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ABSTRACT

Risk management solutions resulting from research on indoor air quality can lead to
improved human health, worker productivity, student performance, and quality of the
common environment. Effective management of indoor health risks requires developing
scientific and engineering information for decision making, developing and promoting
technologies to protect and improve indoor environmental quality, and providing technical
support and information transfer to stake holders to promote pollution prevention and
sustainability. In the past, indoor environmental risk management has, for the most part,
focused on control of primary pollutants, which enter the indoor environment directly from
outdoor and indoor sources. Recent developments in indoor chemistry suggest that
secondary pollutants, generated by chemical reactions in indoor air and on interior surfaces,
may be more important than the primary pollutants, and that many types of chemically
based air cleaning and decontamination methods have been developed but some have
unwanted consequences. These new findings present both challenges and opportunities to
indoor environmental risk management. This paper provides a brief overview of the recent
advances in indoor chemistry and its relevance to indoor environment risk management.

INTRODUCTION

Indoor pollution is one of the major environmental factors affecting human health in both
developing and developed countries. The public awareness of building related health
problems, such as asthma, and the desire for acceptable indoor environmental quality (IEQ)
are greater today than ever before. However, solving IEQ problems has proven challenging,
and requires a joint effort by many types of professionals.

The ultimate goal of indoor environmental quality research is to protect human well-being
by reducing the health risks and improve the quality of indoor environments. Effective
management of indoor health risks requires developing scientific and engineering
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information for decision making, developing and promoting technologies to protect and
improve indoor environmental quality, and providing technical support and information
transfer to stake holders to promote pollution prevention and sustainability. 

The rapid development of indoor environmental chemistry in recent years has added new
dimensions to indoor environmental risk management. This paper provides a short
summary of the advances in this field and discusses their implications to risk management.

RECENT ADVANCES IN INDOOR ENVIRONMENTAL CHEMISTRY

Indoor environmental chemistry, or indoor chemistry for short, utilizes the theory and
methods of chemistry to study pollutant generation, transport, transformation, and fate
indoors, and to improve indoor environmental quality. While studies in this field have
continued for decades, major advances did not occur until the 1990s.  After the turn of the
century, a multitude of reviews, editorials, feature articles, summaries, and commentaries
were published,1-10 symbolizing the establishment of a new science discipline under indoor
environmental science.

The major advances in indoor environmental chemistry can be broken down into seven
areas: (1) chemicals in the indoor environment, (2) chemical reactions in indoor sources,
(3) chemical reactions in indoor air, (4) chemical reactions on interior surfaces, (5)
chemically based air cleaning,  (6) chemically based decontamination, and (7) indoor
analytical chemistry. Brief discussions on the first six areas are provided below. The last
topic is ignored because of  insufficient collection of information. It is recommended that it
be discussed by others in the near future. 

Chemicals in the Indoor Environment

The U.S. EPA and U.S. Consumer Product Safety Commission (CPSC) identified 11 major
indoor air pollutants in homes: radon, environmental tobacco smoke, biologicals, carbon
monoxide, nitrogen dioxide, organic gases, respirable particles, formaldehyde, pesticides,
asbestos, and lead11. However, many more chemicals can be found in the indoor
environments. U.S. EPA’s Source Ranking Database12 complies formulation data for about
12,000 potential indoor pollution sources, and lists 1377 chemical ingredients. The
Household Products Database developed by the National Institute of Health13 contains 2512
chemical ingredients used in 5011 household products. In both databases, each chemical
ingredient is associated with a unique CAS Registry number. Although many of those
chemicals are not of immediate or direct health concerns, some are potentially harmful.
Thus, understanding their occurrence, concentrations, and distribution is one of the first
steps to identify potential pollutants and their sources.

Indoor pesticides are a special group of consumer products that include biocides,
fungicides, and insecticides. According to Godish14, there are approximately 20,000
household pesticide products used in the United States and they include 300 active
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ingredients and 1700 inert ingredients. Butte15 compiled recent studies on pesticides
concentrations in non-occupational indoor environments in indoor air and house dust. 

