Hepatocyte Cultures as Model Systems for Trichloroethylene Hepatocarcinogenicity

JoEllyn McMillan, Ph.D. Jennie Walgren, Ph.D. David Kurtz, Ph.D.

Environmental Biosciences Program

Department of Pharmacology & Experimental Therapeutics

Medical University of South Carolina

TCE Research Objectives

To determine:

- Relevance of peroxisome proliferation and increased hepatocyte mitogenesis to hepatocarcinogenicity of TCE and its metabolites
- Role of PPARα in hepatocarcinogenicity of TCE and its metabolites
- Relevance of B6C3F₁ mouse liver events to human toxicity

TCE-Induced Hepatocarcinogenesis

- Response seen in B6C3F₁ mice
- Metabolites: TCA &/or DCA
- Early responses in vivo
 - hepatocyte mitogenesis
 - peroxisome proliferation
- Response in humans is uncertain

Sequence of Hepatic Events in TCE-Treated B6C3F₁ Mice

Overall Questions

- Can rodent primary hepatocyte cultures be used to study the mechanism of:
 - hepatocyte mitogenesis?
 - peroxisome proliferation?

- Do human hepatocytes show responses?
 - qualitative
 - quantitative

Question

Are TCA and DCA mitogenic in rat and B6C3F₁ mouse hepatocyte cultures?

TCA- and DCA-Induced BrdU Incorporation in B6C3F₁ Mouse Liver

Rat & Mouse Hepatocyte Culture

Liver digested by collagenase perfusion

Hepatocytes isolated & plated on collagen-coated culture dishes

Treatments begun 24 hrs after attachment

Mitogenesis

Treatment for 36 hrs

4 hr ³H-Thymidine pulse

DNA collected

Amount of radioactivity in DNA determined

³H-Thymidine Incorporation in Rat Hepatocytes

Rat Primary Hepatocyte Culture

³H-Thymidine Incorporation in B6C3F₁ Mouse Hepatocytes

Mouse Primary Hepatocyte Culture

Cell Counts Following TCA and DCA Treatment

Rat Primary Hepatocyte Culture

40 hrs treatment

Question

Does TCA or DCA induce ³H-thymidine incorporation in human hepatocyte cultures?

Isolation and Culture of Human Liver Cells

Donor tissue minced & digested by collagenase solution in Stomacher[™] blender¹

Digested tissue filtered & hepatocytes pelleted (50 x g)

Viable hepatocytes counted & plated

Cells grown to desired cell density

Primary cells

Subpassaged cells

Cells used

Cells passaged and used subsequently

¹Gibson, D. et al., 1993. Cell Biol. Toxicol. 9: 385-403.

³H-Thymidine Incorporation in Human Cells

Summary

- Rodent hepatocytes
 - Mitogenic activity of DCA or TCA was not detected
- Human hepatocytes
 - No mitogenic effect with DCA or TCA

Question

Do TCA &/or DCA induce peroxisome proliferation in rat or mouse hepatocyte cultures?

Palmitoyl-CoA Oxidation in Intact Liver

In Vivo

Palmitoyl-CoA oxidation

	Control	TCA	DCA	Wy-14,643
	(nmol/min/mg prot)	(fold increase)	(fold increase)	(fold increase)
Rat	4-10	4	2	18
B6C3F ₁ mouse	2-10	2.5	2	13
Human	2.8 <u>+</u> 0.4*	_		_

Elcombe, CR. 1985. Arch. Toxicol. Suppl. 8, 6-17.

DeAngelo et al. 1989. Toxicol. Appl. Pharmacol. 101, 285-298.

Bentley et al. 1993. Fd. Chem. Toxic. 31, 857-907.

*Walgren, et al., 2000. Cell Biol. Toxicol. 16: 257-273

Rat & Mouse Hepatocyte Culture

Liver digested by collagenase perfusion

Hepatocytes isolated & plated on collagen-coated culture dishes

Treatments begun 24 hrs after attachment

Mitogenesis

Treatment for 36 hrs

4 hr 3H-Thymidine pulse

DNA collected

Amount of radioactivity in DNA determined

Peroxisome proliferation

Treatment for 72 hrs Renewed every 24 hrs

Cells harvested and homogenates prepared

Palmitoyl-CoA oxidation activity measured in homogenates

Palmitoyl-CoA Oxidation in Cultured Hepatocytes

	Palmitoyl-CoA oxidation (nmoles NADH/mg protein/min)				
	Control	TCA	DCA	Wy-14,643	
		[2 mM]	[2 mM]	[0.005 mM]	
Rat	1.4 <u>+</u> 0.1	3.2 <u>+</u> 0.1 (2.5)	7.0 <u>+</u> 0.2 (5)	12.1 <u>+</u> 2.4 (8.5)	
B6C3F1 mouse	0.2 <u>+</u> 0.03	0.7 <u>+</u> 0.1 (3.5)	1.1 <u>+</u> 0.2 (5.5)		
		[4 mM]	[4 mM]	[0.1mM]	
Human	BLD (<20 pmol/min/mg)	BLD	BLD	BLD	

Walgren, et al., 2000. Cell Biol. Toxicol. 16: 257-273

Questions

 Can cytochrome P450 4A be detected in human hepatocyte cultures?

 Can cytochrome P450 4A be induced in human hepatocyte cultures?

CYP4A Levels in Human Hepatocytes

Walgren, et al., 2000 Cell Biol. Toxicol. 16: 257-273

Summary

- Rat and mouse hepatocytes:
 - Palmitoyl-CoA oxidation is detectable
 - Palmitoyl-CoA oxidation is inducible by TCA and DCA
- Human hepatocytes:
 - Palmitoyl-CoA oxidation was not detectable
 - Induction of palmitoyl-CoA oxidation could not be detected
 - CYP 4A was detectable and maintained in the passaged cells
 - Induction of CYP 4A was observed
 - CYP 4A induction and the extent of induction were variable in different hepatocyte preparations

Question

Why are rodent and human responses different?

Human *vs.* Rodent Peroxisomal Responses

- PPARα mRNA levels are 10-fold greater in mouse vs. human liver
- Evidence for 2 or more variants of human PPARα
- No evidence for increased peroxisomal enzyme activities in humans taking fibric acid drugs

Question

- Are the differences in response due to differences in
 - receptor?
 - response element activation?

PPARα Protein Levels in Human Liver and Cultured Hepatocytes

Walgren, et al., 2000. Res. Commun. Mol. Pathol. Pharmacol. 108: 116-132

Transfection of Human Hepatocytes

Endogenous

PPRE-CAT pcDNA3

-CAT assay: endogenous hPPAR activity

-CAT assay: transfected mPPAR activity

PPRE Activation in Human Cells Transfected with Mouse PPARα

Walgren, et al., 2000 Res. Commun. Mol. Pathol. Pharmacol. 108: 116-132

Conclusions

Reproduction of early in vivo responses

	Rodent	Human
Direct mitogenesis		_
Palmitoyl-CoA oxidation	+	_
P450 4A induction	+	+

Acknowledgements

Jennie Walgren, Ph.D. David Kurtz, Ph.D.

Stacey Allen
Charles Basler
Zinat Hassanpour
Keashia McKelvey

Supported by:

MUSC Summer Undergraduate Research Program DOE Cooperative Agreement DE-FC09-02CH11109