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• The Interagency Coordinating Committee on the Validation of 
Alternative Methods (ICCVAM) hosted a workshop to study the 
relationship between cytotoxicity and acute rodent toxicity for more 
than 361 diverse compounds compiled by the German Center for the
Documentation and Validation of Alternative Methods (ZEBET) [1]. This 
workshop showed that there is no clear relationship between these two 
types of endpoints. For example, the correlation between the 
cytotoxicity (IC50s) and the rat acute toxicity (LD50s) for 253 
compounds in this dataset is poor (equation 1):

Figure 1. The use of hybrid chemical and biological 

descriptors for  developing in vivo LD50 QSAR models.

• The primary goal of this study is to develop robust and externally 
validated predictors for acute rodent toxicity. However, all previous 
attempts to develop in vivo rat LD50 QSAR models based on ZEBET 
dataset failed. 

• In our recent study, we found that using High Throughput Screening 
(HTS) data as additional biological descriptors significantly improved 
the QSAR models for toxicity endpoints in vivo [2]. In this study, we 
have employed a similar hybrid modeling approach using cytotoxicity 
IC50 data to develop the in vivo LD50 QSAR models (Figure 1).

Figure 3. Flowchart of data modeling for in vivo LD50 prediction using 
chemical structure and  IC50 data.

• Visual inspection of the plot comparing cytotoxicity and rat acute toxicity data 
(Figure 2) leads to the following observations: 

1) cytotoxicity is directly correlated with the acute toxicity only for some 
compounds in the dataset; 

2) most of the remaining compounds have higher acute toxicity in rats vs in 
vitro; 

3) a small  fraction of compounds have lower acute toxicity in rats vs in vitro. 

• Based on these observations, we could partition compounds in the modeling 
set into three subsets: Class 1, in which compounds’ acute rat toxicity 
linearly correlates with their cytotoxicity; Class 2, in which the acute rat 
toxicity does not correlate with cytotoxicity with points positioned above the 
regression line for Class 1; and a small set of outliers with points located 
below the regression line for Class 1.

• Based on this approach to data partitioning, we have designed the analytical 
workflow as shown in Figure 3.
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• There is no clear difference in chemical similarity distribution between 
compounds in Class 1 and Class 2 (Figure 4). The predictions of LD50 values 
for the 23 external compounds are shown in Table 1.
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Table 1. Consensus prediction of 23 compounds in the external 

validation set using the two step kNN QSAR approach.

The cytotoxicity data show weak direct correlation with in vivo acute 
toxicity. Nevertheless,  these data could be used to assist QSAR modeling 
of in vivo acute toxicity. We have developed a novel two-phase approach 
that leads to successful kNN QSAR rat LD50 models. LD50 values were 
predicted for 23 external compounds with high accuracy (R2 = 0.80, SE = 
0.34, Coverage = 74%). We believe that this activity-based partitioning 
approach using the in vitro toxicity data can be successfully applied to 
other complex in vivo toxicity endpoints. This approach makes it  feasible 
to combine in vitro screening methods and QSAR modeling  to prioritize 
chemicals for in vivo animal toxicity testing.
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R2 = 0.45, SE = 0.71, N = 253 (1)

• For the purposes of this work, the dataset was curated as follows. Inorganic 
and organometallic compounds, as well as compound mixtures were excluded 
since these do not have conventional chemical descriptors used in QSAR 
studies. The curated subset from the original ZEBET dataset used in this work 
is comprised of 291 organic compounds.

• For 253 out of these 291 compounds, rat LD50 values were available. The 
following criteria were used to select the LD50 values: 1) Only LD50 values 
published in Registry of Toxic Effects of Chemical Substances (RTECS) [3] 
were used; 2) If different issues of RTECS reported different LD50 values, 
then the largest LD50 value was used.
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Figure 4. The comparison of chemical similarity between the original 

modeling set and two new subsets.

CAS Chemical Name
Exp. 

Log(1/IC50)

Exp. 

Log(1/LD50)

Real 

Class

Pred. 

Class

Pred. 

Log(1/LD50)

72571 Trypan blue 1.02 -0.81 C1 no pred. no pred.

7327879 Dihydralazine sulfate 0.85 -0.45 C1 no pred. no pred.

132605 Cinchophen 0.57 -0.30 C2 C1 -0.44

65452 Salicylamide -0.03 -1.14 C1 C1 -1.02

54115 Nicotine -0.25 0.51 C2 C2 0.05

84662 Diethyl phthalate -0.74 -1.59 C1 C1 -0.98

20624253
Diethyldithiocarbamate

sodium 3H2O
3.41 -0.82 Outli. C1 -1.39

51183 Triethylene melamine 3.11 2.30 C2 no pred. no pred.

77474 Hexachlorocyclopentadiene 2.51 0.39 C1 no pred. no pred.

76448 Heptachlor 1.23 0.96 C2 C2 0.88

86544 Hydralazine 0.48 0.25 C2 C2 -0.26

136607 n-Butyl benzoate 0.39 -1.46 Outli. C1 -0.96

108610782
3-Cyano-2-morpholino-5-

(pyrid-4-yl)-pyridine
0.02 -0.11 C2 no pred. no pred.

5435643 Isononylaldehyde -0.18 -1.36 C1 C1 -1.19

110407 Diethyl sebacate -0.21 -1.75 Outli. no pred. no pred.

69727 Salicylic acid -0.53 -0.81 C2 C1 -1.03

59427 Phenylephrine -0.65 -0.32 C2 C1 -0.96

78415722 Milrinone -0.68 0.37 C2 C2 0.08

62533 Aniline -0.84 -0.67 C2 C2 -0.47

123728 n-Butanal -1.11 -1.54 C1 C1 -1.54

71410 1-Pentanol -1.40 -1.54 C1 C1 -1.46

75092 Dichloromethane -1.54 -1.27 C2 C1 -1.89

78933 Ethyl methyl ketone -2.02 -1.67 C1 C1 -1.81

0%

10%

20%

30%

40%

0 2 4 6 8 10

Euclidean distance to the nearest neighbor

P
ai

r 
d

is
ta

n
ce

 p
er

ce
n

ta
g

e 

C2 Compounds

C1 Compounds

Full Modeling Set

mean=2

mean=2.1

mean=1.61

Figure 2. The identification of the baseline correlation between IC50 and 

LD50 values for the modeling set.
This study was supported, in part, by the NIH RoadMap grant GM076059 and by 
EPA STAR grant RD832720

230 
compound 

modeling set

23 external 
compounds

122 Class 1 
compounds

Split into three sets 
based on the fitness to 
the linear correlation  

between IC50 and LD50

93 Class 2 
compounds

40 kNN LD50 
models

642 kNN LD50 
models

15 outliers

517 kNN
classification 

models

253 compounds 
with IC50 and 
LD50 results

Long-term goal II