There are two major sources of combustion-generated chemicals: fuel combustion and
environmental tobacco smoke. In addition to carbon dioxide and water, fuel combustion
(including burning candles and incense) also generates nitrogen oxides, carbon monoxide,
particulate matter, aldehydes, volatile organic compounds, and polycyclic aromatic
hydrocarbons. Fuels containing sulfur will produce sulfur dioxide.14 Combustion of
biofuels in homes in developing countries is one of the most serious indoor air pollution
problems in the world. 

Over 4000 compounds have been identified in laboratory-based studies of mainstream
tobacco smoke.16,17 Major chemicals in gas and particle phases of tobacco smoke can be
found in refs 18 and 19.

Biologically generated chemicals include microbial volatile organic compounds (MVOCs),
bacterial and fungal toxins, and allergens. Over 100 MVOCs have been identified,
including alcohols, aldehydes, ketones, esters, ethers, terpenes, furans, and aromatic
compounds.20

Outdoor contaminants can enter the building through penetration, intrusion, and tracking-
in. A useful list of major air pollutants is the 189 original hazardous air pollutants (HAPs)
published  by U.S EPA under the Clean Air Act Amendment of 1990 (http://www.epa.gov/
ttn/atw/ orig189.html). A few modifications have been made since the initial publication of
the list ( http://www.epa.gov/ttn/atw/pollutants/atwsmod.html).

Chemical Reactions in Indoor Sources

Pollutant emissions from indoor sources may involve physical, chemical, and biological
processes. The presence of chemical reactions often makes the emission pattern complex
and difficult to predict. For instance, urea-formaldehyde resins, which are widely used as 
binding agents in manufacturing engineered wood, are a well-known source of indoor
formaldehyde. In addition to residual formaldehyde, hydrolysis of the methylol end groups
and, less commonly, methylene bridges of the resin molecules also generate
formaldehyde.14 It is the hydrolytic reactions that make the emission rate sensitive to
moisture content in the material and in indoor air. Thus, understanding of the chemical
reactions occurring in indoor sources is essential not only for indoor source
characterization but also for pollution prevention and risk management. Table 1 lists major
types of chemical reactions in indoor sources that have been studied in recent years.



Table 1. Summary of chemical reactions in indoor sources

Source Type Chemical Class Reaction Type Reaction Products References

Water-based cleaners Ethoxylated
alcohols autoxidation peroxides, formaldehyde, ethoxylated

aldehydes 21-24

Alkyd paint Unsaturated fatty
acids autoxidation hydroperoxides and aldehydes 25-29

Engineered wood Formaldehyde
resins hydrolysis hydroperoxides and aldehydes 14, 30, 31

Concrete Alkalinity* alkaline
hydrolysis alcohols, etc. 32-34

Fluoropolymer treated
articles (i.e, non-stick
cookware)

fluoropolymers oxidative
pyrolysis fluorinated acids, small fluorocarbons 35-36

SF6 tracer gas -- oxidative
pyrolysis SO2, HF, H2SO4 37

UV-curing coating
materials photoinitiators photolysis benzaldehyde, cyclohexanone, and

benzophenone, and monomers 38

Ozone generator oxygen in air ozonization ozone 39

Dry-process photocopier oxygen in air ozonization ozone 40

Interior surface materials many organic
chemicals biodegradation MVOCs 20, 41-43

* Causing flooring components attached to the concrete (e.g., adhesives, plasters, carpet backing, etc) to decompose.
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Chemical Reactions in Indoor Air

In most indoor environments, there is little or no direct solar irradiation that can initiate
vigorous photochemical reactions. Therefore, “dark” reactions are more important in the
indoor environment than many photo-induced reactions responsible for the urban smog. On
the other hand, many indoor sources can emit chemically reactive compounds, and
chemicals sensitive to photolysis tend to have longer lives indoors. In recent years,
researchers have attempted to identify potentially important gas-phase reactions based on
reaction mechanisms and kinetics, as well as potentially hazardous reaction products.
Weschler and Shields3 proposed five broad categories of reactions that may be important
indoors: (1) reactions between ozone and unsaturated hydrocarbons, (2) reactions between
ozone and nitrogen oxides, (3) thermal decomposition of peroxyacyl nitrates, (4) free
radical reactions, and (5) heterogeneous reactions. The same authors also listed several
categories of reaction products that may be important to indoor air quality, including
aldehyde, ketones, carbonyl acids, peroxyacyl nitrates, and stabilized free radicals on
aerosols. The role of free radicals in indoor air chemistry have been discussed by several
authors.7, 8, 44-46

