.25E-01	3.77E-01	3.26E-01		

Interpretation

This is an example of when it may be difficult to make a decision based on the FRED LCA model outputs. For instance, blown cellulose has a lower indicated impact in the Human Toxicity category, but the other products have lower indicator results for Water Use and Solid Waste. Mineral wool also has the lowest indicator result, by an order of magnitude, for Ecotoxicity.

It is also possible to evaluate the sources of the various impacts in order to identify opportunities for improvements. The table below shows the indicators in term of percentage for the different life cycle stages.

	Blown Cellulose - by LC Stage								
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal				
GWP	75	21	2	1	0				
ODP	0	0	0	0	0				
Acidification	76	21	1	2	0				
Eutrophicatio n	90	1	5	3	0				
Photochemic al Smog	93	1	4	3	0				
Human Health									
Cancer	86	0	8	6	0				
NonCancer	87	0	8	5	0				
Eco Health	N/A	N/A	N/A	N/A	N/A				
Resource Depletion									
Fossil	96	3	1	0	0				
Mineral	0	0	0	0	0				
Precious	0	0	0	0	0				
Other Indicators:									
Land Use	0	0	0	0	0				
Water Use (kg)	100	0	0	0	0				
Solid Waste (kg)	0	0	0	0	100				

 Table 4: Percentage of Indicator by Life Cycle Stage, Blown Cellulose

	R-11 Fiberglass - by LC Stage						
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal		
GWP	6	93	1	0	0		
ODP	0	0	0	0	0		
Acidification	4	96	0	0	0		
Eutrophication	16	84	1	0	0		
Photochemical Smog	9	91	0	0	0		
Human Health							
Cancer	4	96	0	0	0		
Non-Cancer	4	96	0	0	0		
Eco Health	N/A	N/A	N/A	N/A	N/A		
Resource Depletion							
Fossil	6	94	0	0	0		
Mineral	0	0	0	0	0		
Precious	0	0	0	0	0		
Other Indicators:							
Land Use	0	0	0	0	0		
Water Use (kg)	38	62	0	0	0		
Solid Waste (kg)	0	0	0	0	0		

Table 5: Percentage of Indicator by Life Cycle Stage, R-11 Fiberglass

	R-15 Fiberglass - by LC Stage							
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal			
GWP	8	91	1	0	0			
ODP	0	0	0	0	0			
Acidification	5	94	0	0	0			
Eutrophication	38	61	2	0	0			
Photochemical Smog	9	91	0	0	0			
Human Health								
Cancer	4	96	0	0	0			
Non-Cancer	4	96	0	0	0			
Eco Health	N/A	N/A	N/A	N/A	N/A			
Resource Depletion								
Fossil	12	88	0	0	0			
Mineral	0	0	0	0	0			
Precious	0	0	0	0	0			
Other Indicators:								
Land Use	0	0	0	0	0			
Water Use (kg)	66	33	0	0	0			
Solid Waste (kg)	0	0	0	0	0			

Table 6: Percentage of Indicator by Life Cycle Stage, R-15 Fiberglass

	Mineral Wool - by LC Stage							
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal			
GWP	34	56	7	2	0			
ODP	0	0	0	0	0			
Acidification	9	90	1	1	0			
Eutrophication	88	1	8	3	0			
Photochemical Smog	6	94	0	0	0			
Human Health								
Cancer	96	0	3	1	0			
Non-Cancer	100	0	0	0	0			
Eco Health	N/A	N/A	N/A	N/A	N/A			
Resource Depletion								
Fossil	11	88	1	0	0			
Mineral	0	0	0	0	0			
Precious	0	0	0	0	0			
Other Indicators:								
Land Use	0	0	0	0	0			
Water Use (kg)	100	0	0	0	0			
Solid Waste (kg)	0	0	0	0	0			

Table 7: Percentage of Indicator by Life Cycle Stage, Mineral Wool

For the most part, the majority of the four products indicator results can be found in the manufacturing and the transportation phases of the life cycle. This result supports the guidance of the FRED methodology, which recommends more intensive data gathering efforts in the manufacturing phase for products which are durable goods which are not energy intensive in the use phase.

Conclusions

Like the pilot project described in Appendix A, this pilot proved that existing LCA data sets can be used in the FRED LCA system. Concern that arose during this pilot project centered around lack of information regarding the LCA data sets. For example, more information regarding data sources, specificity, age, quality, etc., would have been useful in framing the applicability of the FRED LCA system results.

		Blown Cellulose - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(r) Baryte (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bauxite (Al2O3.2H2O, ore)	kg	2.4e-05	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bentonite (Al2O3.4SiO2.H2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Borax (Na2O.2B2O3.10H2O)	kg	5.1e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Clay (in ground)	kg	2.2e-06	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Coal (in ground)	kg	2.9e-02	6.3e-02	1.8e-04	1.2e-04	0.0e+00
(r) Copper (Cu, Ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Diabase Rock	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Dolomite (CaCO3.MgCO3, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Feldspar (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Granite (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gravel (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gypsum (CaSO4: in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Ilmenite Ore (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Iron (Fe, ore)	kg	2.7e-05	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Jute	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Kaolin (Al2O3.2SiO2.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Limestone (CaCO3, in ground)	kg	4.5e-03	1.2e-02	3.5e-05	2.3e-05	0.0e+00
(r) Natural Gas (in ground)	kg	2.4e-01	6.9e-03	5.0e-04	3.4e-04	0.0e+00
(r) Oil (in ground)	kg	1.3e-01	2.2e-03	5.9e-03	3.9e-03	0.0e+00
(r) Perlite (SiO2, ore)	kg	1.4e-05	0.0e+00	1.3e-06	9.0e-07	0.0e+00
(r) Phosphate Rock (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pine Rosin	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potash (K2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potassium (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pyrite (FeS2, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sand (in ground)	kg	4.6e-06	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sodium Chloride (NaCl, in ground or in sea)	kg	1.4e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Uranium (U, ore)	kg	5.4e-07	1.5e-06	4.4e-09	2.9e-09	0.0e+00
(r) Wastepaper	kg	1.1e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Wood (standing)	m3	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Cullet (from stock)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00

 Table 8: Life Cycle Inventory, Blown Cellulose

	Blown Cellulose - LC Stage					
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
Fly Ash	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Iron Ore Slag	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Recovered Solids (iron scraps)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Water Used (total)	liter	1.2e+00	1.9e-03	8.2e-04	5.5e-04	0.0e+00
Sq Foot of Insulation (Cellulose)	Sq Ft	0.0e+00	0.0e+00	0.0e+00	0.0e+00	1.0e+00
Cellulose Insulation	kg	0.0e+00	1.3e+00	1.3e+00	1.3e+00	0.0e+00
Component 2	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Component 3	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Aldehydes	g	7.6e-05	1.9e-04	6.1e-07	4.1e-07	0.0e+00
(a) Ammonia (NH3)	g	6.2e-06	2.3e-07	2.5e-08	1.7e-08	0.0e+00
(a) Benzene	g	1.4e-05	0.0e+00	1.3e-06	8.8e-07	0.0e+00
(a) Carbon Dioxide (CO2, biomass)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, fossil)	g	7.1e+02	2.0e+02	2.0e+01	1.4e+01	0.0e+00
(a) Carbon Monoxide (CO)	g	1.0e+00	4.3e-02	1.7e-02	5.6e-02	0.0e+00
(a) Fluorides (F-)	g	6.5e-08	0.0e+00	1.3e-14	8.6e-15	0.0e+00
(a) Formaldehyde	g	1.8e-04	1.0e-11	1.8e-05	1.2e-05	0.0e+00
(a) Hydrocarbons (except methane)	g	2.3e-01	1.6e-03	9.9e-03	6.8e-03	0.0e+00
(a) Hydrocarbons (unspecified)	g	1.1e+00	5.2e-03	7.7e-03	5.2e-03	0.0e+00
(a) Hydrogen Chloride (HCl)	g	1.7e-02	3.4e-02	9.8e-05	6.6e-05	0.0e+00
(a) Hydrogen Fluoride (HF)	g	1.5e-03	4.3e-03	1.2e-05	8.3e-06	0.0e+00
(a) Hydrogen Sulfide (H2S)	g	1.0e-03	4.1e-05	4.3e-05	2.9e-05	0.0e+00
(a) Lead (Pb)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Metals (unspecified)	g	8.4e+03	9.8e-04	8.0e+02	5.4e+02	0.0e+00
(a) Methane (CH4)	g	1.1e+00	4.7e-01	6.8e-03	4.9e-03	0.0e+00
(a) Nitrogen Oxides (NOx as NO2)	g	2.1e+00	6.1e-01	4.6e-02	2.1e-01	0.0e+00
(a) Nitrous Oxide (N2O)	g	4.3e-02	3.6e-03	3.6e-03	4.4e-04	0.0e+00
(a) Organic Matter (unspecified)	g	3.4e-04	9.4e-04	2.8e-06	1.9e-06	0.0e+00
(a) Particulates (unspecified)	g	9.6e-01	8.9e-01	4.7e-02	7.0e-03	0.0e+00
(a) Phenolics	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Sulfur Oxides (SOx as SO2)	g	4.3e+00	1.1e+00	2.9e-02	1.9e-02	0.0e+00
(a) Volatile Organic Compounds	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Acids (H+)	g	1.3e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Ammonia (NH4+, NH3, as N)	g	8.5e-03	2.0e-04	5.8e-04	3.9e-04	0.0e+00
(w) AOX (Adsordable Organic Halogene)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Benzene	g	5.6e-14	1.6e-13	4.6e-16	3.1e-16	0.0e+00
(w) BOD5 (Biochemical Oxygen	g	1.0e-01	8.2e-04	3.9e-03	2.6e-03	0.0e+00

