Climate Change Effects on
Rivers and Streams

David Allan
University of Michigan
dallan@umich.edu


mailto:dallan@umich.edu

Primary Questions

« How Is climate change likely to affect river and
stream ecosystems?

— Mechanisms
— Evidence
e What are the implications for management?

— Assessment tools
— Management opportunities



Mechanisms / Affected Processes

e Temperature

— Daily, seasonal, and interannual variation
— Stream size (volume) / longitudinal position
— Latitudinal position / Elevation and topography

e Flows
— Daily, seasonal, and interannual variation
— Stream size / longitudinal position
— Geography and climate

e Indirect effects

— Basal resources
— Disturbance regime

* Interactive effects
— Multiple stressors influence stream ecosystems



River heat exchange processes
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Size and longitudinal position

Stream temperatures are
close to groundwater
temperatures near source

Streams warm in the
downstream direction

Diel variability increases
initially, then declines
due to thermal inertia of
larger water volume
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Influence of warmer water
temperatures

Dissolved oxygen and water quality
Biological productivity

Bioclimatic envelopes

Phenology, life cycle events

Species interactions
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Thermal Niche

Thermal niche (lab preferences)

cold cool warm
4 °C niche 11-15°C 21-25°C 27-31 °C
10 °C niche 8-18 °C 18-28 °C 24-34 °C

Magnuson et al 1979

Distributional studies using mean July temperatures
cold cool warm
<19°C 19-22°C 22 °C

Wehrly et al 2003
Maximum tolerances better studied than minimum

Diversity of warmwater fishes > coldwater fishes
Warming will often increase diversity



Smallmouth bass Brook trout
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Evidence of
stream warming

Strong evidence of changes
In length of season

Freeze dates are later,
thaw dates are earlier

From Magnuson J
and IPCC reports
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(a) the past 140 years
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Interannual variability in water
temperature over 20" Century at
three sites in Austria.

(a) Mittersill, a mountain catchment;
(b) Wels, a mid-elevation catchment
with lakes; (c ) Ybbs, the mainstem
Danube.

Annual means of air and water
temperatures are correlated, but not
especially strongly

A significant temperature rise of 1.5 °C
on annual basis 2 °C during summer

Effect appears to be magnified by
presence of lakes

Other complications include heated
effluent, impoundments, and
abstractions
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Modeling water temperature
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Tw =i+ 1 A -T,) Figure Ia. Weekly measured stream temperatures at the Salt Fork of the Arkansas River near let,
¢ OK, versus weekly air temperatures recorded at Wichita, KS. The line represents the nonlinear least
where: squares regression between stream temperatures and air temperatures.

T =estimated water temperature
T = measured air temperature
m = estimated minimum water temperature Mohseni et al. 2003
a = estimated maximum stream temperature
h = air temperature at the inflection point of the function
g = measure of the steepest slope of the function



GLOBAL WARMING AND FISH HABITAT IN U.5. STREAMS
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Figure 9. Changes in fish thermal habitat under the 2 x CO9 climate scenario. For cool and warm

water fishes lower temperature constraints are set at 0°C and 2°C. Changes are given as percentage

of past conditions.

Mohseni et al. (2003)



Some possible concerns

Early models assumed that stream temperature
warmed linearly with air temperature (Eaton and
Scheller 1996)

Subsequent models assume a leveling off of water
temperatures above 25 °C (Mohseni and Stefan
1999)

Although air and water temperatures are strongly
correlated, stream warming is primarily due to
Irradiance, not convective heating from the air.

Atmospheric warming iIs due to heat trapping, not
Increased Irradiance.



Dispersal

Poleward locations with suitable bioclimatic
envelopes may not have suitable habitat etc.

Catchment boundaries are natural dispersal
barriers

Stream size and habitat conditions may be strong
dispersal filters

RIvers may flow east-west rather than north-south

Dispersal may be towards headwaters (which act
Ike mountain-tops)




Dispersal limitations

e Species on mountain tops must shift to higher
elevation sites (if they exist)

e Species In headwaters face a similar challenge

Present +3°C

Present and potential
future distribution of
trout in the Rocky
Mountains, given a

3 °C summer warming

Kelleher and Rahel (1996)




Streamflow

Varies over time

— Day to day, week to week, year to

year

— Inter-annual variation of wet and

dry years

Varies along a river’s
length

Varies with climate
and geology

Flow Is viewed as a
‘master variable”

