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permits tlie service to be dragged to the "Build Area: 
Clicking on the associated "Help" icon will provide 
information on the use of a component service. 

The "Special Capabilities iMenu" contains tools for 
drawing and other resources that are not within the 
scope of tlie other two menus. For example, arrowed 
lines to interconnect tlie component senrices are 
"pointed to, clicked on, and dragged to" the appro- 
priate "Build Area' location. 

Figure 4 is an example of a completed CWS as it 
appears on a build layout for the scenario of children 
waiting for a school bus. This C\VS will periodically 
determine the location of the school bus, and when 
the bus is approaching the child's stop, an announce- 
ment will be made on tlie parents' wireless terminal. 

For background information see DATA COMhIUNI- 
CATIOXS; h.IOBl1.li RADIO; 'IELEPHOXE SERVICE; \VlDE- 
AREA NmVORRS in the ,McGraw-Hill Encyclopedia of 
Science & techno lo&^. Thaddeus J. A. Kobylarz 
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Computational environmental toxicology 
I4untlretls of tliousands of chemicals in currcnt or 
past use :Ire present in tlie environment, leaving 
human populations and ecosystems potentially at 
risk of exposure to them. The large number and var- 
ious forms of chemicals preclude regulators from 
evaluating every chemical with the most rigorous 
testing strategies. Instead, standard toxicity tests 
have been limited to only a small number of chemi- 
cals, with the hope that the "worst" chemicals will 
receive specific attention. The clicmicals that are 
tested may represent large classes of conipounds, 
such as certain types of pesticides. 

Today advances in computational biology,offer tlie 
possibility that scientists can develop a more detailed 
understancling of the risks posed by a larger num- 
ber of chemicals. Computational toxicology is tlie 
application of conlplitational biology using mathe- 
m:ttical and computer models, to the assessment of 
the risk chemicals pose to human health and the 
environment and to better understand the mecha- 
nism through which given chemicals induce harm. 

Risk assessment. Early on, risk assessment was 
mostly a "blind* relationship between exposure 
levels and some observed response such as the oc- 
currence of cancer, a neurological disorder, or a visi- 
ble birth clefect. The actual pathway between expo- 
sure and response, or disease, is better represented 
as a complex series of steps (Fig. 1). A chemical is 
ahsorbed (absorbed dose), distributed to hiternal tar- 
get sites, and possibly metaholizcd to an active form 

once within the body. This results in internd toxico- 
logically relevant doses. 

Computational toxicology is a systematic ap- 
proach that can model a contaminant's effect on gene 
expression; that is. how the contaminant exposure 
will affect cellular behavior and signaling, includ- 
ing protein synthesis (proteomics) and metabolic 
changes as seen in concentrations of metabo- 
lites in tissues and biofluids (metitbolomics). These 
advances would not have been possible without 
tlie emergence of bioinformatics and computational 
chemistry and tlie opportunities they offer for trans 
forming data into information. In particular, com- 
putational to-xicology will produce risk assessments 
based on specific niolecular changes rather than just 
the number of tumors, deaths. and overt clinical 
changes observed in test animals. Future assessments 
will be based on tlie number of DNA molecules 
altered at ;i crucial site, the change in an allosteric 
membrane protein that acts as a receptor, or the 
change in a regulating protein inside the cell. This 
will lcad to a better understanding of how those 
changes cause clinical disease. 

Recent advances in computational toxicology 
focus on breaking clown the t~tditional dichotomy 
between approaches to evaluating cancer versus 
other disease endpoints, on addressing sensitive life 
stages, and on  addressing aggregate and cumulative 
exposure to pollutants. For example, a greater under- 
standing is needed of why certain modes of action 
occur more rapidly when an organism is exposed to 
more than one chemical (synergism), but less rapidly 
when other chemicals are present (antagonism). 

Advancements in genomics, proteomics, and 
met;ibolomics, coupled with the advances in analytic 
tools, such as microarray techniques, will enable us 
to predict changes and evaluate which changes can 
initiate and promote disease. Computational tech- 
niques will help estimate tlie necessary quantitative 
information related to those changes. 