			Blown Cellulose - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life	
Demand)							
(w) Calcium (Ca++)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(w) Chlorides (Cl-)	g	1.6e+00	3.1e-02	8.4e-02	5.7e-02	0.0e+00	
(w) COD (Chemical Oxygen Demand)	Ø	5.5e-01	6.9e-03	3.3e-02	2.2e-02	0.0e+00	
(w) Cyanides (CN-)	g	1.9e-18	5.4e-18	1.6e-20	1.0e-20	0.0e+00	
(w) Dissolved Matter (unspecified)	g	2.9e+00	9.7e-02	2.7e-01	1.8e-01	0.0e+00	
(w) Fluorides (F-)	g	9.3e-05	2.3e-04	6.6e-07	4.4e-07	0.0e+00	
(w) Hydrocarbons (unspecified)	g	9.0e-03	2.0e-06	5.4e-06	3.6e-06	0.0e+00	
(w) Metals (unspecified)	g	4.2e-02	5.2e-05	1.6e-04	1.1e-04	0.0e+00	
(w) Nitrates (NO3-)	g	6.4e-02	5.4e-05	1.6e-07	1.1e-07	0.0e+00	
(w) Nitrogenous Matter (unspecified, as N)	g	1.1e-03	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(w) Oils (unspecified)	g	9.0e-02	4.7e-04	2.0e-03	1.3e-03	0.0e+00	
(w) Phenols	g	8.0e-04	1.6e-05	7.6e-05	5.1e-05	0.0e+00	
(w) Phosphates (PO4 3-, HPO4, H2PO4-, H3PO4, as P)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(w) Sodium (Na+)	g	1.2e+00	4.0e-02	1.1e-01	7.3e-02	0.0e+00	
(w) Sulfates (SO4)	g	8.9e-02	4.8e-05	1.4e-07	9.3e-08	0.0e+00	
(w) Suspended Matter (unspecified)	g	2.3e-01	3.7e-03	1.8e-02	1.2e-02	0.0e+00	

		Blown Cellulose - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
Waste (50 years - prorated)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	1.3e+00
Waste (End-of-Life)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	1.3e+00
Waste (first replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (installation)	kg	0.0e+00	0.0e+00	0.0e+00	3.3e-01	6.6e-02
Waste (Mfg.)	kg	1.1e-02	2.3e-02	1.0e-04	6.8e-05	0.0e+00
Waste (non-recyclable, 50-year)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (second replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
E Feedstock Energy	MJ	5.4e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
E Fuel Energy	MJ	1.4e+01	3.1e+00	2.8e-01	1.9e-01	0.0e+00
E Non Renewable Energy	MJ	1.9e+01	3.0e+00	2.8e-01	1.9e-01	0.0e+00
E Renewable Energy	MJ	6.1e-02	9.7e-02	2.8e-04	1.9e-04	0.0e+00
E Total Primary Energy	MJ	1.9e+01	3.1e+00	2.8e-01	1.9e-01	0.0e+00
E Fuel Energy	MJ					
E Non Renewable Energy	MJ					
E Renewable Energy	MJ					

		R-11 Fiberglass - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(r) Baryte (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bauxite (Al2O3.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bentonite (Al2O3.4SiO2.H2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Borax (Na2O.2B2O3.10H2O)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Clay (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Coal (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Copper (Cu, Ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Diabase Rock	kg	7.5e-07	1.4e-08	0.0e+00	0.0e+00	0.0e+00
(r) Dolomite (CaCO3.MgCO3, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Feldspar (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Granite (in ground)	kg	1.3e-02	3.8e-03	3.6e-06	0.0e+00	0.0e+00
(r) Gravel (in ground)	kg	4.8e-03	3.7e-02	5.3e-05	0.0e+00	0.0e+00
(r) Gypsum (CaSO4: in ground)	kg	3.4e-03	1.8e-01	6.2e-04	0.0e+00	0.0e+00
(r) Ilmenite Ore (in ground)	kg	7.4e-08	1.6e-05	1.4e-07	0.0e+00	0.0e+00
(r) Iron (Fe, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Jute	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Kaolin (Al2O3.2SiO2.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Limestone (CaCO3, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Natural Gas (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Oil (in ground)	kg	3.7e-02	6.1e-09	0.0e+00	0.0e+00	0.0e+00
(r) Perlite (SiO2, ore)	kg	1.1e-04	1.8e-05	0.0e+00	0.0e+00	0.0e+00
(r) Phosphate Rock (in ground)	kg	3.3e-08	4.7e-07	4.6e-10	0.0e+00	0.0e+00
(r) Pine Rosin	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potash (K2O, in ground)	kg	0.0e+00	1.1e-05	0.0e+00	0.0e+00	0.0e+00
(r) Potassium (ore)	kg	3.7e-03	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pyrite (FeS2, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sand (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sodium Chloride (NaCl, in ground or in sea)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Uranium (U, ore)	kg	9.5e-02	1.6e-01	8.6e-05	0.0e+00	0.0e+00
(r) Wastepaper	kg	0.0e+00	0.0e+00	0.0e+00	1.0e+00	0.0e+00
(r) Wood (standing)	m3	0.0e+00	7.0e-02	6.9e-02	0.0e+00	0.0e+00
Cullet (from stock)	kg	0.0e+00	1.7e-01	0.0e+00	0.0e+00	0.0e+00
Fly Ash	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Iron Ore Slag	kg	1.2e-05	1.0e-04	6.4e-08	0.0e+00	0.0e+00
Recovered Solids (iron scraps)	kg	2.0e-07	2.1e-05	2.6e-09	0.0e+00	0.0e+00

Table 9: Life Cycle Inventory, R-11 Fiberglass

		R-11 Fiberglass - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
Water Used (total)	liter	7.3e-08	3.9e-05	1.4e-07	0.0e+00	0.0e+00
Sq Foot of Insulation (Cellulose)	Sq Ft	0.0e+00	3.5e+00	0.0e+00	0.0e+00	0.0e+00
Cellulose Insulation	kg	1.1e+01	1.7e+02	2.1e+00	0.0e+00	0.0e+00
Component 2	NA	5.1e-03	7.3e-02	1.8e-03	0.0e+00	0.0e+00
Component 3	NA	5.0e-09	1.1e-12	1.3e-15	0.0e+00	0.0e+00
(a) Aldehydes	g	3.9e-03	8.6e-02	1.9e-06	0.0e+00	0.0e+00
(a) Ammonia (NH3)	g	3.7e-02	5.3e-02	1.0e-03	0.0e+00	0.0e+00
(a) Benzene	g	4.6e-02	1.3e-01	8.1e-04	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, biomass)		7.2e-04	1.1e-02	1.0e-05	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, fossil)	g	7.7e-05	1.3e-03	1.3e-06	0.0e+00	0.0e+00
(a) Carbon Monoxide (CO)	g	2.3e-05	1.3e-03	4.5e-06	0.0e+00	0.0e+00
(a) Fluorides (F-)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Formaldehyde	g	4.4e+01	9.9e+03	8.4e+01	0.0e+00	0.0e+00
(a) Hydrocarbons (except methane)		2.6e-02	4.0e-01	7.1e-04	0.0e+00	0.0e+00
(a) Hydrocarbons (unspecified)	g	5.2e-02	4.8e-01	4.8e-03	0.0e+00	0.0e+00
(a) Hydrogen Chloride (HCl)	g	4.6e-04	8.4e-03	3.8e-04	0.0e+00	0.0e+00
(a) Hydrogen Fluoride (HF)	g	3.0e-05	3.6e-04	2.9e-07	0.0e+00	0.0e+00
(a) Hydrogen Sulfide (H2S)	g	1.0e+00	1.4e+00	5.0e-03	0.0e+00	0.0e+00
(a) Lead (Pb)	g	0.0e+00	5.0e-01	0.0e+00	0.0e+00	0.0e+00
(a) Metals (unspecified)	g	5.0e-02	1.7e+00	3.0e-03	0.0e+00	0.0e+00
(a) Methane (CH4)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Nitrogen Oxides (NOx as NO2)	g	2.2e-04	8.2e-06	0.0e+00	0.0e+00	0.0e+00
(a) Nitrous Oxide (N2O)	g	5.5e-05	7.1e-03	6.0e-05	0.0e+00	0.0e+00
(a) Organic Matter (unspecified)	g	0.0e+00	1.1e-05	0.0e+00	0.0e+00	0.0e+00
(a) Particulates (unspecified)	g	2.8e-15	4.9e-14	4.8e-17	0.0e+00	0.0e+00
(a) Phenolics	g	4.8e-02	5.1e-02	4.1e-04	0.0e+00	0.0e+00
(a) Sulfur Oxides (SOx as SO2)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Volatile Organic Compounds (VOCs)	g	9.6e-03	2.5e+00	8.8e-03	0.0e+00	0.0e+00
(w) Acids (H+)	g	8.4e-02	4.3e-01	3.5e-03	0.0e+00	0.0e+00
(w) Ammonia (NH4+, NH3, as N)	g	9.6e-20	1.7e-18	1.6e-21	0.0e+00	0.0e+00
(w) AOX (Adsordable Organic Halogene)	g	1.9e-02	8.0e+00	2.8e-02	0.0e+00	0.0e+00
(w) Benzene	g	5.0e-06	7.1e-05	6.9e-08	0.0e+00	0.0e+00
(w) BOD5 (Biochemical Oxygen Demand)		3.2e-04	1.6e-04	5.7e-07	0.0e+00	0.0e+00
(w) Calcium (Ca++)	g	1.2e-03	4.0e-03	1.7e-05	0.0e+00	0.0e+00
(w) Chlorides (Cl-)	g	9.0e-06	1.7e-05	1.6e-08	0.0e+00	0.0e+00
(w) COD (Chemical Oxygen Demand)	g	3.9e-05	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Cyanides (CN-)	g	5.7e-04	3.2e-02	2.0e-04	0.0e+00	0.0e+00