—/

Flow Regime
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From Poff et al. 1997




The flow regime

Magnitude of discharge

— Amount of water moving past a point, per unit time

Freguency of events
— How often a flow of specified magnitude occurs

Duration
— The time period of a specified flow

Timing
— Regularity and seasonal predictability of events

Rate of change
— How quickly flow increases and decreases

Poff et al. 1997



Controls of stream flow

R

R = runoff
P = precipitation

ET = evapotranspiration

S = storage

P-ET +S
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Discharge {m7s™)
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Flow duration (exceedance)
curves describe the percent of
time that a given magnitude
of flow Is exceeded

Q-5 and Qg are low-flow
Indices, exceeded 75% or
95% of the time

Q,: and Q: are high-flow
Indices, exceeded only 25%
or 5% of the time

Usually based on daily flows
and annual hydrograph

Shape of curve indicates
stable vs flashy rivers



Flow under a changing climate

e Some expectations
— more variable and severe P
— higher ET

— Hard to forecast how annual and seasonal balance between
P and ET will change

* More frequent floods:

— affect export of organic matter, sediments, nutrients,
channel shape, instream habitat.

— More frequent droughts...

* Changing flow regimes
— from snowmelt to winter rainy
— from 15torder to ephemeral, etc...



Timing of streamflow

Spring pulse and
center of mass of
annual flow (CT)

over the period L

1948-2002 show
earlier onset (10-30
days) throughout
western North

b)JTrends in CT
(1948-2002)

America i

Partly but not
completely
explained by PDO

200°

2200 240° 260°

Stewart et al. 2004



Flow and biological assemblages

Hydrologically stable Hydrologically variable
« Stable baseflow « High frequency of spates
e High predictability of daily < High variability of daily
flows flows

Fish assemblages from more variable sites:

 exhibited generalized feeding strategies

 were associated with silt and general substrate categories
 characterized by slow-velocity species with headwater affinities
* tolerant of sedimentation

Poff and Allan (1995)



Other factors influence flow

Land-use change tends to increase flow variability
Flow conveyances (urban, ag) increase flashiness
Impoundments tend to reduce flow variability

Water abstraction lowers seasonal base flows and
accentuates effects of droughts



Indirect Effects

Basal resources
Disturbance regime

Species interactions
— spread of invasives

Water chemistry

— Nutrient and sediment loads
Channel morphology and dynamics
— habitat



Basal resources

Example: Decaying leaves (and microbes) form the base of the food
web in woodland rivers. We can predict most (not all) of the likely
effects of elevated CO2 on this energy input,, but we cannot predict the
ultimate outcome with confidence.
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decomposition rate spates
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+ and feeding l Food quality
Incorporation of
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Energy supply to
upper trophic levels Based on work of N

Tuchman and S Riers



Disturbance

In unregulated versus regulated
sections of a California stream,
more energy flows to
Dicosmoecus in regulated reaches,
and to young steelhead in
unregulated reaches.

Visibly conspicuous algae
Predator-susceptible grazers

Predator-resistant grazers

o o w »

Predators

Wooton et al. 1996
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Invasive species

Rainbow smelt
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Models that predict the
future distribution of
Invasive species have met
with some success

(but use static climaté)
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Interactions with other stressors

« Warming interacts with impoundments, shade, and
water abstraction

 Flow variability interacts with impoundments,
land use, impervious surfaces, flow conveyances

e Species assemblages and food webs are affected
by pollutants, habitat loss, invasives



Yes, we can say something...(1)

The growing season will lengthen
Warming will occur
Overall productivity will increase

Species will disperse poleward to the extent
possible

Some invasive species will re-distribute

Assemblage composition will change



Yes, we can say something...(2)

Flow will become more variable, with more
floods and droughts

Water management likely will intensify
Riparian vegetation composition will change

Food web pathways may change



Bioassessment implications

EXxpect changes In:
— Species composition
— Species richness and relative abundance

Any change Is disruptive, at least for a time
Systems already are stressed

Re-structuring of biological assemblages may
extend over centuries

Possible (continuous) need to re-calibrate
assessment tools



Adaptation by managers

Adjust assessment tools to changing biota

Adjust targets/expectations

Try to identify and manage habitats of the future
for species of interest

Try to identify and manage dispersal corridors to
habitats of the future



Thank You



