

Detection and characterization of gene-gene and geneenvironment interactions

David Reif, Ph.D.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY COMPUTAT

Office of Research and Development National Center for Computational Toxicology

We analyze only a slice of the information related to complex phenotypes

Epistasis in human disease

"standing upon" (*i.e.* one gene masks the effect of another) [Bateson (1909)]

"interaction between genes" [Cordell (2002)]

Office of Research and Development National Center for Computational Toxicology

Quantitative Description

Degrees of epistasis

Penetrance = P(Disease | Genotype)

"strictly non-linear interaction between two or more genetic factors"

"Strict"

"gene-gene interactions are commonly found when properly investigated"

[Moore (2003)]

[Motsinger, Reif, Ritchie (2007)]

Novel approaches for detecting and characterizing interactions

Detection:

Multifactor Dimensionality Reduction (MDR)

Random Forests[™]

Restricted Partition Method (RPM)

Grammatical Evolution Neural Networks (GENN)

Symbolic Discriminant Analysis (SDA)

Multi-stage approaches:

Focused Interaction Testing Framework (FITF)

Set Association

Joint permutation and filtering approaches

Characterization:

Logistic Regression Interaction Dendrograms and Diagrams Alternative solution representations (e.g. Decision Trees) Expert Knowledge: Pathway inference/analysis

Natural Language Processing (NLP) mining of literature

Novel approaches for detecting and characterizing interactions

Detection:

Multifactor Dimensionality Reduction (MDR)

Random Forests[™]

Restricted Partition Method (RPM)

Grammatical Evolution Neural Networks (GENN)

Symbolic Discriminant Analysis (SDA)

Multi-stage approaches:

Focused Interaction Testing Framework (FITF)

Set Association

Joint permutation and filtering approaches

Characterization:

Logistic Regression Interaction Dendrograms and Diagrams Alternative solution representations (e.g. Decision Trees) Expert Knowledge: Pathway inference/analysis

Natural Language Processing (NLP) mining of literature

Curse of dimensionality

[Bellman (1961)]

$$N = 100$$

Cases = 50
Controls = 50

Curse of dimensionality

[Bellman (1961)]

$$N = 100$$
Cases = 50
Controls = 50

Curse of dimensionality

[Bellman (1961)]

Multifactor Dimensionality Reduction (MDR)

Low-Risk

3

17

Case Control

Collapses combinations of attributes (e.g. two genetic factors) into High-Risk/Low-Risk

"genetic determinants that dictate susceptibility to environmentally influenced adverse health effects"

[Costa and Eaton (2006)]

"Genes load the gun. The environment pulls the trigger." [Bray (1998)]

Multifactor Dimensionality Reduction (MDR)

Collapses combinations of attributes (e.g. genetic factor plus environmental factor) into High-Risk/Low-Risk

Exploding combinatorics

SNPs in each subset

Exploding combinatorics

Complex diseases involve multiple etiological pathways

Progression of etiological mechanisms

Gene-Environment interactions are context dependent

Measuring (characterizing) the environmental context

Concentration in Air

Asthma etiology

Example strategy for detecting and characterizing gene-environment interactions associated with asthma

Detection:

Use Random Forests (RF) to identify genetic and/or environmental variables most associated with asthma.

Characterization:

Use interaction dendograms to characterize the nature of the interactions among the genetic variables and environmental variables most associated with asthma as identified by Random Forests.

Variable importance using RF on **t** data analyzed simultaneously

Low

Environmental Protection

Agency

Importance

Variable importance using RF on **t** data analyzed simultaneously

Importance

Low

Environmental Protection

Agency

© David Reif

Characterizing interactions

Interaction dendograms for the genetic variables (SNPs) and environmental variables (indoor allergen measurements) most associated with asthma as identified by Random Forests.

Characterizing interactions

Interaction dendograms for the genetic variables (SNPs) and environmental variables (indoor allergen measurements) most associated with asthma as identified by Random Forests.

Conclusions & Recommendations

<u>Conclusions:</u>

- Given current analytical and computational power, study *design* is the major driver behind detection of G*G or G*E interactions.
 - Proper measurement of exposure variables
 - Proper characterization of endpoints

<u>Recommendations:</u>

- Interdisciplinary science
 - Comprehensive studies include experts in multiple fields
- Both novel and traditional methods are valuable
 - Choice depends upon context
 - R (and related projects) allows facile implementation of new methods
 - GUIs prevalent for complex methods
 - "context independence" of methods
- Adopt a multifactorial mindset
 - Accept low-hanging fruit (univariate fruit is the sweetest of all), but explore interaction space

Acknowledgments

Alison Motsinger (Vanderbilt University) alison.motsinger@vanderbilt.edu

Jason Moore (Dartmouth Medical School) http://epistasis.org

Bill White (Dartmouth Medical School) http://epistasis.org Elaine Cohen-Hubal (U.S. EPA) http://www.epa.gov/comptox

Jane Gallagher (U.S. EPA) http://www.epa.gov/NHEERL/hsd/

Brett McKinney (University of Alabama-Birmingham) http://www.genetics.uab.edu/McKinneyLab

Marylyn Ritchie (Vanderbilt University) http://chgr.mc.vanderbilt.edu/content/ritchie

Aleks Jakulin (Columbia) http://www.stat.columbia.edu/~jakulin John Little (Virginia Polytechnic Institute) http://www.cee.vt.edu/people/little.html

> John Wambaugh (U.S. EPA) http://www.epa.gov/comptox

DISCLAIMER: The contents of this presentation do not necessarily reflect EPA policy.