		R-11 Fiberglass - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(w) Dissolved Matter (unspecified)	g	6.5e-06	9.3e-04	7.9e-06	0.0e+00	0.0e+00
(w) Fluorides (F-)	g	4.9e-06	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Hydrocarbons (unspecified)	g	7.3e-03	3.3e+00	1.1e-02	0.0e+00	0.0e+00
(w) Metals (unspecified)	g	5.5e-04	1.3e-04	1.5e-08	0.0e+00	0.0e+00
(w) Nitrates (NO3-)	g	6.5e-02	2.2e-01	1.9e-03	0.0e+00	0.0e+00
(w) Nitrogenous Matter (unspecified, as N)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Oils (unspecified)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Phenols	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Phosphates (PO4 3-, HPO4, H2PO4-, H3PO4, as P)	g	0.0e+00	0.0e+00	0.0e+00	1.2e-02	0.0e+00
(w) Sodium (Na+)	g	5.2e-03	8.1e-03	1.1e-05	0.0e+00	0.0e+00
(w) Sulfates (SO4)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	2.3e-01
(w) Suspended Matter (unspecified)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (50 years - prorated)	kg	1.3e-01	7.3e+00	0.0e+00	0.0e+00	0.0e+00
Waste (End-of-Life)	kg	3.2e-01	3.1e+00	2.9e-02	0.0e+00	0.0e+00
Waste (first replacement)	kg	4.4e-01	1.0e+01	2.9e-02	0.0e+00	0.0e+00
Waste (installation)	kg	3.0e-03	1.9e-01	2.9e-05	0.0e+00	0.0e+00
Waste (Mfg.)	kg	4.5e-01	1.0e+01	2.9e-02	0.0e+00	0.0e+00
Waste (non-recyclable, 50-year)	kg					
Waste (second replacement)	kg					
E Feedstock Energy	MJ					
E Fuel Energy	MJ					
E Non Renewable Energy	MJ					
E Renewable Energy	MJ					
E Total Primary Energy	MJ					
E Fuel Energy	MJ					
E Non Renewable Energy	MJ					
E Renewable Energy	MJ					
E Total Primary Energy	MJ					

		R-15 Fiberglass - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(r) Baryte (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bauxite (Al2O3.2H2O, ore)	kg	3.4e-06	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Bentonite (Al2O3.4SiO2.H2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Borax (Na2O.2B2O3.10H2O)	kg	1.1e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Clay (in ground)	kg	2.6e-07	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Coal (in ground)	kg	5.5e-03	5.4e-02	6.3e-05	0.0e+00	0.0e+00
(r) Copper (Cu, Ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Diabase Rock	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Dolomite (CaCO3.MgCO3, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Feldspar (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Granite (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gravel (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Gypsum (CaSO4: in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Ilmenite Ore (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Iron (Fe, ore)	kg	2.5e-06	1.4e-08	0.0e+00	0.0e+00	0.0e+00
(r) Jute	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Kaolin (Al2O3.2SiO2.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Limestone (CaCO3, in ground)	kg	4.4e-02	1.0e-02	1.2e-05	0.0e+00	0.0e+00
(r) Natural Gas (in ground)	kg	1.6e-02	9.5e-02	1.7e-04	0.0e+00	0.0e+00
(r) Oil (in ground)	kg	1.1e-02	1.8e-01	2.0e-03	0.0e+00	0.0e+00
(r) Perlite (SiO2, ore)	kg	2.4e-07	1.6e-05	4.6e-07	0.0e+00	0.0e+00
(r) Phosphate Rock (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pine Rosin	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potash (K2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Potassium (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Pyrite (FeS2, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Sand (in ground)	kg	1.2e-01	6.1e-09	0.0e+00	0.0e+00	0.0e+00
(r) Sodium Chloride (NaCl, in ground or in sea)	kg	3.5e-04	1.8e-05	0.0e+00	0.0e+00	0.0e+00
(r) Uranium (U, ore)	kg	1.1e-07	1.3e-06	1.5e-09	0.0e+00	0.0e+00
(r) Wastepaper	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(r) Wood (standing)	m3	0.0e+00	1.1e-05	0.0e+00	0.0e+00	0.0e+00
Cullet (from stock)	kg	1.2e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Fly Ash	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Iron Ore Slag	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Recovered Solids (iron scraps)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00

 Table 10: Life Cycle Inventory, R-15 Fiberglass

		R-15 Fiberglass - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
Water Used (total)	liter	3.1e-01	1.6e-01	2.8e-04	0.0e+00	0.0e+00
Sq Foot of Insulation (Cellulose)	Sq Ft	0.0e+00	0.0e+00	0.0e+00	1.0e+00	0.0e+00
Cellulose Insulation	kg	0.0e+00	2.3e-01	2.3e-01	0.0e+00	0.0e+00
Component 2	NA	0.0e+00	1.7e-01	0.0e+00	0.0e+00	0.0e+00
Component 3	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Aldehydes	g	4.0e-05	2.1e-04	2.1e-07	0.0e+00	0.0e+00
(a) Ammonia (NH3)	g	6.7e-07	2.1e-05	8.7e-09	0.0e+00	0.0e+00
(a) Benzene	g	2.4e-07	3.9e-05	4.6e-07	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, biomass)	g	0.0e+00	3.5e+00	0.0e+00	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, fossil)	g	3.6e+01	4.2e+02	6.8e+00	0.0e+00	0.0e+00
(a) Carbon Monoxide (CO)	g	1.7e-02	1.2e-01	6.0e-03	0.0e+00	0.0e+00
(a) Fluorides (F-)	g	1.6e-08	2.9e-12	4.4e-15	0.0e+00	0.0e+00
(a) Formaldehyde	g	1.3e-02	2.8e-01	6.1e-06	0.0e+00	0.0e+00
(a) Hydrocarbons (except methane)		1.2e-01	5.4e-02	3.4e-03	0.0e+00	0.0e+00
(a) Hydrocarbons (unspecified)	g	1.5e-01	1.3e-01	2.7e-03	0.0e+00	0.0e+00
(a) Hydrogen Chloride (HCl)	g	2.4e-03	2.9e-02	3.4e-05	0.0e+00	0.0e+00
(a) Hydrogen Fluoride (HF)	g	2.5e-04	3.6e-03	4.3e-06	0.0e+00	0.0e+00
(a) Hydrogen Sulfide (H2S)	g	7.6e-05	1.4e-03	1.5e-05	0.0e+00	0.0e+00
(a) Lead (Pb)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Metals (unspecified)	g	1.5e+02	9.9e+03	2.8e+02	0.0e+00	0.0e+00
(a) Methane (CH4)	g	8.6e-02	9.1e-01	2.3e-03	0.0e+00	0.0e+00
(a) Nitrogen Oxides (NOx as NO2)	g	1.7e-01	1.2e+00	1.6e-02	0.0e+00	0.0e+00
(a) Nitrous Oxide (N2O)	g	1.5e-03	1.1e-02	1.2e-03	0.0e+00	0.0e+00
(a) Organic Matter (unspecified)	g	9.9e-05	8.7e-04	9.6e-07	0.0e+00	0.0e+00
(a) Particulates (unspecified)	g	3.3e+00	4.5e+00	1.6e-02	0.0e+00	0.0e+00
(a) Phenolics	g	0.0e+00	1.6e+00	0.0e+00	0.0e+00	0.0e+00
(a) Sulfur Oxides (SOx as SO2)	g	1.7e-01	4.3e+00	1.0e-02	0.0e+00	0.0e+00
(a) Volatile Organic Compounds (VOCs)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Acids (H+)	g	7.4e-04	8.2e-06	0.0e+00	0.0e+00	0.0e+00
(w) Ammonia (NH4+, NH3, as N)	g	1.8e-04	7.2e-03	2.0e-04	0.0e+00	0.0e+00
(w) AOX (Adsordable Organic Halogene)	g	0.0e+00	1.1e-05	0.0e+00	0.0e+00	0.0e+00
(w) Benzene	g	9.3e-15	1.3e-13	1.6e-16	0.0e+00	0.0e+00
(w) BOD5 (Biochemical Oxygen Demand)		1.6e-01	5.2e-02	1.4e-03	0.0e+00	0.0e+00
(w) Calcium (Ca++)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Chlorides (Cl-)	g	3.2e-02	2.5e+00	2.9e-02	0.0e+00	0.0e+00
(w) COD (Chemical Oxygen Demand)	g	2.8e-01	4.4e-01	1.2e-02	0.0e+00	0.0e+00
(w) Cyanides (CN-)	g	3.2e-19	4.6e-18	5.4e-21	0.0e+00	0.0e+00

