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Epistasis in human disease
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“interaction between genes”
[Cordell (2002)]

“standing upon”
(i.e. one gene masks the effect of another)

[Bateson (1909)]
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Degrees of epistasis

“interaction between two or 
more genetic factors”

“strictly non-linear interaction 
between two or more genetic factors”
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“gene-gene interactions are commonly 
found when properly investigated”

[Moore (2003)]

[Motsinger, Reif, Ritchie (2007)]
© David Reif
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Novel approaches for detecting 
and characterizing interactions

Detection:
Multifactor Dimensionality Reduction (MDR)
Random ForestsTM

Restricted Partition Method (RPM)
Grammatical Evolution Neural Networks (GENN)
Symbolic Discriminant Analysis (SDA)
Multi-stage approaches:

Focused Interaction Testing Framework (FITF)
Set Association 
Joint permutation and filtering approaches

Characterization:
Logistic Regression
Interaction Dendrograms and Diagrams
Alternative solution representations (e.g. Decision Trees)
Expert Knowledge:

Pathway inference/analysis
Natural Language Processing (NLP) mining of literature
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Curse of dimensionality
[Bellman (1961)]
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Collapses combinations of attributes (e.g. two genetic factors) into 
High-Risk/Low-Risk
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Ecogenetics

“genetic determinants that dictate susceptibility to environmentally 
influenced adverse health effects”

[Costa and Eaton (2006)]

“Genes load the gun.  The environment pulls the trigger.”
[Bray (1998)]
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Collapses combinations of attributes (e.g. genetic factor plus environmental factor) into 
High-Risk/Low-Risk
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(For a genome-wide study including 500,000 SNPs)

SNPs in each subset
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Exploding combinatorics

2.0 x 1026 combinations

%     1 combination per second

%   86400 seconds per day

---------------------------------------------------

2.3 x 1021 days to complete

(6.3 x 1018 years to complete)

© David Reif[Figure adapted from Alison Motsinger]
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Progression of etiological mechanisms
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Complex diseases involve multiple 
etiological pathways
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Gene-Environment interactions are 
context dependent
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Measuring (characterizing) 
the environmental context
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Asthma etiology
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Example strategy for detecting and 
characterizing gene-environment 

interactions associated with asthma

Detection:

Characterization:

Use Random Forests (RF) to identify genetic 
and/or environmental variables most associated 
with asthma.

Use interaction dendograms to characterize the nature of the interactions 
among the genetic variables and environmental variables most associated 
with asthma as identified by Random Forests.

Environmental-Factor-A

Gene-B_SNP-1

Gene-B_SNP-2

Environmental-Factor-C
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Variable importance using RF on         
+     data analyzed simultaneously
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Characterizing interactions

Interaction dendograms for the genetic variables (SNPs) and environmental variables 
(indoor allergen measurements) most associated with asthma as identified by Random 
Forests. 

Positive Interaction (Synergy)

Negative Interaction (Redundancy)

Environmental-Factor-A

Gene-B_SNP-1

Gene-B_SNP-2

Environmental-Factor-C

Interaction StrengthWeak Strong
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Characterizing interactions

Interaction dendograms for the genetic variables (SNPs) and environmental variables 
(indoor allergen measurements) most associated with asthma as identified by Random 
Forests. 
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Interpretation:  The redundancy between the two SNPs in Gene-B may be 
indicative of high intragenic LD (e.g. r2 > 0.9).

© David Reif



Office of Research and Development
National Center for Computational Toxicology

Conclusions & Recommendations

• Conclusions:
– Given current analytical and computational power, study design is the major 

driver behind detection of G*G or G*E interactions.
• Proper measurement of exposure variables
• Proper characterization of endpoints

• Recommendations:
– Interdisciplinary science

• Comprehensive studies include experts in multiple fields
– Both novel and traditional methods are valuable

• Choice depends upon context
– R (and related projects) allows facile implementation of new methods
– GUIs prevalent for complex methods
– “context independence” of methods

– Adopt a multifactorial mindset
• Accept low-hanging fruit (univariate fruit is the sweetest of all), but explore 

interaction space

© David Reif
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