Many laboratory studies have been conducted to investigate the reactions that are
potentially important to indoor air quality. Most of the studies focused on ozone initiated
reactions, especially ozone-terpene reactions. Aldehydes, secondary organic aerosols, and
hydrogen peroxide are among the most extensively studied reaction products.47-62
Although still rare, determinations of rate constants for reactions relevant to indoor
environments have also been reported.48, 63  

Over a dozen field measurements of chemically reactive species indoors have been
reported. These studies provide evidences that indoor chemistry may play an important role
in affecting indoor environmental quality, at least under certain conditions. Measurements
have been focused on chemically reactive species 47, 64-74 and OH radicals.75

Studies on indoor air chemistry models started over two decades ago.76  Since then, several
papers have been published.46,77-80 Overall, indoor chemistry models are far from mature.
Representations of heterogeneous reactions are especially weak.

Chemical Reactions on Interior Surfaces 

A unique feature of all indoor environments is the large and diverse interior surfaces.
Therefore, interactions between airborne species and the surfaces are a critical part of
indoor chemistry. As early as three decades ago, researchers started to notice that the decay
of nitrogen dioxide concentrations inside buildings is faster than the theoretical prediction
based solely on the ventilation rate.81 Weschler9 suggested that potentially important
heterogeneous reactions at interior surfaces include ozone-initiated surface chemistry,
surface chemistry on building filters, acid-base surface chemistry, and surface chemistry
involving esters and damp.
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One important research area of indoor heterogeneous reactions is the deposition rates of
chemically reactive species on surfaces. Grøntoft and Raychaudhuri82 compiled
experimentally determined deposition velocities published in the past three decades for
ozone, nitrogen dioxide, and sulfur dioxide on different surfaces. The data ranges were
0.0007 to 0.109 cm/s for ozone, 0.0006 to 0.0919 cm/s for nitrogen dioxide, and 0.002 to
0.01 cm/s for sulfur dioxide.

Another important research area is the formation of secondary pollutants by heterogeneous
reactions. Spicer et al.83 studied the interaction of NO2 with 34 materials commonly used in
homes. They found that the reaction products include HONO, HNO3, and NO, and that the
distribution of nitrogen among the three reaction products is material dependent. Interaction
of ozone with carpet is among the most intensively studied indoor heterogeneous reactions
so far, with aldehydes being the major products of concern.1, 84, 85 The results suggest that
ozone may react with the unsaturated volatile hydrocarbons from the carpets, carpet fibers,
and vegetable oils coated on the carpet. Other types of surfaces that react with ozone
include latex paint86,  laminated counter-top coated with oils and detergent87, and simulated
aircraft cabin.88 

Chemically-Based Air Cleaning

In addition to studying indoor pollutant sources, transport, transformation, and fate, indoor
environmental chemistry also plays a vital role in solving IEQ problems and improving
IEQ. Chemically based air cleaning is one of such areas. According to Daniels,89 air
cleaning devices fall into six categories: (1) bipolar air ionization, (2) ozone generation, (3)
electrostatic precipitation, (4) gas-phase filtration, (5) solid media filtration, and (6)
catalytic oxidation. Apparently, chemical processes are involved in most of these air
cleaning devices.

Air cleaning devices based on chemosorption have been used for a long time. In
chemosorption, the gas molecules are held to the surface by relatively strong chemical
bonds, and the molar enthalpy change ranges from -10 to -200 kcal/mole. Chemosorption
media are typically produced by impregnating sorbents (activated carbon, activated
alumina, silica gel, etc.) with chemically reactive compounds, such as bromine, metal
oxides, iodine, potassium iodide, and sodium sulfide. Most of these chemicals are highly
selective in removing air pollutants. For instance, elemental sulfur is effective only for
mercury. Activated alumina impregnated with potassium permanganate (KMnO4) is
effective in removing low-molecular-weight gases (e.g., HCHO) and has been used in
various types of industrial and commercial air cleaning systems.90 However, like many
other types of air cleaners that remove VOCs by oxidation, this method may result in
incomplete oxidation, generating aldehydes, ketones, and acids. Overall, progress in this
area has been slow and applications of chemosorption methods to residential buildings have
been limited.