		R-15 Fiberglass - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(w) Dissolved Matter (unspecified)	g	6.2e-02	8.0e+00	9.2e-02	0.0e+00	0.0e+00
(w) Fluorides (F-)	g	1.7e-05	1.9e-04	2.3e-07	0.0e+00	0.0e+00
(w) Hydrocarbons (unspecified)	g	1.1e-03	1.6e-04	1.9e-06	0.0e+00	0.0e+00
(w) Metals (unspecified)	g	4.0e-03	4.1e-03	5.6e-05	0.0e+00	0.0e+00
(w) Nitrates (NO3-)	g	3.0e-05	4.6e-05	5.4e-08	0.0e+00	0.0e+00
(w) Nitrogenous Matter (unspecified, as N)	g	1.3e-04	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Oils (unspecified)	g	1.9e-03	3.2e-02	6.8e-04	0.0e+00	0.0e+00
(w) Phenols	g	2.1e-05	9.4e-04	2.6e-05	0.0e+00	0.0e+00
(w) Phosphates (PO4 3-, HPO4, H2PO4-, H3PO4, as P)	g	1.6e-05	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Sodium (Na+)	g	2.4e-02	3.3e+00	3.8e-02	0.0e+00	0.0e+00
(w) Sulfates (SO4)	g	1.8e-03	1.6e-04	4.8e-08	0.0e+00	0.0e+00
(w) Suspended Matter (unspecified)	g	2.1e-01	2.2e-01	6.2e-03	0.0e+00	0.0e+00
Waste (50 years - prorated)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (End-of-Life)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (first replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (installation)	kg	0.0e+00	0.0e+00	0.0e+00	2.0e-02	0.0e+00
Waste (Mfg.)	kg	1.7e-02	2.1e-02	3.5e-05	0.0e+00	0.0e+00
Waste (non-recyclable, 50-year)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	3.8e-01
Waste (second replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
E Feedstock Energy	MJ	4.3e-01	7.3e+00	0.0e+00	0.0e+00	0.0e+00
E Fuel Energy	MJ	1.0e+00	7.6e+00	9.7e-02	0.0e+00	0.0e+00
E Non Renewable Energy	MJ	1.5e+00	1.5e+01	9.7e-02	0.0e+00	0.0e+00
E Renewable Energy	MJ	9.9e-03	2.4e-01	9.7e-05	0.0e+00	0.0e+00
E Total Primary Energy	MJ	1.5e+00	1.5e+01	9.7e-02	0.0e+00	0.0e+00
E Fuel Energy	MJ					
E Non Renewable Energy	MJ					
E Renewable Energy	MJ					
E Total Primary Energy	MJ					

	Mineral Wool - LC S				Stage		
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life	
(r) Baryte (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Bauxite (Al2O3.2H2O, ore)	kg	3.0e-06	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Bentonite (Al2O3.4SiO2.H2O, in ground)		0.0e+00		0.0e+00	0.0e+00	0.0e+00	
(r) Borax (Na2O.2B2O3.10H2O)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Clay (in ground)	kg	2.2e-07	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Coal (in ground)	kg	7.1e-03	8.2e-02	9.5e-05	3.2e-05	0.0e+00	
(r) Copper (Cu, Ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Diabase Rock	kg	6.7e-02	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Dolomite (CaCO3.MgCO3, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Feldspar (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Granite (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Gravel (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Gypsum (CaSO4: in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Ilmenite Ore (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Iron (Fe, ore)	kg	2.1e-06	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Jute	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Kaolin (Al2O3.2SiO2.2H2O, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Limestone (CaCO3, in ground)	kg	1.1e-03	1.5e-04	1.8e-05	6.0e-06	0.0e+00	
(r) Natural Gas (in ground)	kg	1.3e-02	1.3e-01	2.6e-04	8.8e-05	0.0e+00	
(r) Oil (in ground)	kg	1.2e-02	2.0e-03	3.0e-03	1.0e-03	0.0e+00	
(r) Perlite (SiO2, ore)	kg	6.2e-07	8.0e-08	6.9e-07	2.3e-07	0.0e+00	
(r) Phosphate Rock (in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Pine Rosin	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Potash (K2O, in ground)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Potassium (ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Pyrite (FeS2, ore)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Sand (in ground)	kg	5.7e-08	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Sodium Chloride (NaCl, in ground or in sea)	kg	2.4e-04	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Uranium (U, ore)	kg	1.5e-07	1.9e-08	2.3e-09	7.6e-10	0.0e+00	
(r) Wastepaper	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
(r) Wood (standing)	m3	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
Cullet (from stock)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
Fly Ash	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
Iron Ore Slag	kg	2.7e-01	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
Recovered Solids (iron scraps)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
Water Used (total)	liter	3.0e-01	7.2e-05	4.2e-04	1.4e-04	0.0e+00	
Sq Foot of Insulation (Cellulose)	Sq Ft	0.0e+00	0.0e+00	0.0e+00	1.0e+00	0.0e+00	
Cellulose Insulation	kg	0.0e+00	3.4e-01	3.4e-01	3.4e-01	0.0e+00	
Component 2	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	
Component 3	NA	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00	

Tal	ble 11: I	Life (Cvcle	Inventory,	Mineral	Wool

	Mineral Wool - LC Stage					
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
(a) Aldehydes	g	8.8e-05	7.9e-04	3.1e-07	1.1e-07	0.0e+00
(a) Ammonia (NH3)	g	2.0e-05	4.4e-09	1.3e-08	4.4e-09	0.0e+00
(a) Benzene	g	6.1e-07	7.9e-08	6.8e-07	2.3e-07	0.0e+00
(a) Carbon Dioxide (CO2, biomass)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Carbon Dioxide (CO2, fossil)	g	5.0e+01	6.1e+01	1.0e+01	3.5e+00	0.0e+00
(a) Carbon Monoxide (CO)	g	2.1e-02	7.3e-02	8.9e-03	1.5e-02	0.0e+00
(a) Fluorides (F-)	g	1.0e-08	6.5e-03	6.6e-15	2.2e-15	0.0e+00
(a) Formaldehyde	g	8.0e-03	1.1e-06	9.1e-06	3.1e-06	0.0e+00
(a) Hydrocarbons (except methane)	g	8.8e-02	1.8e+00	5.1e-03	1.8e-03	0.0e+00
(a) Hydrocarbons (unspecified)	g	1.6e-01	1.4e-03	4.0e-03	1.3e-03	0.0e+00
(a) Hydrogen Chloride (HCl)	g	3.5e-03	4.2e-04	5.1e-05	1.7e-05	0.0e+00
(a) Hydrogen Fluoride (HF)	g	4.0e-04	1.1e-04	6.4e-06	2.1e-06	0.0e+00
(a) Hydrogen Sulfide (H2S)	g	6.4e-05	3.1e-06	2.2e-05	7.5e-06	0.0e+00
(a) Lead (Pb)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Metals (unspecified)	g	3.7e+02	4.8e+01	4.2e+02	1.4e+02	0.0e+00
(a) Methane (CH4)	g	8.3e-02	6.5e-01	3.5e-03	1.3e-03	0.0e+00
(a) Nitrogen Oxides (NOx as NO2)	g	1.9e-01	1.2e-01	2.4e-02	5.4e-02	0.0e+00
(a) Nitrous Oxide (N2O)	g	3.1e-03	3.5e-02	1.9e-03	1.1e-04	0.0e+00
(a) Organic Matter (unspecified)	g	1.9e-04	1.6e-03	1.4e-06	4.8e-07	0.0e+00
(a) Particulates (unspecified)	g	6.2e-01	8.0e-01	2.4e-02	1.8e-03	0.0e+00
(a) Phenolics	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(a) Sulfur Oxides (SOx as SO2)	g	2.0e-01	3.5e+00	1.5e-02	4.9e-03	0.0e+00
(a) Volatile Organic Compounds (VOCs)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Acids (H+)	g	6.6e-04	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Ammonia (NH4+, NH3, as N)	g	3.4e-04	3.7e-05	3.0e-04	1.0e-04	0.0e+00
(w) AOX (Adsordable Organic Halogene)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Benzene	g	1.4e-14	1.9e-15	2.4e-16	7.9e-17	0.0e+00
(w) BOD5 (Biochemical Oxygen Demand)	g	1.0e-01	2.5e-04	2.0e-03	6.8e-04	0.0e+00
(w) Calcium (Ca++)	g	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Chlorides (CI-)	g	5.1e-02	5.4e-03	4.4e-02	1.5e-02	0.0e+00
(w) COD (Chemical Oxygen Demand)	g	1.9e-01	2.1e-03	1.7e-02	5.8e-03	0.0e+00
(w) Cyanides (CN-)	g	4.9e-19	6.6e-20	8.0e-21	2.7e-21	0.0e+00
(w) Dissolved Matter (unspecified)	g	1.5e-01	1.7e-02	1.4e-01	4.6e-02	0.0e+00
(w) Fluorides (F-)	g	2.3e-05	2.8e-06	3.4e-07	1.1e-07	0.0e+00
(w) Hydrocarbons (unspecified)	g	9.5e-04	3.5e-07	2.8e-06	9.4e-07	0.0e+00
(w) Metals (unspecified)	g	3.4e-03	1.0e-05	8.4e-05	2.8e-05	0.0e+00
(w) Nitrates (NO3-)	g	3.6e-05	6.6e-07	8.1e-08	2.7e-08	0.0e+00
(w) Nitrogenous Matter (unspecified, as N)	g	1.1e-04	0.0e+00	0.0e+00	0.0e+00	0.0e+00
(w) Oils (unspecified)	g	2.3e-03	1.2e-04	1.0e-03	3.4e-04	0.0e+00
(w) Phenols	g	4.3e-05		3.9e-05	1.3e-05	0.0e+00
(w) Phosphates (PO4 3-, HPO4,		2.4e-05		0.0e+00	0.0e+00	0.0e+00