Physiologic models. Probably the greatest progress 
in tlie field of computational toxicology to date 
has been in characterizing and quantifying relevant 
internal doses. Physiologically based pharmacoki- 
netic (PBPK) models describe the time course and 
mass balance of chemicals entering the body (Fig. 2). 
They mathematically account for both the physi- 
ologic and biochemical processes that affect the 
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Fig. 1. Stepwise linkage of exposure to toxic response. 
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Example Of types of Parameters governing PBPK 
models 

Parameter Type 

wition coefficient Thermodynamic 
Organ and body volumes Anatomic 
Blood flows, ventilation rates, Physiologic 1 absorption rates, clearance 

1 Metabolic transformation rates Biochemical 

disposition of these chemicals and their protlucts of 
hiotmnsformation. As  a result, these models estimate 
the time course of the internal doses, especially at 
sites relevant to toxicity. 

Physiologically b ~ s e d  ph;irmacokinetic models are 
soverned by panmeters such as those shown in 
the table. These parameters may be chemical- and 
species-specific ant1 are from values reported in 
published liteciture, determined experimentally, or 
cxtctpolated. They can be used to give estimates of 
doses within the body, resulting from actual or simu- 
lated exposure conditions, at or near the location of 
toxic action, including subcellular sites if the proper 
equations are included. The estimated dose is then 
u.wd in dose-response functions to predict adverse 
reactions. In addition, these models can estimate 

1 the dose resulting from the different routes of entry 
into the body and tlie equivalence between different 
cxposure routes. For example, the doses at a site 

1 of toxicity in an internal organ resulting from two 

I different sources (such ;IS foc~I ancl inhaled air) can 
be easily calculated and compared. It is well known i that m:lny physiologic processes are nonlinear. and 

I that the cliancteristics of these nonlinear processes 
may differ among dose levels ant1 species. The phys 
lologic models account for this in a quantitative 
fashion. 

Figure 3 shows some typical output from a 
physiologic~lly basrd pharmacokinetic nlodrl for an 
inhalation exposure of 4 h, where tlie exposure or 
parent chemical (chemical 1) is metabolized in the 
body t o  a second chemical (chemical 2). Thc con- 
centntion profile in the blood of tlie parent chemi- 
cal and the product of metabolism or metabolite are 
quite different. Assuming these modeling results are 
being used to design a clinical or field stud!; it is 
apparent that capturing the peak concentration of 
the parent would require monitoring at different 
times than monitoring for the metabolite. 

In Fig. 4, if the area under the concentration(AL1C) 
the endpoint of interest, the time at which mon- 

itoring should cease clepends upon which cherni- 
Q l  is monitored. The AUC of "chemical 1" shows 
negligible increase at around 90 h, so  monitoring 
could stop then. The AIJC of "chemical 2" is still 
increasing at 1000 11, so monitoring would have to 
continue for a considerable time longer. 

Computational methods. The gron.tli in the under- 
standing of pharmacokinetics has called for new 
tools to predict how contaminants will behave after 

1 
aposure. The focus on improved dose calculations 
and understanding the basis for outcomes within the 
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rangc of observation, ancl use of these to improve 
scientific judgment below the range of observation 
(into the range of extrapolation) will result in bet- 
ter environmental risk assessments. Computational 
toxicology information should allow the identifica- 
tion of hazards by providing data on measurable bio- 
chenlical or cellular endpoints, which can serve as 
biomarkers of response for more complex adverse 
biological effects such as cancer or developmen- 
tal disorders. Ideally, these measurable endpoints 
should be mechanistically linked to the biological 
effect, nthcr  than simply being correlated with 
it. Identification of key events leading to toxicity 
can provide insights into the conditions necessary 
for response and the shape of the dose-response 
relationship as one goes from high to low doses. De- 
veloping the means for incorporating such "in silicon 
(computer-simulated) data should allow the exten- 
sion of the dose-response relationship established by 
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Fig. 2. Source-to-dose paradigm for studying environmental contaminants. PBPK = 
physiologically based pharmacokinetic; BBDR = biologically based dose response. 
(U.S. Environmental Protection Agency, About Computational Toxicology, 

time, h 

Fig. 3. Chemicals in blood. Output is from a prototypical physiologically based 
pharmokinetic (PBPK) model. (PBPK simulations were performed using the U.S. EPA's 
Exposure Related Dose Estimating Mode, J. N. Blancato et aL. 2002) 
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Fig. 4. Area under the concentration curve. Output is from an physiologically based 
pharrnokinetic (PBPK) model. (PBPK simulations were performed using the U.S. EPA's 
Exposure Related Dose Estimating Model, J. N. Blancato et ab, 2002) 

more traditional toxicology studies to lower levels 
using sensitive molecular biological and computa- 
tional techniques. This approach should also save 
steps and reduce the need for animal testing, com- 
pared to traditional toxicology. 

