

Perfluorooctanoic Acid (PFOA)

• A fully fluorinated alkyl acid which has been widely used as a surfactant

and emulsifier for the production of commercially valuable fluoropolymers

• The carbon-fluorine bonds give exceptional stability and inertness which

are ideal properties for its commercial applications, but make it practically

Widely detected in human serum samples where levels can range between

occupationally exposed workers and other highly exposed populations.

low parts per billion for the general US population to low parts per million for

• Exhibits relatively long plasma half-lives (human plasma half-life estimated

Induces developmental toxicity in mice in the form of full-litter resorption,

compromised postnatal survival, delayed growth and development, and altered

It remains to be delineated whether the observed developmental toxicity

• Risk analysis may be greatly improved with pharmacokinetic models that quantitatively describe the pharmacokinetic changes associated with one-

Risk Assessment Approach

Maternal Exposure

Phormocokinetics

Internal Dosimetry

Pharmacodynamics

Mechanisms of Toxicity

Observed toxicity

results from pharmacokinetic changes (higher internal dose) and/or exposure

at ~3-5 years) and clearance can vary dramatically across species, and for

non-biodegradable and persistent in the environment.

Science Question

and fluoroelastomers

some species, across gender

generation toxicity studies

Mode of

action

during developmentally sensitive periods

pubertal maturation

MODELING THE PHARMACOKINETICS OF PERFLUOROOCTANOIC ACID DURING

GESTATION AND LACTATION IN MICE Chester E. Rodriguez and Hugh A. Barton

National Center for Computational Toxicology, U.S. EPA,

Results/Conclusions

Pharmacokinetic model of aestation and lactation

Research Goals

- · To develop an initial biologically-supported pharmacokinetic model for describing exposure of PFOA during gestation and lactation in the mouse.
- · To compare how such a model may differ from that of an adult non-pregnant mouse

· To assess the relative contributions of gestational versus lactational exposure to pups.

Methods/Approach

Absorption and elimination were described as first order processes. An absorption rate constant estimated for the adult mouse (1) was assumed to be the same at all modeled life stages. All of the serum data used to calibrate and evaluate the model predictions were from the 129515vlmJ mouse strain (2).

Gestation

Gestation was described as a two-compartment (dam + conceptus) system linked via placental blood flow (Qcon). The conceptus was made up of the embryo/fetus and placenta, Mathematical expressions describing the growth of the dam, embryo/fetus, placenta, and Qcon were taken from (3) and adjusted for the timing of gestation specific for the mouse (a full 18day period). In the case of the embryo/fetus, mathematical expressions describing growth were modified to fit reported maternal weight gain data (4). Embryo/fetus:maternal plasma partition coefficients for PFOA as a function of gestation day were estimated from (5). The elimination rate constant for the dam and nursing pups were obtained by optimization using non-lactating dam serum data (2), followed by allometrically-scaling. Lactation

Lactation was described as a dam and pup litter compartment linked via milk production. It was assumed that the pups consumed all the milk produced without delay. Milk yield information as a function of lactation day was taken from (6), expressed on a per pup basis, and fitted to a one-site binding hyperbola (Graphpad prism). Body weight (BW) increases for the lactating mouse dam were taken from (7), fitted to a 2nd order polynomial(Graphpad prism), and linked correspondingly to the predicted BW for the pregnant dam (excluding conceptus) at the end of gestation as described above. Similarly, BW increases for the pup were taken from (4), fitted to a 2nd order polynomial (Graphpad prism), and linked correspondingly to the predicted birthweight. The milk:maternal plasma partition coefficient was fitted to a value of 0.04 and assumed constant throughout lactation

Limited information Adult mouse

approach

A constant BW of 25 g was used for the adult mouse. The kidney resorption component was adapted from (8). The Glomerular filtration rate (GFR) was taken from (9) The volumes of the filtrate and renal plasma compartments were optimized using serum levels of mice whose litters were fully resorbed early in pregnancy, and thus can be considered as adult non-pregnant mice (2). Urine flow rate (Qur) was taken from (10)

Pharmacokinetic Model for Adult Mice

COMPUTATIONA TOXICOLOG

Simulation of serum levels of PFOA in adult non-pregnant, non-lactating, lactating, and nursing 129515vlmJ pups following oral administration of doses ≤ 1 mg/kg/day 1.0 mg/kg/day

Abbott et al. 2007
Non-Lactating dam
Abbott et al. 2007

- Lactating dam (mg/L

Abbott et al. 2007

Abbott et al. 2007

Adult or Adult non-pregna
Abbott et al. 2007
Non-Lactating dat
Abbott et al. 2007 Lactating dam (mg/L)
Abbott et al. 2007 Pup
Ahbott et al. 2007 400 600 800 200

Simulation of serum levels of PFOA in adult non-pregnant 12951SvlmJ mice after oral administration of doses > 1mg/kg/day

Conclusions

· A linear biologically supported model of gestation and lactation reasonably simulated serum levels of PFOA in non-lactating and lactating as well as nursing pups Serum levels followed the trend: non-pregnant > pregnant(non-lactating) > lactating

 Lactation is predicted to be more important than aestation as a clearance pathwar for the dam and correspondingly a major source of exposure for the nursing pups However, developmentally sensitive periods may render gestation more important toxicologically.

· The incorporation of renal resorption was necessary to simulate the non-linear behavior of serum levels in the adult non-pregnant 129515vlmJ mouse, especially at doses > 1 mg/kg at which full-litter resorption occurs in the pregnant mouse.

 These analyses indicate that a linear pharmacokinetic model may be appropriate in the analysis of gestational and lactational exposures to PFOA for doses ≤ 1 mg/kg/day, though this may be dependent on toxicological endpoint and strain.

· These model structures provide an initial template for further explorations of the pharmacokinetics of PFOA in developmental toxicity studies which involve different exposures (in utero, lactational, and post-weaning) but whose current analyses for risk are based solely on the maternal dose.

Acknowledgement

Special thanks to Barbara Abbott Chris Lau and Sue Fenton for providing advice and original data in support of these models.

References

(1) Berten, H.A., Luo, Z., Luo, C., Heusen, B.G., Luchtren, A.B., Stryner, R.J., Schzer, R.W. Gregoring biomosoliteitic models for (7) Altern H.D., Weil C.J., Schwart, B.G., Luchtren, A.B., Stryner, R.J., Schzer, R.W. Gregoring biomosoliteitic Activated Encoderuption (7) Altern H.D., Weil C.J., Schwart, B.G., Luchtren, A.B., Stryner, R.J., Luchtren, A.R., Stryner, R.J., Luc, C. Ferlbergerberg (7) Altern H.D., Weil C.J., Schwart, B.G., Luchtren, A.B., Stryner, B.J., Luchtren, A.R., Stryner, R.J., Luc, C. Ferlberg-blag (79:AL) (7) Children M., C.J., Schwart, C., Balte, B.P., A physical black interfaced and transfer and t interaction with protenzation in many sevent and a sevent of a sevent filtration rate in conscious mice using FITC-insuin c 9(9), 2, 7, 1, White et al. (2004). Sevent a deterministic of glomerular filtration rate in conscious mice using FITC-insuin c Rend Physica 286(3) F 295-6. I'm Menrole P. T. Lobianov, et al. (2000). "Rend physiclogy of the mouse." Am J Physical Rend Physical 278(3) F 339-51.

This poster does not necessarily reflect EPA policy. Mention of trad names or commercial products does not constitute endorsement or

els

time (hr) 0.1 mg/kg/day