		Mineral Wool - LC Stage				
Article	Units	Raw Materials	Manufacturing	Transport	Use	End-of- life
H2PO4-, H3PO4, as P)						
(w) Sodium (Na+)	g	5.5e-02	7.0e-03	5.6e-02	1.9e-02	0.0e+00
(w) Sulfates (SO4)	g	1.2e-03	5.9e-07	7.2e-08	2.4e-08	0.0e+00
(w) Suspended Matter (unspecified)	g	1.4e-01	1.1e-03	9.3e-03	3.1e-03	0.0e+00
Waste (50 years - prorated)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (End-of-Life)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (first replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
Waste (installation)	kg	0.0e+00	0.0e+00	0.0e+00	2.2e-02	0.0e+00
Waste (Mfg.)	kg	8.1e-03	6.8e-02	5.2e-05	1.7e-05	0.0e+00
Waste (non-recyclable, 50-year)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	3.3e-01
Waste (second replacement)	kg	0.0e+00	0.0e+00	0.0e+00	0.0e+00	0.0e+00
E Feedstock Energy	MJ	7.5e-01	2.3e-03	0.0e+00	0.0e+00	0.0e+00
E Fuel Energy	MJ	7.1e-01	9.5e+00	1.5e-01	4.9e-02	0.0e+00
E Non Renewable Energy	MJ	1.4e+00	9.5e+00	1.5e-01	4.9e-02	0.0e+00
E Renewable Energy	MJ	1.3e-02	7.9e-03	1.4e-04	4.9e-05	0.0e+00
E Total Primary Energy	MJ	1.5e+00	9.5e+00	1.5e-01	4.9e-02	0.0e+00
E Fuel Energy	MJ					
E Non Renewable Energy	MJ					
E Renewable Energy	MJ					
E Total Primary Energy	MJ					

Appendix C: Asphalt Coating Case Study

Goal and Scope Definition

Goal

An important goal of this study was to evaluate whether a small vendor would be capable of gathering the data necessary for a life cycle assessment, in a timely fashion. If this proved to be impossible, the application of LCA for EPP would present a significant barrier for small businesses seeking to sell goods to the Federal government. Asphalt Systems, a small manufacturer of asphalt emulsions in Utah, participated in providing site specific information on the manufacture, application and use of asphalt emulsions and hot mix asphalt.

Intended Applications and Audiences

The LCA itself was intended to be used to support a comparative assertion of environmental superiority of a product over a competing product in the context of the Federal requirement for environmentally preferable purchasing. Audiences include purchasing agents as well as other federal and state officials. An ancillary use of the study is to support efforts towards environmental improvement.

Scope

Description of the Product

The products evaluated represented two methods of maintaining roads: applying a thin layer (1.5 inches thick) of asphalt cement and applying an asphalt emulsion containing a natural mineral product, gilsonite. Both of these products are applied to asphalt roads before significant deterioration has occurred (three to five years into the life of the road), and neither adds structural strength to the road. Each extends the life of the road considerably. In the case of the asphalt emulsion, for three to five years, and in the case of the asphalt cement thin layer, seven to nine years. There are some other specialized methods for maintaining asphalt cement roadways, but these tend to be based on trade secret chemical compositions, and were not included in this study.

Asphalt emulsion is applied by spraying diluted emulsion from a distributor truck that simultaneously spreads sand onto the emulsion. Application is at ambient temperature. A thin layer of asphalt cement is applied by first spreading a tack coat (consisting of a simple asphalt emulsion) with a distributor truck, then applying a layer of asphalt, and finally rolling the layer of asphalt to assure a smooth surface. Typically, the asphalt cement is manufactured near the construction site at a hot-mix asphalt cement plant, which heats the asphalt and mixes it with aggregate, which is then trucked to the road

site and applied as above. Asphalt cement must be applied at 165^oF or above. Traffic can ensue one to two hours after application is complete.

System Function and Functional Unit

The function provided by the alternative products is the maintenance of good quality roads (five on a scale of ten). The functional unit is twenty years of one lane mile. The inventory includes two application of the thin layer of asphalt cement, and five applications of the asphalt emulsion.

System Boundaries

The system studied included all unit processes except those used for the production of hydrochloric acid. This material comprised less that one percent of the total mass of the products, and it was expected from the composition of the materials that the acid would be neutralized in use.

All inputs and outputs were accounted for as long as they comprised at least:

- 1. One percent of the mass
- 2. One percent of the energy, or
- 3. One percent of the expected toxicity scores

Primary data was not available for the asphalt production, but was gathered from published sources. Information on the production of the asphalt emulsion and the tack coat was obtained from the manufacturer, as was information on the application of the asphalt emulsion, the tack coat and the thin layer of asphalt cement. The flow charts below identify the systems under study.

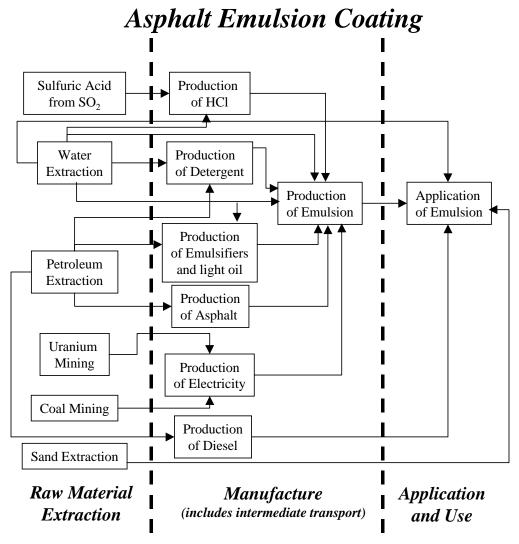
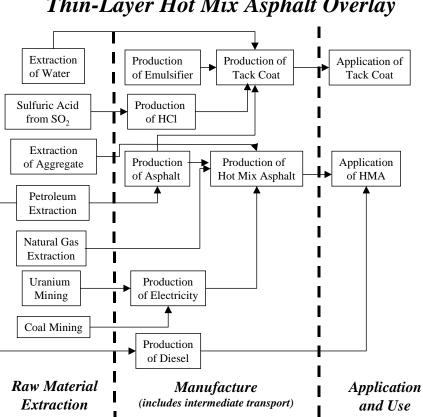



Figure 1

Thin-Layer Hot Mix Asphalt Overlay

Data Gathering

In general, data gathering was quite rapid. The entire data gathering exercise for this project took place over two months (January-March 1999). This situation was aided by the simple nature of the materials under study. However, there were some difficulties that were encountered. For example, the source of the asphalt in the emulsions and tack coat (a large refining company) was not willing to provide site-specific information to this small vendor. Consequently, industry average data, obtained from the American Petroleum Institute (API) was used for estimating the inventories of this material.