Air ionizers are widely available on the market. Air ions can be generated by corona
discharge. Most air ion generators used indoors are designed to produce negative air ions
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(NAIs), with superoxide (O2
-) being the major and most stable ion.91 When the ions adhere

to particles, the latter can be attracted to interior surfaces or filters more easily. Therefore,
air ion generators are used mainly to remove indoor particles.92 Germicidal effects are also
reported.93 Air ions can also react with VOCs, but the removal rates vary.91 Potential
problems associated with this type of air cleaners include partial oxidation products (i.e.,
aldehydes)91 and ozone generation.92, 93 The latter can be minimized by design or destroyed
after generation. Total elimination of ozone is difficult, however.

Ozone generators are sold as cleaning devices in many countries. They generate ozone by
silent electric discharge. Concerns over these products include (1) ozone is an air pollutant
itself, (2) low removal efficiency for indoor pollutants, and (3) potential formation of
secondary air pollutants. Many studies have been conducted to evaluate both the positive
and negative effects (e.g., ref 94). Most researchers agree that ozone generation is not a
practical and effective means of improving indoor air quality.  

Using catalytic methods to remove indoor air pollutants is a relatively new research area of
environmental catalysis.95 Interest in this area, especially in photocatalysis, has been
growing rapidly. Photocatalysis is used as a non-specific term for any catalysis in which
photons are implicated. For air cleaning, heterogeneous photocatalysis – a technology
based on the irradiation of a semiconductor such as titanium dioxide (TiO2) – is most
commonly used. The basic principles and mechanisms of photocatalysis can be found in ref
96. Most researchers believe that the hydroxyl radicals generated at the surface of the
catalyst are the primary oxidizing species. For indoor applications, this technology has been
used to mineralize VOCs and inactivate microorganisms. A large body of publications is
now available on this topic, including a literature review by Zhao and Young.97 Although
this technology is promising, studies show that some systems sold at the market cannot
remove formaldehyde efficiently.98 In addition, the potential adverse effects need to be
addressed. For instance, formation of partially oxidized products (e.g., aldehydes) have
been reported.99, 100

Chemically Based Decontamination

Indoor decontamination methods fall into two categories: surface decontamination (with
liquids, foams, or gels) and building decontamination (with gases or vapors). Unlike air
cleaning processes, which remove pollutants from indoor air, the goal of decontamination
is to eliminate or modify pollution sources.

Surface cleaners are used in homes and offices on daily basis for floors, furniture, and other
surfaces. Many of the cleaning products also serve as disinfectants. Potentially hazardous
chemicals used in the formulations and potential formation of secondary pollutants are
discussed by Wolkoff et al.101, Nazaroff and Weschler102, and Guo.103 Brief discussions on
cleaning methods (including duct cleaning) are given by Kildesø and Schneider.104 Surface
decontamination is also used to remove contaminants deliberately released into a building.
Available methods are summarized in ref 105. Cleaning of unlined air duct and duct liners
is a special type of indoor surface decontamination. A variety of antifungal chemicals have
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been used in polymeric sealants to prevent fungal contamination in the heating, ventilation,
and air-conditioning systems.106, 107

Building decontamination is needed when the indoor pollutant sources (e.g., molds) are so
widespread that air cleaning cannot solve the problem, or when hazardous chemical or
biological agents are accidentally or deliberately released into the building. The most
commonly used chemical method for building decontamination is gas or vapor fumigation.

Ammonia fumigation has been used to reduce the formaldehyde levels in mobile homes.
Ammonia reacts with free formaldehyde to form a solid, fused-ring compound known as
hexamethylene tetramine or urotropine. Ammonia is generated on site by heating
ammonium bicarbonate (NH4HCO3) or ammonium carbamate (NH4CO2NH2). In addition
to reacting with free formaldehyde, ammonia is said to also react with, and thus stabilize,
the methylol end groups on the urea-formaldehyde resin, making the resin less susceptible
to hydrolysis. A concise summary of this method, including pros and cons, is given by
Godish.14 

Several chemical methods have been developed for control of biological contaminants in
buildings. Fumigants include chlorine dioxide, hydrogen peroxide, formaldehyde, and  
methyl bromide (CH3Br) as fumigant. An excellent review on this topic is given by ref 105.