"Omics." In the area of complltational biology, 
recent advances have allowed for the sequencing 
of whole gnomes ,  which has enhanced the under- 
stantling of the complexity of cellular biology at the 
molecular level. Recent technological advances in' 
these areas have led to the development of the new 
discipline of toxicogenomics in which the effects of 
chemicals on organisms ant1 ecosystems can be ex- 
;~minetl using genomic, proteomic, and metabolomic 
methods. 

Omics may also be used to identify those mem- 
bers of a population at greater risk. Disease is consid- 
ered to result from endogenous predisposition and 
interaction with environmental stresses, with not all 
individuals in a population having the same clinical 
outcome given the same or similar exposures. How- 
ever, the exact magnitude of the role of predisposing 
endogenous factors remains unknown. 

Omic technologies promise to help determine the 
molecular pathways that lead to disease after expo- 
sure to environmental stresses. The selection of the 
proper measure of dose within a living system is 
crucial and should be based on what is known 
about the mechanism of action, so that quantitative 
predictions of risk are based on the molecular 
interactions within the system. 

Bioinformaiics. Data resulting from these omic tech- 
nologies are very complex and voluminous. As a re- 
sult, bioinformatics has evolved for managing and 
analyzing the data using advanced computational 
techniques. Powerful software enables us to study 
the pattern of gene and protein expression and 
relate those expressions to the structure of impor- 
tant chemical moieties. From such analyses, connec- 
tions between exposure, genetic susceptibility, and 
adverse effect will be made. Omics may yield spe- 

cific patterns, which may be markers of potential 
disease and exposure. These connections may be ' 

made without necessarily understanding the det;~ils 
of the pathways to disease. In the future, it is hoped 
that both in-vitro and in-silico methods will be used. 
With such n p i d  methods, various exposure scenar- 
ios could be  studied, including those where e x p o  
sures to a mdtitude of stressors occurs. At the very 
least, these techniques could help prioritize which 
stressors need further study and which may pose the 
greatest risk. 

Sbucture activity relationships. Improved quantification. 
such as enhanced quantitative structure activity re- 
lationships (QSAR) techniques, are helping estimate 
the toxicity of poorly characterized substances based 
on comparisons to well-studied substances having 
similar chemical structures. Commercially available 
software is used to predict toxicity endpoints based 
on chemical structure to predict carcinogenicity 
in mammals, developmental toxicity, mutagenicity, 
acute toxicity such as 50% lethal dose (LD,,,). chronic 
thresholds, and so on. 

O~tlook. It is easy to imagine how schemes far 
more complicated than this can he used to ex- 
plain the complex biochemistry within a cell, the 
interaction of different cells within a tissue, or the 
interaction of the different types of cells in neuro- 
logic;ll tissue. Such models may, for example, predict 
changes in brain function resulting from exposure to 
chemicals which are biotransformed into chemic;~ls 
that in turn change membrane potentials in the brain. 
In the future, models may be  devised to help us 1111- 

derstand how different regions of the bnin respond 
to changes initiated in other regions. 

[Disclaimer: The U.S. Environmental Protection 
Agency through the Office of Research and Devel- 
opment funded and managed some of the research 
described here. The present article has been sub- 
jected to the Agency's administrative review and has 
been approved for publication.] 