Secondly, it was not possible to obtain site-specific information from any vendor that was not a direct vendor to the manufacturer. Thus the inventory results from some products that were obtained from a distributor (e.g. HCl and some detergents) were derived from data bases.

Finally, the contents of some materials (emulsifiers) are considered to be trade secrets. The issue of trade secrets is a common one in LCA's, no matter what size of vendor one might be evaluating. Some of the trade secret material are considered to be potentially ecotoxic, and that is reflected in the analysis reported here.

Allocation

All allocation of emissions and resource use was performed based on a mass basis. This was required for the production of asphalt, and for transportation inventory results, but not for other inventory data.

Impact Assessment

Impact assessment was performed based on the FRED LCA system indicators, as described in the body of this work. The assignment of inventory data to impact categories is shown in the table below.

Inventory Result	Impact Category	Justification
Fossil Fuels and Uranium	Resource Depletion	Although Uranium is not truly a fossil fuel, it is "used up" in a precisely comparable fashion
CO_2 , N_20 , Methane	Global Warming	These are important greenhouse gases which do not participate to a great extent in other impact categories
СО	Human Toxicity Photochemical Smog Global Warming;	CO is a human and animal toxicant as well as a precursor to ozone formation and a greenhouse gas. It can participate in the first two of these environmental mechanisms without losing its potency for the others.
CFC's, HCFC's, Halons	Global Warming 100% Stratospheric Ozone Depletion 100%	These substances participate fully in both of these parallel environmental mechanisms
SO ₂ ,	Acidification 100%	Although SO2 contributes to visibility deterioration, and human health effects through the formatior of Particulate Matter, these environmental mechanisms are not addressed by FRED.
HCl, HF	Acidification 100% Human Health 100%	These acid gases have minor human health effects as well as contributing to acidification. It was thought that double counting would not significantly skew results.
Toxic Air and Water Emissions	Human Toxicity 100% Ecotoxicity 100%	Since it was not possible to evaluate the partitioning of these substances, they were double counted so as not to underestimate their impacts.
NOx	Acidification 100% Eutrophication 100%	Since FRED does not currently evaluate the fate and transport of NOx, this emission was double counted.
VOC's, ROG's	Photochemical Smog	These are the essential precursors

Table 1. Assignment of Inventory Results to Impact Categories

Inventory Result	Impact Category	Justification
		to photochemically produced ozone. Although some of them are also toxic, unspeciated data does not permit a toxic evaluation.
NH ₄	Eutrophication (water emissions); acidification (air Emissions)	Although NH4 is not an acid gas, it undergoes changes in the soil leading to acidification effects.
PO ₄	Eutrophication 100%	Phosphate does not participate in any other environmental mechanism described by the FRED methodology

The table below shows the gross inventory for the two options, normalized to the functional unit. The functional unit is twenty years of one lane mile. The inventory includes two application of the thin layer of asphalt cement, and five applications of the asphalt emulsion. Because the information about asphalt cement was obtained from published sources rather than from primary data, it was not possible to estimate the amount of land that was used to manufacture the asphalt. Since this product uses aggregate, it is likely that the mining of gravel/aggregate produced somewhat higher land use than the manufacture of the emulsion, perhaps ten times as much. However, the land use during manufacturing of materials is very small. Even assuming that the production of hot mix asphalt used ten times as much land, this would still be much smaller than the land use associated with the road itself. Thus, the land use difference between the two products is probably not significant.

Inventory

The Table below shows the Summary inventory for the two products compared. A full inventory by life cycle stage can be found in Tables 6 and 7.

System Description	Asphalt Cement	Asphalt Emulsion
Raw Materials	Thin Layer (2applic)	GSB88 (5 applic)
	lb/lane mile/20yr	lb/lane mile/20yr
Asphalt	122,621	47,790
Aggregate	2,181,960	0
Diesel (application)	3,063	15
Diesel to prep hotmix	884	0
Sand	0	17,600
Gilsonite	0	21,500
HC1	32	24
Water	4,779	173,317
NP-40 (Detergent)	0	285
Surfactant	156	29
Light Cycle Oil	0	585
Land use (road, m ²)	5888	5888
Land use (mfg, m ²)	???	2

 Table 2. Summary Inventory

Indicator Results

The table below shows the indicator results for the two systems studied.

	LCIA	Fotals
Indicator	Asphalt Emulsion	Asphalt Cement
GWP (kg CO ₂ equiv)	16547	44368
ODP (kg CFC-11)	0	0
Acidification (kg SO ₂)	145	344
Eutrophication (kg PO ₄)	0.0065	0.0151
Photochemical Smog (kg O ₃)	36	77
Human Toxicity		
Cancer	7.97E-02	1.78E-01
NonCancer	2.02E+00	4.51E+00
Ecotoxicity	6.61E+04	2.12E+03
Resource Depletion		
Fossil (tons oil equivalent)	3.86E+04	8.55E+04
Mineral (equiv tons)	0	0
Precious(equiv tons)	0	0
Other Indicators:		
Land Use (ha)	0.6	0.6
Water Use (kg)	76982	2292
Solid Waste (kg)	31729	816165

 Table 3: LCIA Results

Interpretation

We can make several interesting observations about the two products based on the total indicator values noted in the table above. Of the 14 indicators and sub indicators evaluated, the numbers for asphalt emulsion were significantly lower than those for asphalt cement in 11 categories, equal in two categories (Stratospheric Ozone Depletion and Land Use) and greater in one category (Water Use). However, given the overall uncertainty of these numbers, it is important to also look where an order of magnitude difference occurs. An order of magnitude difference is seen between the results for Ecotoxicity (cement is lower), Water Use (cement is lower) and Solid Waste (emulsion is lower).

It is also possible to evaluate the sources of the various impacts in order to identify opportunities for improvements. The table below shows the asphalt emulsion and asphalt cement indicators in term of percentage of the indicators in the different life cycle stages.

		Emulsion -	by LC Stage		
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal
GWP	12	34	54	0	0
ODP	0	0	0	0	0
Acidification	15	17	69	0	0
Eutrophication	0	91	9	0	0
Photochemical Smog	20	7	73	0	0
Human Health					
Cancer	13	78	10	0	0
NonCancer	10	81	9	0	0
Eco Health	90	1	10	0	0
Resource Depletion					
Fossil	85	6	9	0	0
Mineral	0	0	0	0	0
Precious	0	0	0	0	0
Other Indicators:					
Land Use	0	0		100	0
Water Use (kg)	0	28	0	72	0
Solid Waste (kg)	0	0	0	0	100

Table 4. Percentage of Indicator by Life Cycle Stage, Asphalt Emulsion

		Cement - by	y LC Stage		
Indicator	Raw Materials	Manufacturing	Transport	Use	Disposal
GWP	9	76	14	1	0
ODP	0	0	0	0	0
Acidification	13	66	19	2	0
Eutrophication	0	98	2	0	0
Photochemical Smog	20	20	59	0	0
Human Health					
Cancer	12	85	3	0	0
Non-Cancer	9	88	2	0	0
Eco Health	26	50	21	2	0
Resource Depletion					
Fossil	82	16	2	0	0
Mineral	0	0	0	0	0
Precious	0	0	0	0	0
Other Indicators:					
Land Use	0	0	0	100	0
Water Use (kg)	0	100	0	0	0
Solid Waste (kg)	0	0	0	0	100

 Table 5: Percentage of Indicator by Life Cycle Stage, Thin Layer Asphalt Cement

For the most part, the majority of the two products indicator results can be found in the manufacturing and the transportation phases of the life cycle. This result supports the guidance of the FRED methodology, which recommends more intensive data gathering efforts in the manufacturing phase for products which are durable goods which are not energy intensive in the use phase.

Conclusions

Although there were some issues around gathering primary data for the performance of this LCA, overall, the data gathering went quite smoothly. This was true especially for data gathered from the primary vendor and from one step up and one step down the vendor chain (i.e. from manufacturers of ingredients and from contractors/customers using the materials under study). For goods that have a very long or complicated vendor chain, (e.g., electronics) this may not be the case.

