A Framework for Categorizing Biological Indicators According to their Sensitivity to Climate Change

Britta Bierwagen

Global Change Research Program
National Center for Environmental Assessment
Office of Research & Development
U.S. Environmental Protection Agency

Climate Change Effects on Biocriteria Workshop

March 27-29, 2007 Baltimore, MD

Key Messages

Biological indicators may be affected by climate change

Categorizing indicators according to climate sensitivity is one step in controlling for or detecting climate change effects

Outline

- A very brief overview of biocriteria
- How climate change affects biological indicators
- Categories of indicators
- Indicator classes
- Implementation of framework

Biocriteria

- Targets define desired biological condition of waterbody
 - Assess ecosystem health
 - Element of water quality standards
- EPA biocriteria guidance documents exist for:
 - Rivers & Streams, Lakes, Wetlands, Estuaries & Coastal Areas
- Biocriteria guidance is under development for:
 - Coral Reefs

State Biocriteria Program Goals

- Stressor identification
- Monitor BMP effectiveness
- TMDL assessment & monitoring

- Baselines
- Water quality standards
- Aquatic life uses determination

- Additional stressor on ecosystem
- Affects both reference & non-reference sites
- Current indicators may be confounded by climate change effects on ecosystems
- Biocriteria program management goals
 - Difficult to establish goal if baseline is changing
 - Or goals may be impossible to meet

- Additional stressor on ecosystem
- Affects both reference & non-reference sites
- Current indicators may be confounded by climate change effects on ecosystems
- Biocriteria program management goals
 - Difficult to establish goal if baseline is changing
 - Or goals may be impossible to meet

- Additional stressor on ecosystem
- Affects both reference & non-reference sites
- Current indicators may be confounded by climate change effects on ecosystems
- Biocriteria program management goals
 - Difficult to establish goal if baseline is changing
 - Or goals may be impossible to meet

- Additional stressor on ecosystem
- Affects both reference & non-reference sites
- Current indicators may be confounded by climate change effects on ecosystems
- Biocriteria program management goals
 - Difficult to establish goal if baseline is changing
 - Or goals may be impossible to meet

How do existing biological indicators respond to climate change?

RESEARCH & DEVELOPMENT

Categories of Indicators

	Insensitive to Climate Change	Sensitive to Climate Change	Sensitive to Climate Change and Other Stressors
Indicator	Warmwater fish	Fish community composition	Salmon egg to fry survival
Response	No change in majority of range	Cold- and coolwater fish species decline, warmwater fish species increase	Decreased survival due to increased turbidity from sediment input due to increased precipitation and/or land use change

What Defines Climate-Insensitive?

- Ecological events not cued to temperature
- Species is tolerant of broad temperature range
- Tolerant of wide range of hydrologic conditions
 - High flows or low flows
 - High variability in flow
 - Variation in salinity

What Defines Climate-Sensitive?

- Ecological events cued to temperature
- Species exists in narrow temperature range
- Intolerant of certain hydrologic conditions
 - High flows or low flows
 - Saltwater intrusion

Climate-Sensitive Indicator Classes

- Phenology (timing of emergence, reproduction, flowering, etc.)
- Number of reproductive periods
- Vulnerable life stage to climate variable
- Thermal tolerance
- Hydrological tolerance

Phenology

- Earlier emergence of stoneflies and mayflies with warmer temperatures
- Earlier trout spawning in warmer water

Longer growing season leads to an increase in the number of reproductive periods

- Increase in algal productivity
- Additional reproductive periods of amphipod species

Life stage vulnerable to climate variable

 Decrease in salmon egg to fry survival from increased turbidity from erosion

Thermal tolerance

- Increase in peak abundance of thermophilic copepod species
- Shift from cold- and coolwater to warmwater fish species

Hydrological tolerance

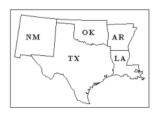
- Decline of drought intolerant mussel spp.
- Decrease in autumn spawning salmonid species
- Decrease in salt intolerant wetland plants

What are the next steps?

RESEARCH & DEVELOPMENT

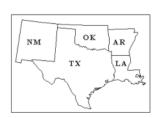
Using the Framework

- Evaluate and understand how current indicators respond to climate change
- Evaluate novel indicators to detect climate change
- Determine how indicator responses affect a Biological Condition Gradient and biocriteria in standards



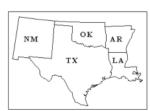
Using the Framework

- Evaluate and understand how current indicators respond to climate change
- Evaluate novel indicators to detect climate change
- Determine how indicator responses affect a Biological Condition Gradient and biocriteria in standards



Using the Framework

- Evaluate and understand how current indicators respond to climate change
- Evaluate novel indicators to detect climate change
- Determine how indicator responses affect a Biological Condition Gradient and biocriteria in standards



Extending the framework

- Alter design of sampling and monitoring programs (Case Study 1)
- Monitor reference and nonreference sites for similar changes (Case Study 2)

Thank You!

Questions?