For background information see ENVIRONYENTAI. 
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Conflict analysls and resolution 
A strategic conflict is an intenction of two or more 
decision makers over issues such as rights or re- 
sources. Some conflicts, such as terrorist attacks, 
exhibit outright hostility, while others are highly 
cooperative situations in which disputants form 
coalitions or jointly act to achieve win/win solutions, 
that is, resolutions in which everyone gains. The key 
ingredients of any conflict model are the decision 
makers in disagreement, each decision maker's o p  
tions or courses of action, how a scenario or state 
is determined by the decision makers' choices, and 
their objectives or preferences over states. Conflict 
analysis provides methodologies for studying these 
multiple participant-multiple objective decision sit- 
uations systematically. By enhancing understanding 
and communication, it can lead to better decisions 
rhat produce resolutions that are more preferable, 
more stable, and more fair. 

Stntegic conflicts are ubiquitous; accordingly, 
research on conflict analysis and resolution 
has taken place in a wide range of disciplines 

I including psychology, sociology, operations re- 

/ Search, political science, and systems engineering. 
Many organizations-academic, governmental, o r  
private-offer assistance with the theory and 
practice of contlict analysis and resolution. 

Rigorous mathematical structures can provide 
Considerable insight, which probably accounts for 
the success of the many game-theoq~related method- 
ologies for modeling and analyzing conflict. Tech- 
niques can be usefully classified according to the 
information required to calibrate a model. For ex- 
mple, a dinner-party host needs to know that the 
Ruest prefers red wine to white, but not how much 
more preferable red wine is than white. Quantita- 
tive preferences are represented on a continuous 
scale, and can express the extent of such differences. 
r%lly measured in real numbers, they can also en- 
code information about the decision maker's risk at- 
firude: how the guest would feel if a coin toss de- 
termined red or white. Most game-theory models, 
including strategic form, extensive form, and char- 
acteristic function form, are quantitative techniques. 

I  onq quantitative techniques, on the other hand, re- 

quire only easier-twbtain rankings of outcomes ac- 
cording to preference. Information about preference 
differences or preferences for randomly determined 
outcomes cannot be included. Nonquantitative 
methodologies, including metagame analysis, drama 
theory, conflict analysis, and the Graph Model for 
Conflict Resolution, are convenient for modeling so- 
cietal disputes ranging from international trade to 
family arguments. These techniques can help resolve 
problems that arise in general approaches to negoti- 
ation, mediation, and arbitration. For example, non- 
quantitative methods are recommended for brain- 
storming sessions in interest-based negotiations, in 
part because they can be adjusted as more informa- 
tion becomes available or more options are recog- 
nized. 

To illustrate how formal methods can be applied to 
actual disputes, the Graph Model for Conflict Resolu- 
tion is employed here to analyze a simple sustainable 
development problem. This model is designed for 
application to both simple and complex real-world 
disputes, and is based on theoretical foundations for- 
mulated using the mathematics of relationships: set 
theory, logic, and graph theory. The decision support 
system GMCR 11 permits practitioners, researchers, 
teachers, and students to apply this unique decision 
technology conveniently to virtually any social con- 
flict. 

Decision support systems. A decision support sys 
tern (DSS) is a user-friendly software package that 
encodes modeling and analysis capabilities for for- 
mal decision models. Decision suppon system tech- 
nologies are an important subfield of information 
technology, which includes the development and a p  
plication of computer software and hardware. The 
decision support system GMCR I1 allows users to 
readily model and analyze conflicts using the Graph 
Model for Conflict Resolution (Fig. 1). It has been a p  
plied in diverse domains including water resources, 
international trade, politics, and military science. 
GMCR Il is appropriate for studying large complex 
disputes, but it can also be used for small models, 
such as the one examined below, which will provide 
context for a discussion of the modeling subsystem, 
the analysis engine, and the output interpretation 
subsystem. 

Sustainable development conflict Environmental 
conflicts can be very complex and hence require 
complex models. Nevertheless, in some situations 
it is possible to gain understanding of a conflict 
by studying a simple or rudimentary model. For 
instance, the sustainable development conAict rep 
resents a generic dispute occurring between envi- 
ronmentalists and developers. The developers t y p  
ically wish to construct a new industrial facility. 
expand a residential area in a city, build a hydro- 
electric complex, sell genetically engineered seeds 
to farmers, or purchase public infrastructure. The en- 
vironmentalists may include governmental agencies 
(often those that ensure compliance to environmen- 
tal regulations), nongovernmental organizations r e p  
resenting specific environmental interests, and coali- 
tions of concerned citizens. The environmentalists' 