Asphalt Emulsion			Sum	Extraction	Manufacture	Transport	Use	Disposal
Product	20 year-lane mile		1	1	1	1	1	1
Inputs								
Resources	Coal,Bituminous	Kg	430	167	170	93	1.34E-01	0
	Coal,Lignite	Kg	79	31	31	17	2.46E-02	0
	Coal,Subbituminous	Kg	235	92	92	51	7.32E-02	0
	Crude Oil	Kg	25,972	23,282	311	2,372	7	0
	Gilsonite	Kg	9,336	0	9,336	0	0	0
	Natural Gas	Kg	725	270	381	74	2.03E-01	0
	UO2	Kg	2.41E-03	9.43E-04	9.46E-04	5.25E-04	7.53E-07	0
	Fresh Water	Kg	76,982	0	21,845	0	55,136	0
	Land Use	ha	0.6		.002		0.6	
Fuels	Coke,Petroleum	Kg	0	0	0	0	0	0
	Crude Oil	Kg	0	0	0	0	0	0
	Distillate Oil	Kg	0	0	0	0	0	0
	Distillate Oil,#1	Kg	0	0	0	0	0	0
	Distillate Oil,#2	Kg	0	0	0	0	0	0
	Electricity	kW h	0	0	0	0	0	0
	Fuel,Other	Kg	0	0	0	0	0	0
	Gasoline, Automotive	Kg	0	0	0	0	0	0

Table 6: Life Cycle Inventory, Asphalt Emulsion

Asphalt Emulsion			Sum	Extraction	Manufacture	Transport	Use	Disposal
	LPG	Kg	0	0	0	0	0	0
	Natural Gas	Kg	0	0	0	0	0	0
	Residual Oil	Kg	0	0	0	0	0	0
	Steam,Low Pressure	btu	8.57E-01	3.96E-04	7.77E-01	7.92E-02	2.39E-04	0
	Still Gas	Kg	0	0	0	0	0	0
Air Emissions	1,2,4-Trimethylbenzene	Kg	1.25E-02	5.79E-06	1.14E-02	1.16E-03	3.49E-06	0
	Aldehydes, Unspeciated	Kg	2.98E+00	4.12E-02	1.85E-03	2.94E+00	1.34E-05	0
	Ammonia	Kg	1.12E-01	5.16E-05	1.01E-01	1.03E-02	3.11E-05	0
	Benzene	Kg	7.97E-02	9.98E-03	6.21E-02	7.60E-03	2.22E-05	0
	Carcinogen, Unspeciated	Kg	6.91E-03	3.18E-06	6.27E-03	6.35E-04	1.92E-06	0
	СО	Kg	73	16	11	46	8.07E-03	0
	CO2	Kg	15846	1509	5421	8914	2.48	0
	Cyclohexane	Kg	2.52E-02	1.16E-05	2.29E-02	2.33E-03	7.01E-06	0
	Ethyl Benzene	Kg	2.47E-02	2.49E-03	1.99E-02	2.34E-03	6.90E-06	0
	Ethylene	Kg	3.04E-02	1.40E-05	2.76E-02	2.81E-03	8.46E-06	0
	HCl	Kg	0	0	0	0	0	0
	Iso-Octane	Kg	2.63E-03	9.78E-04	1.38E-03	2.67E-04	7.37E-07	0
	Methane	Kg	33.38	19.86	9.05	4.46	9.20E-03	0
	Methanol	Kg	1.19E-02	5.49E-06	1.08E-02	1.10E-03	3.31E-06	0
	MTBE	Kg	2.80E-02	1.29E-05	2.54E-02	2.58E-03	7.79E-06	0
	n-Hexane	Kg	1.71E-02	6.36E-03	8.99E-03	1.74E-03	4.79E-06	0
	NOx	Kg	154	21.81	15.08	117.57	1.12E-02	0
	Organic Acids	Kg	2.45E-03	9.56E-04	9.60E-04	5.33E-04	7.64E-07	0

Asphalt Emulsion			Sum	Extraction	Manufacture	Transport	Use	Disposal
	Organic Compounds,Unspeciated	Kg	9.25E-03	3.61E-03	3.63E-03	2.01E-03	2.89E-06	0
	Particulate	Kg	2.61E+00	3.42E-01	1.16E+00	1.11E+00	7.78E-04	0
	PM10	Kg	15.69	1.91E-01	5.77E-01	14.92	5.13E-04	0
	Propylene	Kg	9.75E-02	4.50E-05	8.84E-02	8.99E-03	2.71E-05	0
	SOx	Kg	35.66	5.65	13.45	16.55	6.02E-03	0
	TNMOC, Unspeciated	Kg	7.71E+00	1.56007433	3.81E-01	5.7682512	2.15E-03	0
	Toluene	Kg	1.55E-01	1.38E-02	1.26E-01	1.46E-02	4.31E-05	0
	VOC, Unspeciated	Kg	27.04	0.17414189	9.91	16.95	3.15E-03	0
	Xylene	Kg	1.00E-01	7.83E-03	8.29E-02	9.44E-03	2.79E-05	0
Water Emissions	Ammonia	Kg	1.94E-02	8.9449E-06	1.76E-02	1.79E-03	5.39E-06	0
	BOD	Kg	5.32E-04	0	5.32E-04	0	0	0
	Carcinogen, Unspecia	Kg	2.71E-05	1.3144E-07	6.713E-07	2.625E-05	7.92E-08	0
	COD	Kg	6.83E-04	0	6.83E-04	0	0	0
	Dissolved Solids	Kg	3.55	1.32	1.87	0.36	0.000995	0
	Oil & Grease	Kg	0.56	0	0	5.59E-01	0	0
	Methanol	Kg	3.45E-04	1.7316E-07	3.10E-04	3.459E-05	1.04E-07	0
	MTBE	Kg	1.16E-03	5.4019E-07	1.05E-03	1.08E-04	3.25E-07	0
	Oil & Grease	Kg	5.91E-02	2.94E-04	1.59E-03	5.71E-02	1.72E-04	0
	Phosphate	Kg	0	0	0	0	0	0
	Produced Water	Kg	9,780	8,758	116	904	2.72	0
	Surfactant	Kg	3.51				3.51	

Asphalt Emulsion			Sum	Extraction	Manufacture	Transport	Use	Disposal
Solid Wastes	1,2,4-Trimethylbenzene	Kg	1.36E-04	5.9119E-08	1.24E-04	1.181E-05	3.56E-08	0
	Ammonia	Kg	1.50E-03	6.8698E-07	1.37E-03	1.37E-04	4.14E-07	0
	Ash, Bottom	Kg	13.87	5.42	5.44	3.02	4.33E-03	0
	Ash, Fly	Kg	44.21	17.26	17.32	9.61	1.38E-02	0
	Carcinogen, Unspeciated	Kg	6.18E-04	2.9683E-07	5.58E-04	5.928E-05	1.79E-07	0
	Cyclohexane	Kg	2.72E-04	1.1884E-07	2.48E-04	2.374E-05	7.16E-08	0
	Ethyl Benzene	Kg	4.08E-04	1.7735E-07	3.72E-04	3.543E-05	1.07E-07	0
	FGD Sludge	Kg	14	5.47	5.49	3.05	0.004367	0
	Solid Waste, Drilling	Kg	939	826	25	86.98	0.26	0
	Solid Waste, Hazardous	Kg	8.44E-01	3.90E-04	7.65E-01	7.78E-02	2.35E-04	0
	Solid Waste.Refiner	Kg	22	1.03E-02	20	2.06	6.20E-03	0
	Spent Fuel, Nuclear	Kg	4.21E-03	1.64E-03	1.65E-03	9.15E-04	1.31E-06	0
	Toluene	Kg	1.23E-03	5.582E-07	1.12E-03	1.11E-04	3.36E-07	0
	Xylene	Kg	1.64E-03	7.7116E-07	1.49E-03	1.54E-04	4.65E-07	0
	Landfilled Waste	Kg	0	0	0	0	0	0
	Mining Waste	Kg	0	0	0	0	0	0
	Waste in waste roadway	Kg	31,729	0	0	0	0	31,729

AsphaltCem	nent		Total	Extraction	Manufacture	Transport	Use	Disposal
Product	20 year-lane mile		1	1	1	1	1	1
Inputs								
Resources	Coal,Bituminous	Kg	897	355	411	128	3	0
	Coal,Lignite	Kg	164	66	75	24	1	0
	Coal,Subbituminous	Kg	490	195	223	70	2	0
	Crude Oil	Kg	57,493	49,601	6,451	1,290	151	0
	Gilsonite	Kg	0	0	0	0	0	0
	Natural Gas	Kg	1,612	575	984	50	4	0
	UO2	Kg	5.04E-03	2.01E-03	2.29E-03	7.23E-04	1.59E-05	0
	Land Use	Ha	.6	NA	NA	NA	NA	NA
	Fresh Water	Kg	2,292	0	2,292	0	0	0
Fuels	Coke,Petroleum	Kg	0	0	0	0	0	0
	Crude Oil	Kg	0	0	0	0	0	0
	Distillate Oil	Kg	0	0	0	0	0	0
	Distillate Oil,#1	Kg	0	0	0	0	0	0
	Distillate Oil,#2	Kg	0	0	0	0	0	0
	Electricity	k	0	0	0	0	0	0
	Licenterty	Ň	0	0	Ū	Ū	0	0
		h						
	Fuel,Other	Kg	0	0	0	0	0	0
	Gasoline, Automotive	Kg	0	0	0	0	0	0
	LPG	Kg	0	0	0	0	0	0
	Natural Gas	Kg	0	0	0	0	0	0
	Residual Oil	Kg	0	0	0	0	0	0
	Steam,Low Pressure	btu	1.92	0.001	1.87	0.043	0.005	0
	Still Gas	Kg	0	0	0	0	0	0
	Land Use	ha	0.6				0.6	
Air Emissions	1,2,4-Trimethylbenzene				2.73E-02	6.29E-04	7.35E-05	0
	Aldehydes, Unspeciated	Kg	1.88	0.087795277	1.53E-02	1.59	1.87E-01	0