RELEVANCE TO INDOOR ENVIRONMENTAL RISK
MANAGEMENT

As a decision-making process, risk management weighs scientific evidence, political
judgement, and health and economic interests of various stake holders in deciding how to
incorporate risk assessment results.108 Indoor environmental risk management can benefit
from indoor environmental chemistry through better understanding of pollutant sources,
transport and fate and through the development of effective pollution control technologies
and pollution prevention strategies. In particular, the knowledge of indoor environmental
chemistry helps define the problem, analyzing the risks, and examine the options. For
instance, we now know that chemical reactions (e.g., hydrolysis and autoxidaton) within
the sources may affect the emissions significantly. Indoor homogeneous and heterogeneous
reactions may generate pollutants that are more harmful than their parent chemicals. Many
new indoor sources found in recent years are direct results of indoor chemistry research
(see Table 1).  Understanding of the chemical processes in the urea-formaldehyde resins
has led to the reduction of formaldehyde emissions from engineered wood in the last two
decades. Such knowledge has also helped researchers understand why humidity affects
formaldehyde emission and to what extent humidity control can reduce the emission.
Results from studies on ozone deposition have made it easier to predict indoor ozone levels
by mathematical modeling. There is no doubt that further research on indoor chemistry will
solve more IEQ problems. For instance, identification of exthoxylated non-ionic surfactant
that are less sensitive to autoxidation may reduce the formation of formaldehyde in
household cleaners.  
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Advances of indoor environmental chemistry also pose challenges to indoor environmental
risk management. Thousands of chemicals have been brought to the indoor environment by
consumer products, only a fraction of those chemicals have been characterized. More
potentially hazardous chemicals are yet to be identified in the indoor environment. For
example, recent discovery of high indoor-to-outdoor ratios for perfluorinated carbonyl
compounds109, 110 show the importance of indoor exposure to these potentially hazardous
chemicals. Hundreds of pesticides are current used for indoor applications but there is little
data about their levels in homes. 

Examination of potential risk management options requires evaluation of their
effectiveness, feasibility, costs, benefits, unintended consequences, and culture and social
impacts.111 Many types of air cleaning devices are available on the market. With few
exceptions, most chemically based air cleaners have some unwanted consequences such as
generation of air pollutants (e.g., ozone and NOx) and incomplete oxidation of organic air
pollutants (e.g., aldehydes and acids). Data are needed for quantitative evaluation of
unwanted consequences. As an example, many papers have been published on
photocatalytic oxidation, few paid attention to incomplete oxidation. The lack of data for
potential negative effects has made it difficult to weigh the potential benefits and risks for
certain air cleaners. 

Formation of secondary pollutants due to indoor reactions demands more careful evaluation
of risk management options. For instance, to control indoor formaldehyde levels, one need
not only to consider primary sources such as furniture, but also contributions from other
sources (e.g., ozone-terpene reactions, autoxidation of certain chemicals in paint and water-
based cleaners, and even certain air cleaning devices). In addition, certain seemingly
harmless chemicals (i.e., terpenes) may produce hazardous pollutants by reacting with
other chemicals in air or on surfaces. Thus, identification and prioritization of primary and
secondary sources is essential to pollution prevention and risk reduction strategies.

CONCLUSION

Indoor environmental chemistry utilizes the theory and methods of chemistry to study
pollutant generation, transport, transformation, and fate indoors, and to improve indoor
environmental quality. While gas-phase homogeneous reactions and heterogeneous
reactions on interior surfaces have been rightfully under the spotlight in recent years,
Significant advances have been achieved in other areas including identification of chemical
pollutants and other chemicals in the indoor environment, chemicals reactions in indoor
sources, chemically based air cleaning, chemically based decontamination, and indoor
environmental analytical chemistry. As a decision-making process, indoor environmental
risk management can benefit from the knowledge of indoor chemistry through better
understanding of the behaviors of the pollutants and pollution control options. On the other
hand, indoor chemistry poses challenges to risk management by adding new dimensions to
the decision-making process. For instance, the risk reduction strategies must consider
secondary pollutants; selection of methods for air cleaning and building decontamination
must weigh the benefits and unwanted consequences.
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