 Table 7: Life Cycle Inventory, Thin Layer Asphalt Cement

AsphaltCeme	ent		Total	Extraction	Manufacture	Transport	Use	Disposal
	Ammonia	Kg	2.50E-01	1.10E-04	2.44E-01	5.61E-03	6.55E-04	0
	Benzene	Kg	1.78E-01	2.13E-02	1.52E-01	4.50E-03	4.69E-04	0
	Carcinogen, Unspeciated	Kg	1.54E-02	6.79E-06	1.50E-02	3.46E-04	4.04E-05	0
	CO	Kg	126	3.44E+01	6.22E+01	2.63E+01	2.86E+00	0
	CO2	Kg	42,793	3,215	32,956	6,106	516	0
	Cyclohexane	Kg	5.64E-02	2.48E-05	5.50E-02	1.27E-03	1.48E-04	0
	Ethyl Benzene	Kg	5.52E-02	5.31E-03	4.84E-02	1.37E-03	1.45E-04	0
	Ethylene	Kg	6.80E-02	3.00E-05	6.63E-02	1.53E-03	1.78E-04	0
	HCl	Kg	0	0	0	0	0	0
	Iso-Octane	Kg	5.84E-03	2.08E-03	3.56E-03	1.81E-04	1.55E-05	0
	Methane	Kg	75.00	42.32	29.05	3.39	2.44E-01	0
	Methanol	Kg	2.66E-02	1.17E-05	2.59E-02	5.97E-04	6.97E-05	0
	MTBE	Kg	6.27E-02	2.76E-05	6.11E-02	1.41E-03	1.64E-04	0
	n-Hexane	Kg	3.80E-02	1.35E-02	2.32E-02	1.18E-03	1.01E-04	0
	NOx	Kg	236	46	108	75	7.04	0
	Organic Acids	Kg	5.11E-03	2.04E-03	2.32E-03	7.33E-04	1.61E-05	0
	Oranic Compounds,Unspeciated	Kg	1.93E-02	7.70E-03	8.78E-03	2.77E-03	6.08E-05	0
	Particulate	Kg	26.63	7.29E-01	23.92	1.96	1.64E-02	0
	PM10	Kg	210	4.07E-01	9.91	9.37	8.98E-01	0
	Propylene	Kg	2.18E-01	9.61E-05	1.90E+02	4.89E-03	5.72E-04	0
	SOx	Kg	176	12.04	151	11.46	9.54E-01	0
	TNMOC, Unspeciated	Kg	17.23	3.32	2.70	11.16	4.53E-02	0
	Toluene	Kg	3.45E-01	2.95E-02	3.07E-01	8.45E-03	9.09E-04	0
	VOC, Unspeciated	Kg	58.51	3.71E-01	47.87	9.19	1.08	0
	Xylene	Kg	2.24E-01	1.67E-02	2.01E-01	5.42E-03	5.89E-04	0
	Napthalene	Kg	4.72E-02	0	4.72E-02	0	0	0
	2-methyl napthalene	Kg	6.29E-02	0	6.29E-02	0	0	0
	Phenanthrene	Kg	3.88E-02	0	3.88E-02	0	0	0
	Fluoranthrene	Kg	2.52E-02	0	2.52E-02	0	0	0
	Pyrene	Kg	5.76E-02	0	5.76E-02	0	0	0
	Formaldehyde	Kg	3.35	0	3.35	0	0	0
Vater Emissions	Ammonia	Kg	4.33E-02	1.91E-05	4.22E-02	9.72E-04	1.14E-04	0
	BOD	Kg	2.13E-03	0	2.13E-03	0	0	0
	Carcinogen, Unspeciated	Kg	8.79E-05	2.80478E-07	7.162E-05	1.43E-05	1.67E-06	0
	COD	Kg	3.85E-03	0	3.85E-03	0	0.00E+00	0

AsphaltCem	ent		Total	Extraction	Manufacture	Transport	Use	Disposal
	Dissolved Solids	Kg	7.89	2.81	4.81	2.44E-01	2.10E-02	0
	Oil & Grease	Kg	1.19	0	0	1.19	0	0
	Methanol	Kg	7.75E-04	3.70E-07	7.53E-04	1.88E-05	2.20E-06	0
	MTBE	Kg	2.60E-03	1.15E-06	2.54E-03	5.87E-05	6.86E-06	0
	Oil & Grease	Kg	1.92E-01	6.27E-04	1.56E-01	3.15E-02	3.62E-03	0
	Phosphate	Kg	0	0	0	0	0	0
	Produced Water	Kg	21,861	18,658	2,652	494	57.34	0
	Surfactant	Kg	19.78	0	0	0	19.78	
Solid Wastes	1,2,4- Trimethylbenzene	Kg	3.03E-04	1.26E-07	2.96E-04	6.42E-06	7.51E-07	0
	Ammonia	Kg	3.36E-03	1.47E-06	3.27E-03	7.47E-05	8.73E-06	0
	Ash, Bottom	Kg	28.94	11.54	13.16	4.15	9.12E-02	0
	Ash, Fly	Kg	92.22	36.77	41.93	13.23	2.91E-01	0
	Carcinogen, Unspeciated	Kg	1.38E-03	6.33E-07	1.35E-03	3.23E-05	3.77E-06	0
	Cyclohexane	Kg	6.07E-04	2.54E-07	5.92E-04	1.29E-05	1.51E-06	0
	Ethyl Benzene	Kg	9.09E-04	3.78E-07	8.88E-04	1.93E-05	2.25E-06	0
	FGD Sludge	Kg	29.22	11.65	13.28	4.19	9.20E-02	0
	Solid Waste, Drilling	Kg	2,098	1,760	284	47.92	5.51	0
	Solid Waste,Hazardous	Kg	1.89	8.31E-04	1.84	4.23E-02	4.95E-03	0
	Solid Waste.Refiner	Kg	49.84	2.20E-02	48.57	1.12	1.31E-01	0
	Spent Fuel,Nuclear	Kg	8.78E-03	3.50E-03	3.99E-03	1.26E-03	2.77E-05	0
	Toluene	Kg	2.75E-03	1.19E-06	2.68E-03	6.07E-05	7.09E-06	0
	Xylene	Kg	3.68E-03	1.65E-06	3.58E-03	8.38E-05	9.79E-06	0
	Landfilled Waste	Kg	0	0	0	0	0	0
	Mining Waste	Kg	0	0	0	0	0	0
	Waste Roadway	Kg	816,165	0	0	0	0	816,165

Table 8: Data Collection Tables

Resource					
Consumption					
Facility Name				-	
	Amount	Units	Date used	Source of data	Estimated Error
Fuel usage					
Diesel					
Fuel Oils (list type)					
1					
2					
Gasoline					
Natural Gas					
Electricity					
Coal					
0001					
Minerals (list)					
1					
2					
3					
4					
Chemical Usage (list)					
1					
2					
3					
4					
Eroshwatar usa					
Freshwater use (provide source , e.g. well, river)					
Land Use					
Area Paved					
Area Disturbed (e.g. by mining)					

Air Emissions

Facility Name					
	-				
Emission	Amount	Units	Dates of emissions	Data Source	Estimated Error
	Allount	onno	Dates of childelens		Lotimatoa Error
CO ₂ (Carbon Dioxide)					
CO (Carbon monoxide)		Ī			
CH₄ (Methane)					
N₂O (Nitrous Oxide)					
CFC/HCFC's (list)					
1					
2					
3					
4					
SOx (Oxides of Sulfur)					
NOx (Oxides of Nitrogen)					
HCI (Hydrogen Chloride)					
HF (Hydrogen fluoride)					
NH4 (Ammonia)					
Other acid gases (list)					
1					
2					
Volatiles (list)					
1					
2					
3					
Hazardous Air Pollutants		<u> </u>		<u> </u>	
1		<u> </u>		Į	
2					
PM-10					

Water Emissions

LIII33IOII3					
Facility Name					
Emission	Amount	Units	Dates of emissions	Data Source	Estimated Error
Quan an da d Qalida					
Suspended Solids					
Coliforms					
Ammonia					
Phosphate					
Cyanide					
Oil & Grease					
BOD					
COD					
Heavy Metals (list)					
1					
2					
3					
4					
5					
6					
Hazardous Substances					
1					
2					
3					
4					
5					
6					
Total Water released					
Does water go to POTW?					
If direct discharge, what is wat	er body?				
P					

Solid Wastes

Facility Name					
	Amount	Units	Dates of	Data Source	Estimated
			emissions		Error
Total Solid Waste (landfilled)					
Mining wastes (managed on					
property)					
Hazardous wastes (list)					
1					
1					
2					
3					
4					
5					
Distance to Landfills (list)					
1					
2					
3					
3					

The authors wish to express their gratitude for the assistance provided by Jose Garcia of the National Highway Administration for his extensive help in providing data on asphalt roadways and their maintenance.